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Abstract

SONAR signal processing plays an indispensable role when it comes to parameter estima-

tion of Direction of Arrival (DOA) of acoustic plane waves for closely spaced target exclu-

sively under severe noisy environments. Resolution performance of classical MUSIC and

ESPRIT algorithms and other subspace-based algorithms decreases under scenarios like

low SNR, smaller number of snapshots and closely spaced targets. In this study, optimiza-

tion strength of swarm intelligence of Cuckoo Search Algorithm (CSA) is accomplished for

viable DOA estimation in different scenarios of underwater environment using a Uniform Lin-

ear Array (ULA). Higher resolution for closely spaced targets is achieved using smaller num-

ber of snapshots viably with CSA by investigating global minima of the highly nonlinear cost

function of ULA. Performance analysis of CSA for different number of targets employing

estimation accuracy, higher resolution, variance analysis, frequency distribution of RMSE

over the monte Carlo runs and robustness against noise in the presence of additive-white

Gaussian measurement noise is achieved. Comparative studies of CSA with Root MUSIC

and ESPRIT along with Crammer Rao Bound analysis witnesses better results for estimat-

ing DOA parameters which are further endorsed from the results of Monte Carlo

simulations.

1. Introduction

Direction of arrival has remained an active topic for researchers in array signal processing for

its vast applications in the field of electromagnetic signal processing, seismic exploration,

acoustic signal processing, speech signal processing, defense (warfare), and biomedical imag-

ing [1–4]. Acoustics plays a pivotal role in underwater wireless communication due to its

nature of robust propagation in water as compared to electromagnetic waves.
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DOA estimation for the pool of practical problems restraints the application of conven-

tional subspace based algorithms due to limited number of snapshots and low SNR for closely

spaced targets. CBF and spectral search algorithms are reliable for the applications involving

greater number of snapshots, higher SNR and incoherent sources hence, it is challenging to

apply these algorithms for DOA estimation. Maximum Likelihood (ML) [5] is another

approach for parameter estimation of DOA having higher computational complexity which

restrains its implementation for such problems [6–9]. Estimation accuracy in DOA is highly

dependent on signal power and rate of transmission so, low SNR based DOA estimation is an

innovative and challenging task in real time applications [10–13].

Recently, a pool of robust optimization algorithms have been introduced for DOA estima-

tion such as Genetic Algorithm (GA) [14], Differential Evolution (DE) method [15], Particle

Swarm Optimization (PSO) [16], Seeker Optimization Algorithm (SOA) [17], Sine Cosine

algorithm (SCA) [18], Invasive Weed Optimization (IWO) [19], Squirrel Search Algorithm

(SSA) [20], etc. In [14], GA is analyzed showing better results for the DOA estimation against

its counterparts i.e. ML and MUSIC algorithm in terms of robustness against noise, computa-

tional cost and number of snapshots. A modified version of GA applied to highly nonlinear

function estimating DOA parameters is presented in [21]. In [16], the PSO algorithm develops

the mechanism to estimate the parameters of a multimodal function. In [22], PSO ML estima-

tor shows very healthy and reliable results as compared to conventional parameter estimation

techniques for DOA. Using Ant Colony Optimization (ACO) by extending the pheromone,

DOA parameters are estimated in [23] with very good results and low computational complex-

ity. In [24], Artificial Bee Colony (ABC) algorithm is used to achieve higher statistical perfor-

mance. In 2019, Squirrel Search Algorithm (SSA) was proposed which is a novel numerical

optimization algorithm. It focuses on foraging and gliding behavior of flying squirrels to deter-

mine their efficient way of locomotion. Gliding is a powerful technique used by small mam-

mals for traveling long distances. Present work mathematically models this behavior to

comprehend the process of optimization. These features may be helpful to improve conver-

gence, reduce the number of iterations of the SSA algorithm and in determining ML DOA esti-

mation [20].

All the above Evolutionary Algorithms (EA) perform well in locating single-dimensional

optimization problem but fail to provide multiple solutions. Several approaches have been

exploited in evolutionary algorithms to achieve multimodal optimization, such as fitness shar-

ing [25, 26], deterministic crowding [27], probabilistic crowding [26, 28], clustering based

niching [29], clearing procedure [30], species conserving genetic algorithm [31] and elitist-

population strategies [32]. However, problems may still exist while implementing these strate-

gies such as tuning niching parameters, retaining perceived solution in a run, extra computa-

tional costs and poor scalability for multidimensional problems. Moreover, these methods are

hatched for spanning the search capacities of popular evolutionary algorithms such as GA and

PSO, which fail to exploit the balance between exploration and exploitation, exclusively for

multimodal objective functions [33]. Furthermore, they do not probe whole search span pro-

ductively and most of the time do not converge. Recently, a novel nature-inspired algorithm

known as Cuckoo Search Algorithm (CSA) [34], has been introduced for multidimensional

optimization problems. The CSA is based on constrained brood-parasitic strategy of some

cuckoo birds. One of the most significant characteristic of CSA is the employment of Levy

flights to construct new solutions. Using this approach, the solutions are modified by adopting

many small steps resulting in improvement of the relationship between exploration and

exploitation [35]. Recent studies revealed that the CSA is far more efficient than PSO and GA

[36]. Such characteristics have prompted the use of CSA to manipulate many engineering
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problems such as mesh generation [37], embedded systems [38], steel frame design [39],

scheduling problems [40], thermodynamics [41] and distribution networks [42].

In this study, the optimization strength of swarm intelligent approach of the Cuckoo Search

Algorithm (CSA) is accomplished for viable DOA estimation in different scenarios of under-

water environment using Uniform Linear Array (ULA). The high resolution for closely spaced

targets is achieved using fewer snapshots viably with CSA by investigating the global minima

of the highly non-linear cost function of ULA. Performance analysis is conducted for the dif-

ferent number of targets employing estimation accuracy, resolution ability, frequency distribu-

tion of RMSE over the Monte Carlo runs and robustness against noise in the presence of

additive white Gaussian measurement noise reveals better results. Comparative studies with

Root MUSIC and ESPRIT counterparts along with Crammer Rao Bound analysis witnesses

the worth of the scheme for estimating DOA parameters which are further endorsed from

Monte Carlo simulation results.

The rest of the paper is organized as: In section II the data model for uniform linear array

(ULA) is defined. The theoretical principle of the CSA algorithm for DOA estimation is

described in section III. Performance analysis of algorithms in terms of RMSE is illustrated in

section IV. Potential use and limitations are discussed in section V. The final section explains

the main contributions of the proposed study.

2. Data model

In this work, the DOA model was estimated as shown in Fig 1. a ULA of hydrophones is used

for DOA estimation of underwater multiple targets. A ULA having the characteristics of

impinged plane waves from the far-field region is phase-shifted versions of neighbor hydro-

phones. DOA of multiple targets can be expressed as:

y ¼ ½y1; y2; y3; . . . :; yD� ð1Þ

where θD is associated angle to Dth acoustic source.

zðtÞ ¼ ½z1ðtÞ; z2ðtÞ; . . . :; zWðtÞ� ð2Þ

sðyiÞ ¼ ½1; e
ð� jkdsinðyiÞÞ; eð� jk2dsinðyiÞÞ; . . . :; e� jkðW� 1ÞdsinðyiÞ�

T
ð3Þ

SðyÞ ¼ ½sðy1Þ; sðy2Þ; . . . :; sðyDÞ� ð4Þ

Fig 1. DOA estimation model.

https://doi.org/10.1371/journal.pone.0268786.g001
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where, k ¼ 2p

b
, while β is wavelength. z(t) is the hydrophone’s output vector with dimension

Wx1 and can be called as array response.

zðtÞ ¼ SðyÞyðtÞ þ nðtÞ ð5Þ

The steering matrix S of dimension WxD comprises the time delay entities of signals for

each hydrophone. Where n(t) is additive white Gaussian noise of zero mean with the dimen-

sion Wx1. The co-variance matrix is defined as:

R ¼ E½zðtÞzHðtÞ� ð6Þ

When a finite number of snapshots are available, the above equation can be written as:

R ¼
1

K
PK

n¼1
z nð ÞzH nð Þ ð7Þ

Where E[.] and [.]H are ensemble average and Hermitian operators. So the correlation

matrix can be written as:

R ¼ SRsS
H þ s2ID ð8Þ

Where Ry is correlation associated with signal and σ2ID is the noise correlation matrix. The

actual signal received on the array would be:

zθaðtÞ ¼ SðyaÞyðtÞ þ nðtÞ ð9Þ

Whereas, the approximated signal after getting optimum solutions would be:

zθeðtÞ ¼ SðyeÞyðtÞ ð10Þ

So, objective function will become,

f ðyyeÞ ¼ jzθeðtÞ � zθaðtÞj
2

ð11Þ

The general goal of DOA estimation is a continuous optimization that is used to find the

θbest which satisfies:

f ðybestÞ ¼ min
y�S

f ðyeÞ ð12Þ

where S�RD and f(θ) comprises the cost values of corresponding solution θ. Therefore, the

actual goal of the optimizer is to compute the associated argument for the minimum cost func-

tion. So, population of N individuals will be used to solve the optimization problem having T
iterations (trials). The set of D-Dimensional vectors (total N vectors) for i iterations can be

denoted as:

y1ðiÞ; y2ðiÞ; y3ðiÞ; . . . ; yNðiÞ ð13Þ

Since Cuckoo Search Algorithm [and Deb2009], can solve the multidimensional optimiza-

tion problems so, the best solution at iteration i can be found as:

ybestðiÞ ¼ arg min
n¼1;...;N

f ðynðiÞÞ ð14Þ
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3. Basic principle of CSA

There are two steps which are performed to get the optimum solution. Both of these steps

belong to global and local searches. The global search is associated with levy flights and the

local search is associated with random walks. Following are the implementation steps of the

Cuckoo Search Algorithm:

1. A population of solutions is chosen randomly in the lower and upper bounds.

2. Fitness of each solution is computed and the best solution is selected among them (current

best).

3. Each solution from the population is modified by the equation: (Global Optimization).

yiðnþ 1Þ ¼ yiðnÞ þ 0:01:s:ðyiðnÞ � ybestÞ ð15Þ

where s is generated by symmetric Levy Distribution as:

s ¼ U:jVj� 1=l

and λ = 1.5 for all optimization problems.Where, u and v are calculated from normal distribu-

tions (U~N(0, σ2) and V~N(0,1)) and σ2 can be computed as

s2 ¼
Gð1þ lÞ

lG½ð1þ lÞ=2�
:
sinðpl=2Þ

2ðl� 1Þ=2

� �1=l

After modification, both previous and modified solutions are compared and one of them

based on minimum fitness value is selected. The fitness value would be calculated by inserting

the modified solution θi(n+1) as θe:

f ðyyeÞ ¼ jzyeðtÞ � zyaðtÞj
2

ð16Þ

This step is known as greedy selection or elitist selection.

4. Next step is associated with the local search. In this operation, solutions are probabilisti-

cally selected and modified with a new value. This operation is performed by generating a ran-

dom number ε within a range of [0,1]. If the number is less than pa then solution is modified

by (below equation) otherwise, the solution remains unchanged (most of the practical prob-

lems pa = 0.2)

yiðnþ 1Þ ¼ yiðnÞ þ εðyjðnÞ � ykðnÞÞ ð17Þ

Where i and j are chosen randomly from the population. After modification, an elitist selec-

tion strategy is performed once. The simulation conditions are listed in Table 1 and the CSA

steps was illustrated in flowchart in Fig 2.

4. Results and discussion

In this section, numerous simulations have been presented to assess the performance of CSA

versus state of the art counterparts. The performance is evaluated in terms of estimation accu-

racy, convergence analysis, robustness against noise, and statistical analysis of RMSE over the

Monte Carlo runs. The simulation conditions for different algorithms are given in Table 2.

The performance metrics signifies the comprehensive analysis of algorithms as explained in

the following sections:
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4.1. Estimation accuracy

Estimation accuracy of Root MUSIC, ESPRIT and CSA algorithms are examined here by tak-

ing spatially separated targets and different levels of additive white Gaussian noise. The best,

mean and worst numerical results have been presented for 300 independent Monte Carlo

runs. It can be seen from Tables 2–4 that the CSA algorithm outperforms the state of the art

schemes against all performance measures.

4.2. Convergence analysis

In this subsection the performance has been assessed in terms of convergence of the CSA

towards solution. The performance has been measured for multiple scenarios of noise. It can

be seen from the Figs 3–5 shows that the CSA algorithm converged in 50 iterations for two

sources. Moreover, the CSA converged at 100 and 200 iterations for three and four sources

respectively. The very earlier convergence of the algorithm reveals the strength of the algo-

rithm for the optimization of highly non-linear cost function of DOA of underwater multi-

targets.

4.3. Robustness against noise

This subsection describes the trend of RMSE against the linearly varying level of SNR. The

convergence analysis has been analyzed in various cases of targets.

Figs 6 and 7 reveals that the convergence trend of RMSE of CSA algorithm against low SNR

is exclusively far better than Root MUSIC and ESPRIT algorithms which have been also vali-

dated by CRB by taking 300 Monte Carlo trials.

4.4. Frequency distribution of RMSE

Histogram analysis describes the frequent successful happenings (trials with minimum RMSE

value) over the Monte Carlo trials. Wider shape depicts lesser frequency distribution. It can be

seen from Figs 8–10 that the frequency of the minimum valued RMSE is higher for CSA as

compared to the ESPRIT and Root MUSIC algorithm.

4.5. Empirical CDF of RMSE

This subsection describes the probability distribution of RMSE against the monte carlo run for

two, three and four targets having different level of noise. The performance metric also depicts

the dynamics of RMSE. It can be evaluated that more than 90 percent of the runs are with min-

imum valued RMSE against the state of the art counterparts i.e. ESPRIT and Root MUSIC as

shown in Figs 11–13.

Table 1. Conditions for simulations.

Conditions for simulations

Two Targets DOAs 30,35

Three Targets DOAs 30,40,50

Four Targets DOAs 10,20,30,40

Number of Snapshots 20

Number of MC Runs 300

Distance between hydrophones β/2

Number of Hydrophones 8

Signal to Noise Ratio 5dB

https://doi.org/10.1371/journal.pone.0268786.t001
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Fig 2. Flowchart of CSA.

https://doi.org/10.1371/journal.pone.0268786.g002

Table 2. Estimation accuracy for two sources.

Schemes CSA ESPRIT RMUSIC

θ1 = 30 Best 30.0024 30.1904 29.9188

Average 29.9911 29.6800 26.1252

Worst 29.5801 31.3427 87.6954

θ1 = 35 Best 34.9952 35.1052 34.7423

Average 35.0037 35.6937 35.2464

Worst 34.7150 75.6760 33.3052

https://doi.org/10.1371/journal.pone.0268786.t002
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4.6. Variability analysis of RMSE

In this subsection, the sorted RMSE observations are distributed in five quartiles (minimum to

first 25 percent observations and from 25 to 75 percent and from 75 percent to above). The

first and the last observation is the minimum and maximum value of the RMSE, respectively.

This distribution gives an insight into the performance of algorithms. The symbol + denotes

the outliers (abnormalities) in the observations. It can be found from Figs 14–16 that the mini-

mum spread out depicts the consistency of algorithms. The dispersion rate of the CSA is less as

compared to state of the art algorithms i.e. RMSE is about 0.045 to 0.11 for 5dB of SNR. More-

over, asymmetry is depicted by the outliers in the figure. The RMSE of the CSA is symmetric

as compared to ESPRIT and Root MUSIC.

4.7. Resolution ability for closely spaced targets

The resolution ability is one of the important performance parameters to analyze the closely

spaced targets. The probability of resolution can be defined as:

Pr ¼ Prob jye � yaj �
4y

2

� �

where4θ = |θ1−θ2|. The resolution ability of both closely spaced sources is shown in Figs 17

and 18. The performance has been evaluated for two different separations between two

Table 4. Estimation accuracy for four sources.

Schemes CSA ESPRIT RMUSIC

θ1 = 10 Best 10.0010 10.2908 10.0177

Average 10.0025 6.7538 23.2058

Worst 10.0512 85.3702 60.8888

θ2 = 20 Best 20.0052 19.6496 19.5832

Average 20.0055 18.9887 14.2466

Worst 20.1255 11.3950 34.1268

θ3 = 30 Best 29.9766 31.2964 9.9817

Average 30.0030 30.6284 25.5408

Worst 30.2080 23.8298 9.7894

θ4 = 40 Best 40.0017 40.1727 38.8653

Average 39.9813 41.8516 37.2383

Worst 39.4738 34.5331 36.6221

https://doi.org/10.1371/journal.pone.0268786.t004

Table 3. Estimation accuracy for three sources.

Schemes CSA ESPRIT RMUSIC

θ1 = 30 Best 29.9974 30.7139 29.9383

Average 29.9896 29.0998 11.9609

Worst 29.8207 60.3018 47.7647

θ2 = 40 Best 40.0057 40.0488 39.9289

Average 40.0009 39.7917 38.3100

Worst 39.8501 32.0663 31.806

θ3 = 50 Best 50.0055 49.9543 50.5934

Average 49.9952 50.6858 48.3299

Worst 49.2349 44.3527 31.8061

https://doi.org/10.1371/journal.pone.0268786.t003
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Fig 3. Convergence analysis for two sources.

https://doi.org/10.1371/journal.pone.0268786.g003

Fig 4. Convergence analysis for three sources.

https://doi.org/10.1371/journal.pone.0268786.g004
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Fig 5. Convergence analysis for four sources.

https://doi.org/10.1371/journal.pone.0268786.g005

Fig 6. Robustness against noise for two sources.

https://doi.org/10.1371/journal.pone.0268786.g006
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Fig 7. Robustness against noise for three sources.

https://doi.org/10.1371/journal.pone.0268786.g007

Fig 8. Histogram analysis of two sources for 300 Monte carlo runs.

https://doi.org/10.1371/journal.pone.0268786.g008
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Fig 10. Histogram analysis of four sources for 300 Monte Carlo runs.

https://doi.org/10.1371/journal.pone.0268786.g010

Fig 9. Histogram analysis of three sources for 300 Monte carlo runs.

https://doi.org/10.1371/journal.pone.0268786.g009
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Fig 11. Empirical cumulative distribution function of RMSE for two sources.

https://doi.org/10.1371/journal.pone.0268786.g011

Fig 12. Empirical cumulative distribution function of RMSE for three sources.

https://doi.org/10.1371/journal.pone.0268786.g012
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sources. The number of successful runs (the runs having RMSE less than the threshold) is

higher for the CSA algorithm as compared to ESPRIT and Root MUSIC algorithms.

5. Potential use and limitations

Acoustic plane waves mostly suffer in the low SNR in underwater environment due to the far-

field regime. Consequently, the estimation accuracy becomes an indespensible challenge for

DOA estimation and target tracking in underwater multi-sources. In the results and discussion

section, it can be seen that the state of the art counterparts i.e. MUSIC, ESPRIT and RMUSIC

deteriotes in terms of estimation accuracy with high RMSE. Statistical analysis of the RMSE in

Monte Carlo trials i.e. ECDF of RMSE, variability analysis of RMSE, frequency distribution of

RMSE and the probability of resolution witnesses the strength of CSA in this challenging envi-

ronment. Moreover, the computation complexity will become a trade off for the large number

of snapshots exclusively for swarming intelligent algorithms.

6. Conclusions

Estimation accuracy and resolution ability are the main challenges in DOA estimation for

closely spaced targets and CSA outperforms its counterpart algorithms (ESPRIT and Root

MUSIC) in these performance measures. To be more specific, the state of the art counterparts

i.e. MUSIC, ESPRIT and RMUSIC deteriotes in terms of estimation accuracy with high

RMSE. Statistical analysis of the RMSE in Monte Carlo trials i.e. ECDF of RMSE, variability

Fig 13. Empirical cumulative distribution function of RMSE for four sources.

https://doi.org/10.1371/journal.pone.0268786.g013
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Fig 14. Variability analysis of RMSE for two sources.

https://doi.org/10.1371/journal.pone.0268786.g014

Fig 15. Variability analysis of RMSE for three sources.

https://doi.org/10.1371/journal.pone.0268786.g015
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Fig 17. Probability of resolution for two sources for 4 degrees separation.

https://doi.org/10.1371/journal.pone.0268786.g017

Fig 16. Variability analysis of RMSE for four sources.

https://doi.org/10.1371/journal.pone.0268786.g016
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analysis of RMSE, frequency distribution of RMSE and the probability of resolution witnesses

the strength of CSA in this challenging environment of low SNR and less number of snapshots.

In the future, estimation of 2D-DOA using a uniform circular array is planned using the CSA

algorithm and other modern computing paradigms [43–47].
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flights”. The Structural Design of Tall and\ Special Buildings,vol. 22,no.13,1023–1036,2013.

40. Lim Huai Tein and Razamin Ramli. “Recent advancements of nurse scheduling models and a potential

path”. In Proc. 6th IMT-GT Conference on Mathematics, Statistics and its Applications (ICMSA 2010),

pages 395–409,2010.

41. Vaibhav Bhargava, Seif-Eddeen K Fateen and Adrian Bonilla-Petriciolet. “Cuckoo search: a new

nature-inspired optimization method for phase equilibrium calculations”. Fluid Phase Equilibria, vol.

337, 191–200, 2013.

42. Zahra Moravej and Amir Akhlaghi. “A novel ap- proach based on cuckoo search for dg allocationin distri-

bution network”. International Journal of Electrical Power & Energy Systems, vol. 44, no. 1, 672–679,

2013.

43. Muhammad Asif Zahoor Raja, Muhammad Saeed Aslam, Naveed Ishtiaq Chaudhary and Wasim Ul-

lah Khan. “Bio-inspired heuristics hybrid with interior-point method for active noise control systems with-

out identification of secondary path”. Frontiers of Information Technology & Electronic Engineering, vol.

19, no. 2, 246–259,2018.

PLOS ONE High-resolution DOA estimation of acoustic plane waves

PLOS ONE | https://doi.org/10.1371/journal.pone.0268786 June 16, 2022 19 / 20

https://doi.org/10.1162/106365602760234081
http://www.ncbi.nlm.nih.gov/pubmed/12227994
https://doi.org/10.1371/journal.pone.0268786


44. Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Imtiaz Khan, Muhammed Ibrahem Syam and Abdul

Majid Wazwaz. “Neuro-heuristic computational intelligence for solving nonlinear pantograph systems”.

Frontiers of Information Technology & Electronic Engineering, vol. 18, no. 4,464–484,2017.

45. Jing-ming Kuang, Yuan Zhou and Ze-song Fei. “Joint doa and channel estimation with data detection

based on 2d unitary esprit in massive mimo systems”. Frontiers of Information Technology & Electronic

Engineering, vol. 18,no.6,841–849,2017.

46. Xin Guan, Li-hua Zhong, Dong-hui Hu and Chi- biao Ding. “An extended processing scheme for coher-

ent integration and parameter estimationbased on matched filtering in passive radar”. Journal of Zhe-

jiang University SCIENCE C, vol. 15,no.11,1071–1085,2014.

47. Shi Wen-tao, Zhang Qun-fei, He Cheng-bing and Han Jing. “Taylor expansion music method for joint

dod and doa estimation in a bistatic mimo array”. Frontiers of Information Technology & Electronic Engi-

neering, vol. 20, no. 6, 842–848, 2019.

PLOS ONE High-resolution DOA estimation of acoustic plane waves

PLOS ONE | https://doi.org/10.1371/journal.pone.0268786 June 16, 2022 20 / 20

https://doi.org/10.1371/journal.pone.0268786

