Universiti Teknologi Malaysia Institutional Repository

Sargassum myriocystum-mediated TiO2-nanoparticles and their antimicrobial, larvicidal activities and enhanced photocatalytic degradation of various dyes

Balaraman, Perumal and Balasubramanian, Balamuralikrishnan and Liu, Wen-Chao and Kaliannan, Durairaj and Durai, Mahendran and Kamyab, Hesam and Alwetaishi, Mamdooh and Maluventhen, Viji and Ashokkumar, Veeramuthu and Chelliapan, Shreeshivadasan and Maruthupandian, Arumugam (2022) Sargassum myriocystum-mediated TiO2-nanoparticles and their antimicrobial, larvicidal activities and enhanced photocatalytic degradation of various dyes. Environmental Research, 204 (NA). pp. 1-13. ISSN 0013-9351

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1016/j.envres.2021.112278

Abstract

Recently, the phyco-synthesis of nanoparticles has been applied as a reliable approach to modern research field, and it has yielded a wide spectrum of diverse uses in fields such as biological science and environmental science. This study used marine natural resource seaweed Sargassum myriocystum due to their unique phytochemicals and their significant attributes in giving effective response on various biomedical applications. The response is created by their stress-tolerant environmental adaptations. This inspired us to make an attempt using the above-mentioned charactersitics. Therfore, the current study performed phycosynthesis of titanium dioxide nanoparticles (TiO2-NPs) utilising aqueous extracts of S. myriocystum. The TiO2-NPs formation was confirmed in earlier UV–visible spectroscopy analysis. The crystalline structure, functional groups (phycomolecules), particle morphology (cubic, square, and spherical), size (~50–90 nm), and surface charge (negative) of the TiO2-NPs were analysed and confirmed by various characterisation analyses. In addition, the seaweed-mediated TiO2-NPs was investigated, which showed potential impacts on antibacterial activity and anti-biofilm actions against pathogens (Staphylococcus aureus, S. epidermidis, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, and Klebsiella pneumoniae). Additionally, some evaluations were performed on larvicidal activities of TiO2-NPs in oppose to Aedes aegypti and Culex quinquefasciatus mosquitos and the environmental effects of photocatalytic activities against methylene blue and crystal violet under sunlight irradiation. The highest percent of methylene blue degradation was observed at 92.92% within 45 min. Overall, our findings suggested that S. myriocystum mediates TiO2-NPs to be a potent disruptive material for bacterial pathogens and mosquito larvae and also to enhance the photocatalytic dye degradation.

Item Type:Article
Uncontrolled Keywords:Antibiofilm, Bioactive potential, Brown seaweed, Dye degradation, Pathogenic activity, Titanium nanomaterials
Subjects:T Technology > T Technology (General)
Divisions:Razak School of Engineering and Advanced Technology
ID Code:103754
Deposited By: Widya Wahid
Deposited On:23 Nov 2023 08:56
Last Modified:23 Nov 2023 08:56

Repository Staff Only: item control page