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Abstract. Drought is one of the most severe climatological disasters that has negative impact on 

agricultural production around the world. Over the years, computer vision technology has been 

used in conjunction with machine learning applications to replace traditional destructive and 

time-consuming methods for real-time monitoring of drought-affected plant. Deep learning (DL) 

techniques have gained a stellar reputation in image classification recently, with convolutional 

neural network (CNN) emerging as the industry standard. However, the size of deep CNN 

models is frequently large due to massive number of parameters and field application is often 

not feasible due to limited storage and computational resources. Several lightweight CNN 

models have been selected based on the number of network parameters of less than 6M and were 

trained and tested. The EfficientNet model has achieved a classification accuracy of 88.12 and 

88.97 percent for identifying severe drought, mild drought, and no drought plants on visible and 

near-infrared images respectively. The findings of this study can be used to assist in the 

development of automated early detection of drought stressed plant with model sizes suitable for 

real-time plant diagnosis on mobile or embedded devices. 

1. Introduction 

Droughts are becoming more common around the world as a result of global climate change. Drought 

conditions that last for an extended period can have a detrimental impact on agriculture, prompting a 

red alert on food security. As irregular rainfall limits water availability, most plant crops suffered from 

water stress, the most critical of plant abiotic stresses that can affect plant growth. An early detection 

system for water stressed plants is crucial for ensuring sustainable agricultural productivity. 

Traditionally, visual characteristics such as leaf yellowing and wilting have been manually monitored 

as indicators of drought conditions. However, the technique is inefficient and unsuitable for early 

identification of drought-stressed plants. More capable techniques, such as quantifying leaf and stem 

water potential at midday [1], have been introduced; however, the methods are time consuming and 

destructive. Recently, the development of plant sensing equipment utilising remote sensing to assess 

environmental and plant physiological changes in a fast and nod-destructive manner has seen a 

significant leap in progress [2]. 

Computer vision has been widely adopted as a low-cost system for identifying drought-affected 

plants [3]. The Internet of Things (IoTs) and robotics platforms have been used to create an automated 

system based on image analysis that extracts information such as morphological features (size, shape, 

texture), spectra (colour, temperature, humidity), and time data (growth rate, development, dynamic 

change of spectral and morphological modes) that show strong correlations with the plant water status 

[4]. Plant phenotyping using computer vision has also been implemented in drought resistance plant 

breeding studies [5]. Despite this, the technology is still in research and development stage and has seen 

little use in practise due to operational and processing difficulties. The high-throughput data of plant 

images necessitates fast processing mechanism to determine the useful information that reflects the 

plant’s water stress status.  

Machine learning (ML) has quickly become the standard approach in computer vision applications 

due to its ability to effectively process large amounts of information in a non-linear framework. 

Gutiérrez, Diago, Fernández-Novales and Tardaguila [6] have used machine learning models in thermal 
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imaging analysis to assess water stress status in vineyards.  Zhuang, Wang, Jiang, Li and Gong [7] have 

proposed a maize water stress detection model based on a supervised learning algorithm of Gradient 

Boosting Decision Tree (GBDT) using features extracted from plant colour images. However, 

conventional machine learning techniques require manual extraction of image features, which are then 

fed into the ML model to identify drought stressed plant using pattern recognition. This requires specific 

technical knowledge and is currently the limiting factor influencing the model accuracy [8]. When 

compared to traditional machine learning, the advanced ML technique of deep learning (DL) provides 

the benefits of automated feature extraction and analysis with better performance. Convolutional Neural 

Networks (CNNs) have been developed for quick application and can provide a much-detailed 

representation of the image features. 
Many studies have used deep CNN models to detect drought affected plants, with such applications 

being solved either by finely tuned CNNs or by training from scratch. Chandel, Chakraborty, Rajwade, 

Dubey, Tiwari and Jat [9] tested three different pre-trained deep CNNs, AlexNet, GoogLeNet, and 

Inception V3 to identify drought stress in maize, okra, and soybean in which GoogLeNet performance 

was found to be superior compared to the other models. Zhuang, Wang, Jiang and Li [10] used CNN to 

identify drought stress in maize by learning features of the leaf phenotype. In their most recent study, 

Islam and Yamane [11] created HortNet417v1, a deep CNN model for detecting drought stress in pot-

grown peach plants. Aside from exceptional performance, deep model architectures typically include 

large network parameters, which necessitates large storage capacity devices. Deep learning models are 

also extremely dependable on large amounts of data and involve significant computational resources, 

often supplied by the graphics processing units (GPUs). The application of such technology in the 

agricultural field may result in significant hardware costs. Cloud computing may be the best alternative 

option, but it requires a consistent internet connection, which is simply not available in some croplands.  

Lightweight deep learning model structures for image classification have been developed over the 

years for small and mobile devices, including edge computing applications. These models have 

comparatively simpler and more efficient network constructions with fewer parameters, consuming less 

memory as well as computing power. The objective of this research is to investigate the ability of several 

lightweight deep CNN models, namely MobileNet, Mobile NasNet, and EfficientNet, to identify 

drought-affected plants. The goal is to create a real-time embedded image processing and plant diagnosis 

system for water stress detection using limited computer hardware. 

2. Materials and devices 

2.1. Plant images dataset 

Plant images were obtained from the Donald Danforth Plant Science Centre’s standard publicly 

available dataset [12]. The dataset includes images of plant shoot area of ten Setaria grass lines (S. viridis 

(accession A10), S. italica (accession B100), and eight randomly selected RILs derived from a cross of 

S. viridis and S. italica). Setaria grass is a model plant that has been used in many drought-related studies 

to analyse the plant phenotypes [13]. 

Four water treatments were performed on full-water capacity (FC): 100% FC, 66% FC, 33% FC, and 

0% FC imposed 17 days after planting (DAP) and maintained for another 17 days. Images prior to 17 

DAP were excluded from the sample due to low to none biomass production. Plants that received no 

water after 17 DAP died within 7 days thus 0% FC images were also omitted from the sample. Because 

early treatment has no discernible effect on the plants, the sample images were taken after 2 days of 

treatment, from 21 DAP until 33 DAP. One top view and four side view images were taken for each 

plant. We combined all four-sided images and omitted the top view images in the sample. These images 

were sorted by drought severity of severe drought, mild drought, and no drought. 

The dataset was created using visible (VIS) and near-infrared (NIR) images, two types of images 

commonly used in plant water stress analysis studies. Visible image of red, green, and blue (RGB), is 

the most widely used imagery for measuring plant’s morphological properties collected using optical 

device that detects light wavelengths between 400 and 700 nm. The rate of NIR absorption is the highest 

in the spectral range of 1400 to 1450 nm and is highly correlated with plant moisture content. We used 

both images to determine which image provided the best accuracy for identifying drought-stressed plants 

using lightweight CNN models. As NIR image is essentially a grayscale image, it should be faster to 
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compute than an RGB image. The RGB image resolution is 2,454 x 2,056 pixels, while the NIR image 

resolution is 150 x 200 pixels. Number of images in each sample class are shown in Table 1. 

Table 1. Number of images in each sample class 

Drought severity Number of images 

RGB NIR 

Severe drought 2,281 2,280 

Mild drought 2,286 2,285 

No drought 2,382 2,300 

2.2. Image pre-processing 

Image cropping was performed as a pre-processing step to remove any boxes and pot pixels. This is 

done to eliminate the unnecessary background and focus only on the plant features, as shown in figure 

1 and 2. The cropping process also reduces the size of the images, which speeds up the computation. 

Images for this study were taken in a laboratory setting with a white background and adequate lighting. 

Because the background is white, no plant segmentation is required. We trained with a single image of 

a plant shoot because we believe that the plant structure would provide morphological information that 

aids in detecting drought-stressed plants. The images were downscaled to fit the size specification of 

various models, and the intensity values were adjusted to fill the entire intensity range [0, 255].  

                                      

(a)                                              (b)                                                (c) 

Figure 1. RGB plant images (a) severe drought, (b) mild drought (c) no drought 

                                             

(a)                                              (b)                                                (c) 

Figure 2. NIR plant images (a) severe drought, (b) mild drought (c) no drought 
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2.3. Lightweight deep CNNs 

The architectures of different lightweight CNN models can be defined by the number of convolutional 

layers, activation function of each layer, and the hidden units of each layer. Predefined models of 

MobileNet (versions 1 and 2), MnasNet and EfficientNet were evaluated for their accuracy in identifying 

drought stressed plant, as shown in Table 2. These models were chosen based on a small number of 

parameters (fewer than 6 million) to reduce computational complexity and memory cost. 

Table 2. Lightweight CNN models evaluated in the study 

Model Parameters Size (MB) Depth Time (ms) per inference step 

CPU GPU 

MobileNet 4,253,864 16 88 22.6 3.44 

MobileNetV2 3,538,984 14 88 25.9 3.83 

NasNet mobile 5,326,716 23 - 27.04 6.70 

EfficientNet 5,330,571 29 - 46.0 4.91 

2.3.1. MobileNet 

MobileNet [14] is a lightweight architecture optimized for mobile and embedded vision systems. It 

divides the convolution into a depth-wise separable convolution followed by a pointwise convolution to 

construct a lightweight deep CNN model. The parameters are much lower than those of established 

models such as VGG [15], but the accuracy is comparable when trained on well-known public datasets. 

2.3.2. MobileNetV2 

MobileNetV2 [16] is an updated version of MobileNet that improves its efficiency and effectiveness in 

terms of accuracy and speed. MobileNetV2 enhances the state-of-the-art performance of mobile models 

on a variety of tasks and benchmarks, as well as across a range of model sizes. In contrast to traditional 

residual models, the architecture is based on an inverted residual structure, with the input and output of 

the residual block being thin bottleneck layers. 

2.3.3. MnasNet 

Mobile NasNet or MnasNet [17] is a CNN architecture designed for mobile devices with limited 

computing power. Based on the Neural Architecture Search (NAS) approach, lightweight deep model 

is automatically designed and optimized using reinforcement learning [18]. It outperforms MobileNetV2 

on ImageNet classification and COCO detection tasks, performing 1.5 times faster. The model’s 

computational cost and parameters can be easily scaled to address a wide range of problems. 

2.3.4. EfficientNet 

EfficentNet’s architecture [19] employs mobile inverted bottleneck convolution (MBConv), which is 

similar to MobileNetV2 and MnasNet but slightly larger. EfficientNet used compound scaling to create 

a series of EfficienNets that were both more accurate and larger in size. Only the baseline architecture 

was used in this study. 

 

Figure 3. Schematic representation of the flow of work 



The 9th AUN/SEED-Net Regional Conference on Natural Disaster (RCND 2021)
IOP Conf. Series: Earth and Environmental Science 1091 (2022) 012043

IOP Publishing
doi:10.1088/1755-1315/1091/1/012043

5

 
 
 
 
 
 

2.4. Training and validation 

Seventy percent of the sample images were used for training, twenty two percent for cross-validation, 

and ten percent for testing. To avoid overfitting, validation data was used to tune network parameters 

and hyperparameters. To obtain a generalized measure of classification accuracy, unseen test data was 

used. Flipping, adjusting aspect ratio, and intensity transformation were all part of the augmentation 

process as in figure 3. To evaluate training and testing accuracies, Adam optimizer was used. The 

learning rate was fixed to 0.001, and the models were built using the Tensorflow [13] framework in 

python platform. To reduce the risk of model overfitting, the callbacks function was used to perform 

early stopping. Fine tune layer starts at layer 134 for MobileNets (versions 1 and 2), layer 50 for NasNet, 

and layer 100 for EfficientNet. 

3. Results and discussion 

Table 3 shows that the deep CNN models were able to efficiently classify plants that had been subjected 

to three different levels of drought stress with respect to the accuracy and their training epochs. With 

0.6875, MobileNet version 1 has the lowest accuracy. For RGB images, MobileNetV2 has an accuracy 

of 0.7687 and MnasNet has an accuracy of 0.8187. For RGB images, EfficientNet has the highest 

accuracy of 0.8812. EfficientNet also provides the best results for NIR images, with 0.8897 accuracy, 

followed by MnasNet model with 0.7364 accuracy, MobileNetV2 with 0.7396 accuracy, and 

MobileNetV1 with 0.7083 accuracy. 

Table 3. Accuracy results on test dataset 

Model Test accuracy Epochs 

RGB NIR RGB NIR 

MobileNet 0.6875 0.7083 46 74 

MobileNet-V2 0.7687 0.7396 67 87 

NasNet mobile 0.8187 0.7364 51 74 

EfficientNet 0.8812 0.8897 103 75 

Overall, EfficientNet produced the best results for identifying drought-stressed plants. This could be 

due to EfficientNet's deeper structure being the largest in comparison to the other models. MnasNet, 

which had comparable parameters and size to EfficientNet, also performed well. The two MobileNet 

versions had lower accuracy, which could be attributed to smaller parameters and sizes. According to 

table 1, EfficientNet can be used in mobile devices to detect drought-stressed plants. When more data is 

available, the model's ability to scale up is also advantageous. In addition, when compared to other 

models, the results showed that EfficientNet transferred well to other datasets. Although an upscaled 

model can improve accuracy, the trade-off between accuracy and computational cost can be overcome 

by introducing an appropriate upscale coefficients multiplier. 

Although the use of NIR images may simplify the process of detecting drought stressed plants 

through fast model convergence as referred to epochs in table 2, the results show that VIS images 

perform better when deep CNN models are used. This is to be expected, as colour is one of the dominant 

features retrieved by the CNN alongside shape and texture for drought-stressed plant identification [10]. 

This demonstrates that high accuracy can be obtained without the use of specialised cameras to detect 

drought-stressed plants. Nonetheless, both VIS and NIR systems could be used concurrently to improve 

detection accuracy. It should be noted that the pre-trained models are mostly trained on the publicly 

available ImageNet dataset, which contains colour images. This may result in a slight bias toward using 

colour images over grayscale images. To avoid this issue, it is recommended that the CNN model be 

trained from scratch using the NIR image rather than fine-tuning from the existing models. 
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Figure 4. MobileNet training and validation 

accuracy and loss versus epochs for RGB image. 

 Figure 5. MobileNet-V2 training and validation 

accuracy and loss versus epochs for RGB image. 

 

 

 

Figure 6. NasNet mobile training and validation 

accuracy and loss versus epochs for RGB image. 

 Figure 7. EfficientNet training and validation 

accuracy and loss versus epochs for RGB image. 
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Figure 8. MobileNet training and validation 

accuracy and loss versus epochs for NIR image. 

 Figure 9. MobileNet-V2 training and validation 

accuracy and loss versus epochs for NIR image. 

 

 

 

Figure 10. NasNet mobile training and 

validation accuracy and loss versus epochs for 

NIR image. 

 Figure 11. EfficientNet training and validation 

accuracy and loss versus epochs for NIR image. 

4. Conclusion 
This study investigated the ability of lightweight deep convolutional neural network models to identify 

drought-stressed plants, which can easily meet the design requirements for mobile and embedded vision 

applications. EfficientNet, the most successful model architecture, achieved success rates of 88.12 

percent and 88.97 percent for RGB and NIR images, respectively. In the future, the trade-off between 

accuracy and computational cost may lead to the development of small and low-cost models, and 

appropriate models can be selected based on resource constraints. 
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