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Abstract. Seagrass beds are important habitats in the marine environment by providing food and 

shelter to dugongs and sea turtles. Protection and conservation plans require detail spatial 

distribution of these habitats such as habitat suitability maps. In this study, machine learning 

techniques were tested by using Multibeam Echo Sounder System (MBES) and ground truth 

datasets to produce seagrass habitat suitability models at Redang Marine Park. Five bathymetric 

predictors and seven backscatter predictors from MBES data were used to representing 

topography features and sediment types in the study area. Three machine learning algorithms; 

Maximum Entropy (MaxEnt), Random Forests (RF), and Support Vector Machine (SVM) were 

tested. The results revealed that MaxEnt and RF models achieved the highest accuracy (93% and 

91%, respectively) with SVM produced the lowest (67%). Depth was identified as the most 

significant predictor for all three models. The contributions of backscatter predictors were more 

central for SVM model. High accuracy models showed that suitable habitat for seagrass is 

distributed around shallow water areas (<20 m) and between fringing reef habitats. The findings 

highlight that acoustic data and machine learning are capable to predict how seagrass beds are 

spatially distributed which provide important information for managing marine resources.  

Keyword: Habitat Suitability Model, Maximum Entropy, Random Forest, Support Vector 

Machine, Bathymetric, Backscatter, Multibeam Echosounder, Redang Marine Park 

1.  Introduction 

Around the globe, anthropogenic activities and natural disasters have become great risks as they 

adversely affect seagrasses and their ecological functions [1-4]. The distribution loss in Malaysia is also 

increasing at an alarming rate [5, 6]. Despite there being no effects from their existing distribution, 

studies predict a significant reduction in their coverage area, which will have a detrimental effect on the 

surrounding ecosystem. [7, 8]. Hence, monitoring the seagrass habitat using advanced technologies is 

very important for improving protection of this important resource [9-11]. This is particularly vital for 

Malaysia’s marine protected areas, with little attention and a lack of information to conserve and 

preserve the seagrass habitat [12-14]. There are about 13 species of seagrass, and Halophila decipiens, 

Halodule pinifolia, and Halophila minor are among the seagrass species that are found in Redang Marine 

Park (RMP), Terengganu, Malaysia [15]. Their habitats in Malaysia are also expected to face serious 
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threats as anthropogenic activities and natural disasters continue to happen [5]. As a result, the most 

effective and suggested method is to conserve and preserve seagrass habitats early by mapping their 

habitats [3, 16-18]. Creating a map of the present habitat and simulating a suitable habitat for seagrasses 

has made a significant contribution to marine park managers and decision-makers in making decisions 

and subsequently actions [2, 17, 19-21]. However, for monitoring their distribution and managing their 

natural habitats, a reliable, cost-effective, efficient, and precise mapping technique is required [22, 23]. 

In this regard, among the most widely used modelling and prediction techniques is Habitat Suitability 

Modelling (HSM) [2, 17, 19-21]. 

HSM has been used by marine scientists and researchers to predict the distribution of marine habitats 

[12, 24-26]. HSMs, on the other hand, have shown varying levels of model performance, and studies 

have yet to identify a single optimum model for several taxa and seafloor features [17]. Choosing and 

implementing HSM requires careful consideration as the usage of numerous modeling algorithms may 

have an impact on model performance, contribution of predictors, and habitat prediction [21, 27-29]. As 

a result, several studies used more than one HSM [29, 30]. Besides, previously published studies 

advocate the use of presence-absence modelling techniques, whereas some strongly encourage the use 

of modelling algorithms that only take into presence-only [31]. The reason behind is that comparisons  

between machine learning algorithms and regression model algorithms has been widely conducted [32, 

33], while other researchers compared machine learning algorithms [34-36] and ensemble HSMs 

developed by others instead of relying on a HSM [37]. However, the application of HSM is also affected 

by the selection of predictors [36, 38-40], spatial resolution of predictors [28, 41-43], and the size of 

window analysis to derive predictors [12, 44].  

As a result, the use of comparable approaches to several HSMs has enable some of the first organized 

efforts by marine researchers and scientists to identify suitable algorithms for mapping marine habitats. 

The possible options in this study are the use of multibeam echosounder (MBES) data. Due to the high 

spatial resolution of MBES data and extensive coverage area, it provides a significant contribution to 

the monitoring of seagrass habitat distributions [12, 45]. In previous studies, high spatial resolution 

MBES data allowed scientists or researchers to derive numerous spatially continuous datasets (i.e., 

MBES predictors) [46-50]. The predictive value of these variables is better than that of MBES data (i.e., 

bathymetric map and backscatter mosaic) as they provide the detailed information on seabed topography 

and substrata [51, 52]. Among the various predictors, the majority of previous research typically used 

slope, curvature, eastness, and northness derived from bathymetric map and Gray Level Co-occurrence 

Matrix (GLCM) texture features [53-57] and Angular Range Analysis (ARA) parameters derived from 

backscatter mosaic [58-60]. Though bathymetric map has higher importance in modelling seagrass 

habitats [12, 61-64], other backscatter predictors may also contribute significantly to improve the model 

[62, 65]. For instance, a significant correlation between the seagrass habitat distribution and fine sandy 

substrates exists [66]. Thus, assessing the role of MBES predictors is critical since they may reflect 

topographical and substratum characteristics of the study area. 

Several prior studies have evaluated HSM's efficacy in mapping and modeling seagrass ecosystems. 

Hu, Zhang, Chen, Liu, Ye, Jiang, Zheng, Du and Chen [17] compared the accuracy of two different 

seagrass habitat prediction models and found that using an ensemble model be significantly better than 

using a single model. In addition, in order to make a more accurate model, Araújo and New [67] 

suggested that an ensemble model was used rather than just one model. Likewise, Effrosynidis, 

Arampatzis and Sylaios [68] and Stankovic, Kaewsrikhaw, Rattanachot and Prathep [69] analyzed the 

performance of several machine learning algorithms and concluded that the results using the Random 

Forest (RF) algorithm were excellent compared to those from the other algorithms. In addition, Downie, 

von Numers and Boström [21] made a comparison of the performances of two machine learning 

algorithms (i.e., Maximum Entropy and Generalised Additive Model) in the prediction of seagrass and 

suggested an ensemble approach is able to produce a best-performing model, rather than one algorithm. 

Furthermore, Valle, van Katwijk, de Jong, Bouma, Schipper, Chust, Benito, Garmendia and Borja [70] 

made a comparison of the performances of five machine learning models (i.e., Maximum Entropy and 

Generalised Additive Model) and three regression-based models in the prediction of seagrass and 
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suggested Boosted Regression Trees (BRT) and Random Forest (RF), which were the most effective 

modeling algorithms. Both remote sensing and non-remote sensing datasets have been used in these 

studies (e.g., Hu, Zhang, Chen, Liu, Ye, Jiang, Zheng, Du and Chen [17]). Downie, von Numers and 

Boström [21] used EOS Terra-MODIS images and topographical data (e.g., depth and sandy shores) to 

produce two machine learning models, that predict seagrass in the Archipelago Sea, SW Finland. Other 

study used satellite imagery and ground-truth survey data to model seagrass habitat distribution [17]. In 

addition, Effrosynidis, Arampatzis and Sylaios [68] used satellite imagery, digital elevation models 

(DTMs), and bathymetric survey data to produce multiple seagrass prediction models. However, 

comparable studies of SDM utilizing high-resolution images of MBES data, in particular for predicting 

seagrass habitat, are lacking. 

As a result, this study will address the following research gaps and needs: (1) assessing the potential 

of the bathymetric map, backscatter mosaic, and bathymetric and backscatter predictors for modelling 

predicted seagrass habitat distribution in the RMP area is highly essential; and (2) identifying a reliable 

method to model the predicted distribution of seagrass habitat is critical. 

2.  Materials and methods 

2.1.  Study area 

The study area encompasses the whole region of the Redang archipelago in Terengganu, Malaysia, 

which encompasses an area of about 182.55 km2. The Redang archipelago is located between latitudes 

5°55' and 5°40' N and about longitudes 102°55' and 103°10' E. Under the Marine Park Malaysia Act, the 

Redang archipelago was officially designated as a marine park, titled as the Redang Marine Park (RMP). 

Order 1994 (Fisheries Act in 1995). The largest island of this archipelago is Redang, which is surrounded 

by Pinang, Lima, Ekor Tebu, Kerengga Kecil, Kerengga Besar, Paku Besar, Paku Kecil, and Ling, the 

eight tiny islands. Redang, Pinang, Lima, and Ekor Tebu are among the islands that have been designated 

as RMP areas. As a whole, the RMP area is inhabited by two categories of marine ecosystems, which 

are coral reefs [71] and seagrasses [15]. Three seagrass species, which are Halophila decipiens, 

Halodule pinifolia, and Halophila minor, were discovered in the vicinity of the RMP, out of a total of 

13 species that live along Peninsular Malaysia's coasts [15]. Chagar Hutang, the Redang River estuary, 

Pasir Panjang, and Teluk Dalam are habitats for most of these species (Figure 1). These species are often 

present in subtidal areas with a water depth of  2.5 to 24 meters [15] and are mainly found on seafloor 

covered by silt and substrate [15].  
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Figure 1. The study area is located at Redang Marine Park (RMP). RMP consists of Redang, the main 

island, and eight smaller islands, including Pinang, Lima, Ekor Tebu, Kerengga Kecil, Kerengga Besar, 

Paku Besar, and Paku Kecil, as well as Ling, Pinang, Lima, and Ekor Tebu. 

2.2.  Data acquisition 

2.2.1.  Multibeam Echosounder (MBES) Survey. The Multibeam Echosounder (MBES) data that was 

used came from MBES survey using a Kongsberg EM2040C MBES system mounted on the port side.  

From April 6th to 24th, 2019, this survey was conducted at the RMP area (Figure 1). The Seafloor 

Information System (SIS) by Kongsberg Maritime was used for data acquisition. In a high-density 

equidistant mode, MBES ran at 300 kHz, using a range of various ping rates and pulse lengths that were 

autonomously adjusted according to water depth (400 beams per ping). During data acquisition, sound 

velocity profiles were acquired using the Valeport Monitor Sound Velocity Profiler. During data 

acquisition, at regular intervals of ten minutes, tides were collected using a TideMaster Portable Tide 

Gauge. The position of the vessel was determined using VERIPOS LD3 and differential global 

positioning system (DGPS) mode, which is based on GPS/GLONASS corrections obtained through 

radio transmission from the satellite positioning service by Fugro Marine Star. The vessel's motion was 

logged (e.g., heave, pitch, roll, yaw, and heading) using Kongsberg MRU 5 and set aside for data 

processing using a precise motion sensor system. 

2.2.2.  Ground-truth survey: Underwater imagery sampling. An action camera, the GoPro Hero 4, was 

installed on a steel frame and was used to collect ground-truth data. The frame was then lowered into 

the water to the seabed, with each observation taking place at a maximum depth of about 30 metres. The 

targeted seagrass habitat spots were carefully selected to capture all seagrass distributions based on 

previous research [72]. Video and picture confirmation of the presence of seagrass at each drop site were 

obtained from footage. The AtlasLink H10 Smart Antenna was used to obtain surface location data. The 

DGPS mode, which acquired the GNSS correction service (precision of 50 cm), enhanced the position 

accuracy of each drop point. A total of 91 underwater imagery samples were observed, and seagrass 

occurrence was identified and classified for each sample.  
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2.3.  Data processing 

2.3.1.  Bathymetric Maps and Backscatter Mosaics. The following methods were carried out in CARIS 

HIPS & SIPS version 10.4 to process raw MBES bathymetry data: a) filtering the positioning; b) filtering 

the motion (e.g., heading, heave, pitch, roll); c) tidal correction; d) sound speed correction; e) and 

removing noise. Meanwhile, Fledermaus Geocoder Toolbox (FMGT) 7.4.4 was used to process the raw 

MBES backscatter data. A total of 400 beams were used, with 0° and 90° starting and cut-off beam 

angles. Beam average backscatter was used to produce a backscatter mosaic image. The processing 

parameters were kept as close as possible to the FMGT default settings to maintain continuity between 

the surveys of the backscatter mosaics, even though this may have been to the detriment of the subjective 

nature of the mosaics. The bathymetry map and backscatter mosaic were projected into the UTM Zone 

48 N (WGS 1984) coordinate system and gridded at 1 m.  

2.3.2.  Bathymetric and backscatter predictors. Geomorphometry for Ecology tool in TASSE Toolbox 

v.1.1 is used to derive bathymetric predictors from bathymetric map [73], including slope, curvature 

[74], eastness, and northness [25, 75-77]. Meanwhile, the intensity level (dB) from the backscatter 

mosaic 32bit was rendered to grayscale values (i.e., backscatter mosaic 8bit). Apart from these 

backscatter mosaics, angular range analysis (ARA) parameters (i.e., Phi and characterization) and gray-

level co-occurrence matrix (GLCM) texture features (i.e., homogeneity, entropy, and correlation) were 

derived to characterise the sediment composition and textures of the seafloor. The following table lists 

the bathymetric predictors and backscatter predictors. All bathymetric and backscatter predictors were 

gridded at 1 m and projected using UTM Zone 48 N (WGS 1984). 

2.3.3.  Seagrass occurrence data. For seagrass occurrence data, the presence or absence of seagrass 

habitat is determined by referring to the underwater imagery sampling data. The process of determining 

the occurrence of seagrass habitat by analysing the image (i.e., underwater imagery sample). The images 

found the presence of seagrass habitat classified as seagrass presence point. Meanwhile, the images 

found the absence of seagrass habitat classified as a point of absence of seagrass absence point. From 

91 samples, only 56 were used for seagrass habitat suitability modeling. For modeling using MaxEnt, 

seagrass with presence-only data was used with 9 points of seagrass occurrence data. Meanwhile, for 

presence-absence data, 56 points were used for RF and SVM approaches. 75% of the points were chosen 

at random for model training and 25% for model testing [12, 78, 79]. 

2.3.4.  Pearson’s correlation coefficient. Using Pearson’s correlation coefficient, the relationship 

between all predictors were initially determined by removing highly correlated predictors [80] and 

excluded during the model fitting process [29, 81]. Predictors with low correlation coefficient values, 

i.e., r greater than 0.5, were considered to have low correlation [82]. The predictor was retained for 

model fitting when the correlation coefficient values were less than 0.5 and vice versa. Pearson’s 

correlation coefficient was calculated and a visualization of a correlation matrix was drawn using the 

corrplot function in the corrplot r package in the RStudio 1.4.1106 [83]. 

2.3.5.  Seagrass habitat suitability modeling (SHSM): MaxEnt, RF, and SVM. This study assessed three 

machine learning algorithms to predict seagrass habitat within the RMP area: Maximum Entropy 

(MaxEnt), Random Forest (RF), and Support Vector Machine (SVM). In this study, SHSM was carried 

out using the MaxEnt machine learning algorithm in MaxEnt v3.4.1 software [84], whereas the RF and 

SVM machine learning algorithms were carried out using sdm, which is a r package in the RStudio 

1.4.1106. Three stages were involved in generating the SHSM, including data input, model fitting and 

evaluation, and model prediction. In order to model the predicted seagrass habitat, seagrass occurrence 

data was used as species occurrence data and all selected predictors were used as input variables (i.e., 

bathymetric maps, backscatter mosaics, bathymetric predictors, and backscatter predictors). For 

seagrass occurrence data, 75% was used to train the SHSM, while the other 25% was used to validate 
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the SHSM for all model algorithms. For model fitting and evaluation, all default settings (e.g., 

regularized multiplier, maximum number of background points, maximum iterations, and coverage 

threshold) were used for all models derived using MaxEnt algorithms since these settings have been 

shown to produce good results [85-87]. For RF and SVM, all default settings were tested on this study. 

All models used 20 replicates and the bootstrap replicate method to produce SHSM. For model 

prediction, each cell in the models represented the seagrass habitat suitability index (SHSI). The SHSI 

scale varied from 0 to 1, with 0 indicating low suitability for seagrass habitat and 1 for high suitability 

for seagrass habitat. 

2.3.6.  Model performance. Each algorithm extracted Receiver Operating Characteristic (ROC) curves, 

and the model performance was accessed through the use of Area Under the Curve (AUC) [88]. The 

AUC is a statistical test that quantifies predictive model performance over threshold ranges by using 

both presence and absence data. Phillips, Anderson and Schapire [84] method was used in this study. 

This method calculates the ROC AUC using randomly generated pseudo-absences rather than actual 

absences. The AUC was calculated based on the specificity and sensitivity of the predictive model. The 

specificity and sensitivity values reflected the accuracy with which suitable or less suitable seagrass 

habitats were classified. The mean AUC values of twenty replicates were produced in this study. AUC 

values greater than 0.9 were considered excellent, those between 0.8 and 0.9 were considered very good, 

those between 0.7 and 0.8 were considered satisfactory, and values less than 0.7 indicated a lack of 

discriminative ability [89, 90].  

2.3.7.  Predictor importance. Furthermore, the predictor importance analysis indicated the most 

contributed MBES predictor [91].  While the Maxent, RF, and SVM models is being trained, they keep 

track of which MBES predictors are contributing for model fitting. Each step of the Maxent, RF, and 

SVM machine learning algorithm increases the gain of the models by modifying the coefficient for a 

single feature. All machine learning algorithms assign the gain increase to the MBES predictors on 

which the feature is dependent. At the end of the training process, convert to percentages and calculate 

the percent contribution [84, 92].  

3.  Result and analysis 

3.1.  Correlation of predictors 

This study found weak linear relations (correlation coefficient (r) is below 0.5) among many 

bathymetry predictors but not among those generated from backscatter data. Five predictors were shown 

to have weak linear relationships (bathymetry, slope, eastness, northness, and GLCM entropy). It was 

discovered that the remaining predictors have strong linear relationships with the extracted predictors. 

The following figure illustrates a visualization of a correlation matrix (i.e., a correlogram) of predictors 

with weak and strong linear relations (2). 
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Figure 2. A correlation matrix for MBES predictors showed correlation coefficient (r). 

Bathy=Bathymetric Map; Slp=Slope; East=Eastness; North=Northness; Curv=Curvature; 

Bs32=Backscatter 32bit; Bs8=Backscatter 8bit; Corr=GLCM Correlation; Ent=GLCM Entropy; 

Hom=GLCM Homogeneity; Char=ARA Characterisation; and Phi=ARA Phi.  

3.2.  Model performance 

For MaxEnt, RF, and SVM, the AUC values for the train models were ranged from 98% to 100. For test 

models, the MaxEnt algorithm showed a slight decrease in AUC values, which is 93%. While the test 

RF models also showed the performance of this model, the AUC value has decreased slightly, which is 

93%. On the other hand, test SVM models showed a significant decrease in AUC values when they 

obtained 84% of AUC values. The model's overall performance was assessed based on train AUC and 

test AUC values, which indicate excellent performance for MaxEnt and RF models [93]. Meanwhile, 

only the test SVM model showed good model performance [93] (Table 1).  

 

Table 1. Training and test AUC values for MaxEnt, RF, and SVM models. 

MaxEnt RF SVM 

Train AUC (%) Test AUC (%) Train AUC (%) Test AUC (%) Train AUC (%) Test AUC (%) 

98 93 100 91 100 84 

3.3.  Predictor importance 

The results showed the contribution rate and importance of MBES predictors to models developed using 

three machine learning algorithms (Figure 3). The bathymetric map is the most influential variable for 

all models, ranging from 48.7% to 85.3%. The ranking of the percent contributions of other predictors 

varies for each model. For example, the percent contribution of eastness and northness scored 1.2% and 

6.8%, respectively, when making the MaxEnt model. While RF models showed that the percent 

contributions of these predictors (i.e., eastness and northness) were increased. The percent contribution 

of eastness and northness has increased to 30.7% and 40.3%, respectively. While SVM models showed 

that the percent contributions of eastness showed a slight increase when compared to the percentages 

from the RF model, vice versa, the percent contribution of northness showed a slight decrease when 

compared to the percentages from the RF model. For slope, the production of the MaxEnt model is less 

dependent on this predictor, for which the percentage contribution is very low, i.e., 2.4%. Meanwhile, 

Bathy Slp East North Curv Bs32 Bs8b Corr Ent Hom Char Phi

Bathy 1.00

Slp -0.15 1.00

East -0.38 0.21 1.00

North 0.00 -0.39 -0.14 1.00

Curv -0.57 0.83 0.37 0.03 1.00

Bs32 -0.50 0.36 0.51 -0.40 0.46 1.00

Bs8 -0.50 0.36 0.51 -0.40 0.46 1.00 1.00

Corr -0.58 -0.39 -0.41 0.24 -0.07 -0.17 0.17 1.00

Ent 0.24 0.25 0.23 -0.23 -0.02 0.21 0.21 -0.58 1.00

Hom -0.71 0.04 0.03 0.00 0.30 0.32 0.32 0.68 -0.47 1.00

Char 0.40 -0.26 -0.46 0.59 -0.22 -0.88 -0.88 0.13 -0.24 -0.21 1.00

Phi 0.44 -0.25 -0.48 0.55 -0.24 -0.88 -0.88 0.08 -0.20 -0.24 1.00 1.00
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RF and SVM models showed an increase of not more than 29.5% when compared to the percentage 

contribution from the MaxEnt model. While the percent contribution of GLCM entropy also showed a 

minor contribution to the MaxEnt model's development, i.e., 4.3%. While the increment of percent 

contributions of GLCM entropy for RF and SVM models also showed a similar trend to the slope, which 

is 8.3% and 24.0%. 

 

 
 

Figure 3. Percent of contributions of the MBES predictors based on MaxEnt, RF, and SVM models. 

3.4.  Seagrass habitat suitability model 

The Maximum Entropy (MaxEnt) machine learning algorithms was applied to create a Seagrass Habitat 

Suitability Model (SHSM). The result from Figure 4 showed the MaxEnt model. The habitat suitability 

index (SHSI) for this model is ranged from 0 to 1. showed the MaxEnt model. The habitat suitability 

index (SHSI) for this model ranges from 0 to 1. The MaxEnt model illustrated that the distribution of 

high SHSI is concentrated along the shoreline of the Redang archipelago. This result indicated that the 

seagrass habitats are distributed across the shallow water areas in the study area. Furthermore, seagrass 

habitats are expected to be suitable for living between the islands of Redang, Paku Besar, Kerengga 

Besar, Ekor Tebu, and Pinang. In this area, seagrass habitat was expected to be found in shallow water 

areas (i.e., less than 20 m) between bordering reefs. This model also indicated that seagrass is not suitable 

for inhabiting deep water areas (i.e., more than 20 m). 
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Figure 4. The prediction model made by the MaxEnt algorithm on the suitability of the seagrass habitat 

over the MBES surveyed area. 

 

The Random Forest (RF) machine learning algorithm was applied to create a Seagrass Habitat 

Suitability Model (SHSM). The result from Figure 5 showed the RF model produced a seagrass habitat 

suitability index (SHSI) that ranged from 0 to 0.3. However, the distribution of SHSI range values for 

this model is smaller compared to the model generated using the MaxEnt algorithm. This model yielded 

similar findings when the distribution of SHSI and spatial pattern of this model seemed to be like that 

of the MaxEnt model. In general, this model illustrated that the highest SHSI was concentrated along 

the shoreline of the Redang archipelago. Furthermore, study findings predicted that seagrass habitats are 

more concentrated in the areas between the Redang, Kerengga Besar, Kerengga Kechil, Ekor Tebu, and 

Pinang islands. Furthermore, patchy isolated pixels were spotted throughout the RMP area and mostly 

found in the deep-water area that is not suitable for seagrass habitat. Like the prediction of the MaxEnt 

model that illustrated seagrass habitats were predicted to be suitable in the shallow water areas (i.e., less 

than 20 m). There are several constraints produced by this model, such as the SHSI values for this model 

have a small range, which means low variability in spatial distribution. In addition, SHSI values in this 

model are not homogeneous, there is a drastic change in SHSI values between the adjacent cells that 

leads to false interpretation. 
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Figure 5. The prediction model made by the RF algorithm on the suitability of the seagrass habitat over 

the MBES surveyed area. 

 

The Support Vector Machine (SVM) machine learning algorithm was applied to create a Seagrass 

Habitat Suitability Model (SHSM). The result from Figure 6 showed the SVM model produced a 

seagrass habitat suitability index (SHSI) for this model that ranged from 0 to 0.07. The distribution of 

SHSI range values for the SVM model is smaller compared to the model generated using the RF and 

MaxEnt models. The SVM model produced contradictory findings when the distribution of SHSI and 

the spatial pattern of this model looked different from the MaxEnt and RF models. In general, this model 

illustrated that the highest SHSI was distributed patchily along the shoreline of the Redang archipelago. 

Furthermore, study findings predict that seagrass habitats are scattered in between the Redang, Kerengga 

Besar, Kerengga Kechil, Ekor Tebu, and Pinang islands. Furthermore, patchy isolated pixels were also 

spotted throughout the RMP. Most of these pixels are distributed in the deep-water area that is not 

suitable for seagrass habitat. Similar to the predictions of the RF and MaxEnt models, this model is also 

able to predict suitable habitats in shallow water areas (i.e., less than 20 m). This model generates several 

constraints. For example, the SHSI values for this model have a small range, implying low spatial 

distribution variability. Additionally, the SHSI values in this model are not homogeneous; there is a 

significant difference in SHSI values between adjacent cells, resulting in incorrect interpretation. 
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Figure 6. The prediction model made by the SVM algorithm on the suitability of the seagrass habitat 

over the MBES surveyed area. 

4.  Discussion 

The performance of the models varied according to the model type utilized [29]. In summary, the 

findings indicate that two models, MaxEnt and RF, perform exceptionally well in terms of prediction. 

Meanwhile, results showed that SVM models perform well in terms of prediction. Research findings 

indicated that seagrass habitat distribution in the RMP region was successfully predicted using proposed 

machine learning techniques. While both RF and SVM require presence-absence data, MaxEnt requires 

only presence-only data, but all prediction models performed the best and could be utilized individually. 

Despite the fact that RF has been implicated in a number of prior studies [17, 68, 69], and SVM [94] 

has done effectively, the current study findings showed that MaxEnt may still be utilized effectively as 

a machine learning modeling strategy that uses presence-only data without significantly reducing model 

performance. However, there is a large difference in the range of SHSI values between the models. The 

results indicated that MaxEnt's SHSI values were slightly larger than those predicted by RF and SVM. 

This finding contradicts prior studies indicating that MaxEnt consistently predicted a narrow range of 

SHSI values, whereas RF consistently predicted a wide range of SHSI values [17, 37] and SVM [94] 

are predicted to have a broader range of SHSI values. Additionally, MaxEnt models predict the growth 

of suitable seagrass habitats throughout the entire shoreline and around the Redang archipelago. 

Additionally, MaxEnt models imply that appropriate seagrass habitats are dominant in shallow water 

locations, especially at the southern region of the study area. The distribution of predicted seagrass 

habitats corresponds to the distribution of ground-truth data. (i.e., seagrass presence data) and earlier 

study [15]. This varied geographical distribution pattern and the MBES factors implicated have 

significant implications for conservation and preservation efforts in the study area. 
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5.  Conclusion  

The current study demonstrated the practicality and utility of combining MBES predictors with seagrass 

occurrence data and HSM approaches for seagrass habitat modelling at RMP. Due to the utilisation of 

data with a high spatial resolution, a thorough and comprehensive SHSM was created to determine the 

most appropriate seagrass habitat. With varied spatial resolution data, the dataset with a high resolution 

provided a more consistent spatial pattern of SHSMs, compared to the dataset with a low resolution, 

despite identical accuracy. Additionally, this study indicated that regardless of the predictor importance 

analysis, the bathymetric map is the most important predictor for predicting seagrass compared to the 

other MBES predictors. By comparison, the various machine learning algorithms applied in this study 

demonstrated the importance of selecting appropriate algorithms for producing high-quality SHSM. 
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