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Abstract

The installation of Distributed Generation (DG) units in the Radial Distribution Networks

(RDNs) has significant potential to minimize active power losses in distribution networks.

However, inaccurate size(s) and location(s) of DG units increase power losses and associ-

ated Annual Financial Losses (AFL). A comprehensive review of the literature reveals that

existing analytical, metaheuristic and hybrid algorithms employed on DG allocation prob-

lems trap in local or global optima resulting in higher power losses. To address these limita-

tions, this article develops a parallel hybrid Arithmetic Optimization Algorithm and Salp

Swarm Algorithm (AOASSA) for the optimal sizing and placement of DGs in the RDNs. The

proposed parallel hybrid AOASSA enables the mutual benefit of both algorithms, i.e., the

exploration capability of the SSA and the exploitation capability of the AOA. The perfor-

mance of the proposed algorithm has been analyzed against the hybrid Arithmetic Optimiza-

tion Algorithm Particle Swarm Optimization (AOAPSO), Salp Swarm Algorithm Particle

Swarm Optimization (SSAPSO), standard AOA, SSA, and Particle Swarm Optimization

(PSO) algorithms. The results obtained reveals that the proposed algorithm produces qual-

ity solutions and minimum power losses in RDNs. The Power Loss Reduction (PLR)

obtained with the proposed algorithm has also been validated against recent analytical,

metaheuristic and hybrid optimization algorithms with the help of three cases based on the

number of DG units allocated. Using the proposed algorithm, the PLR and associated AFL

reduction of the 33-bus and 69-bus RDNs improved to 65.51% and 69.14%, respectively.

This study will help the local distribution companies to minimize power losses and associ-

ated AFL in the long-term planning paradigm.
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Introduction

The power demand has witnessed stupendous growth with the rise of population. As a result,

the amount of electricity generated must be raised to satisfy consumer demand, which has a

significant impact on the economic development of countries. In this regard, DGs at local level

sounds to be a promising solution. A Distributed Generator (DG) is a small electricity-generat-

ing unit that plays an essential role in improving the power market because of its compact size,

high efficiency, low operating costs, and safety [1]. The DGs are smaller in size, ranging from a

few kilowatts to 100 Megawatts [2]. In addition, DGs are directly integrated to the consumer

side, unlike the centrally located power generating units situated far away from load centers

and resulting in higher transmission losses [3–6]. However, connecting DG of inappropriate

size to non-optimal location results in higher power losses and total cost, therefore offsetting

the primary goal of connecting it to the distribution networks [7–10]. The optimal allocation

of DGs, involves determining the best sizes and locations to satisfy the required goals while

adhering to distribution network constraints. The allocation of DG units in distribution net-

works is a complex, nonlinear and combinatorial mixed-integer optimization problem since it

incorporates both discrete (DG sizes) and continuous (DG locations) variables [11]. Therefore,

the optimally sized and located DG units significantly maximize PLR in distribution networks

[12–15]. The copper losses are gaining importance in the distribution network due to higher

resistance to reactance ratio [16,17]. Copper loss (i.e., active power loss) in the distribution net-

works is estimated to dissipate roughly 13% of total produced power [18,19]. Therefore, the

proposed study minimizes active power losses, instead of optimizing the total loss function.

Several algorithms have been proposed in the literature to optimize DG size and location for

maximizing PLR. However, with recent advances in metaheuristic algorithms, possible modifi-

cations in algorithms and various combinations among the recently introduced hybrid algo-

rithms significantly improve the performance of the system.

The optimization techniques are broadly categorized into conventional (analytical) tech-

niques, Meta-Heuristic Techniques (MHT), and hybrid techniques [20–22]. These techniques

have a variety of applications in scheduling/commitment [23] of resources in short term plan-

ning or allocation of resources in long term planning [24]. The scope of the proposed study is

limited to the long-term allocation of resources and these optimization techniques are targeted

for resource allocation purpose. The optimal allocation of resources in the network help in

minimizing the requirements for the system, power losses and cost. In real world problems,

the optimal allocation of sensors in wireless sensor networks (WSNs) or Flexible AC Transmis-

sion Systems (FACTS) controllers in electrical transmission networks [25,26] have a profound

impact on requirements of the system and network performance [27]. Like allocation of sen-

sors or FACTS controllers, the optimal allocation of DG has a great impact on network power

losses. A variety of research work has been highlighted in the literature on the optimal alloca-

tion of DG to solve power loss minimization problem with the help of analytical techniques.

Rau and Wan [28] presented a second-order algorithm to obtain the optimal sizes and loca-

tions of DGs. Loss Sensitivity Factor (LSF) [29] was proposed for power loss reduction in

33-bus RDN. The results showed that the power losses were reduced by 30.48%, 52.32%, and

59.72%, with optimal allocation of one, two, and three DG units, respectively. Acharya et al.

[30] developed the exact loss formula based on analytical expressions to obtain the optimal DG

sizes and location for minimizing power losses. The results revealed that the power loss

reduced by 47.32% and 62.86% in 33-bus and 69-bus networks, respectively. In [31], the opti-

mal allocation of a single DG unit in the 69-bus RDN was carried out using an analytical tech-

nique. The results showed that with the optimal sizing and placement of one DG unit, power

losses were reduced by 62.95%. A sensitivity analysis was performed by Ramesh et al. [32] for
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optimal DG allocation to minimize the power loss in the Tamil Nadu Electricity board 11kV

distribution feeder and IEEE-37 bus distribution network. Though various analytical

approaches were found from the existing literature, yet analytical techniques have less robust-

ness, are based on a set of rules, linearization, and simplified assumptions, which makes them

inappropriate for optimal allocation of DG units [33].

Meta-heuristic techniques (MHTs) have widely been adopted in the recent past to solve

mixed-integer DG allocation problems. The wide adoption of MHTs became viable since they

are flexible and follow gradient-free mechanisms. Therefore, the need to calculate the search

space is eliminated, making them flexible in solving a wide range of optimization problems.

Furthermore, MHTs lies in stochastic optimization techniques, therefore they take the benefit

of random operators. These operators help MHTs to jump out of the local optima when solv-

ing real-world applications, which usually have many local solutions. Recently, various studies

have witnessed the superiority of MHTs for optimal DG allocation problems. Teaching Learn-

ing-Based Optimization (TLBO) was employed by Sultana and Roy [34] to optimize the alloca-

tion of three DG units in the 33-bus and 69-bus distribution networks. It was observed that

with the optimal allocation of three DGs, the losses were reduced by 64.20% in 33-bus RDN

and by 67.82% in 69-bus RDN. Furthermore, in the same study, it was observed that Quasi

Oppositional TLBO (QOTLBO) [34] performed better than TLBO producing loss reduction of

64.88% and 68.16% on 33-bus and 69-bus, respectively. The Tabu search (TS) method could

solve simple problems but was limited in ability to address complex real-world application

problems and was reliant on starting solutions. As a result, it was unsuitable for large-scale dis-

tribution network planning because finding a good starting solution was challenging. There

was no guarantee of attaining a global optimum when employing TS for optimization. In

another study [35], Krill Herd Algorithm (KHA) was used to optimize the allocation of three

DG units in 33-bus and 69-bus test networks. The results revealed that a loss reduction of

64.26% and 69.09% were achieved in 33-bus and 69-bus test networks, respectively. The KHA

was simple in concept, easy to implement, and could significantly exploit at the end of the

search process but lacked a good search space in the exploration phase. Fuzzy AIS (Artificial

Immune system) was implemented by Lalitha et al. [36] to minimize the power losses in the

33-bus RDN for optimal allocation of one, two, and three DG units. It was observed that the

losses reduced by 37.71%, 42.43%, and 42.45% with the optimal allocation of one, two, and

three DG units, respectively. However, the study did not consider voltage constraints; there-

fore, the global solution violated power system constraints. In addition, Artificial Immune Sys-

tem (AIS) is more intelligent than GA, thanks to guided mutation and duplication operators.

However, tuning the mutation and duplication rates was a challenge for AIS application. In

general, meta-heuristic optimization algorithms can resolve multi-dimensional problems as

they are robust in nature; however, still deficit in terms of premature convergence or local

optima stagnation. Despite of better performance than that of analytical approaches, MHTs

were found to be comparatively less potential than hybrid approaches while dealing with com-

binatorial optimal DG allocation problem.

MHTs had a variety of challenges while dealing with DG allocation problems, for instance,

premature convergence and slow response. These weaknesses were correlated with solution

diversity in the search space. A trade-off between convergence rate and accuracy was ideal;

however, the results were often unpredictable in complex real-world problems. One of the fac-

tors for premature convergence was the lack of solution diversity. Appropriate Solution diver-

sity should be maintained in the search process to avoid local optima stagnation in the

optimization algorithm. The hybridization of the two algorithms maintained solution diversity

during the entire search process. The hybrid algorithms were widely adopted in modern appli-

cations, including recognition of COVID-19 disease from x-ray images [37], scheduling of
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nurses for COVID-19 patients [38], wind speed forecasting [39], digital currency forecasting

[40], detection of solder paste defects [41], network security [42] etc. The enhanced balance

between exploration and exploitation (in the search space) with the hybridization of two meta-

heuristic algorithms had resulted in superior quality solutions in complex optimization prob-

lems. Hybrid algorithms combined the superiority of one algorithm with another. In other

words, the limitations of one algorithm were significantly improved with the hybridization of

other algorithms [43]. The Hybrid MHTs were more robust and produced quality solutions as

compared to standard MHTs [33]. In the last decade, hybrid algorithms had attended great

interest in DG allocation problems. Genetic Algorithm (GA) was hybridized with other tech-

niques such as Monte Carlo [44], Hong’s two-point estimation technique [45], interior point

approach [46], and the local search [47]. In [48], Particle Swarm Optimization (PSO) was used

to locate dispersed sources, and a derivative-based analytical technique was utilized to com-

pute the amount of injected power to minimize power losses. In [49], a recently proposed

metaheuristic Symbiotic Organism Search (SOS) was combined with an analytical approach

called zero bus load flow. Gandomkar et al. [50] proposed a new approach for efficient DG

allocation in the distribution networks using a combination of GA and Simulated Annealing

(SA) algorithms. In [51], a combination of analytical and metaheuristic, Loss Sensitivity Factor

Simulated Annealing (LSFSA), was presented for optimal allocation of three DG units in 33-

and 69-bus RDN. The results revealed that the power losses were reduced by 61.11% in 33-bus

RDN and 67.95% in 69-bus RDN. To allocate single, double, and triple DG units in 33-bus and

69-bus RDNs, a hybridization of analytical and meta-heuristic PSO methods was used in [48].

The results revealed that the power loss reductions of 47.20%, 58.49%, and 65.35% were

achieved with optimal allocation of 1, 2, and 3 DG units in 33-bus RDN. Furthermore, the cop-

per losses were reduced by 62.95%, 68.09%, and 69.09%, with optimal allocation of one, two,

and three DG units in 69-bus RDN. In another study [52], a hybrid Genetic algorithm-Particle

swarm optimization (GA-PSO) technique was proposed for optimal allocation of three DG

units in 33-bus and 69-bus RDNs. It was observed that the power losses reduced by 51.02%

and 62.40% in 33- and 69-bus RDNs, respectively. Jamian et al. [53] implemented Rank Evolu-

tionary Particle Swarm Optimization (RESPO) to minimize the power loss with optimal allo-

cation of dual and triplet DG units in 33-bus RDN, which produced the power loss reductions

of 44.68% and 63.55%, respectively. Genetic Algorithm and Intelligent Water Drop (GAIWD)

[54] was implemented for optimal allocation of 3 DG units on 33-bus and 69-bus RDN. The

results revealed that the power losses reduced by 47.63% and 64.04% on 33-bus and 69-bus sys-

tems, respectively. Hybrid Harmony Search Algorithm and Particle Artificial Bee Colony

Algorithm (HSA-PABC) presented in [55] optimally allocated three DG units and produced

the PLR of 65.49% and 68.12% for 33-bus and 69-bus RDNs, respectively. Recently, a combina-

tion of Tabu Search (TS) and Chu Beasley Genetic Algorithm (CBGA) was proposed for the

optimal allocation of DG units [56]. The CBGA was utilized to size the DG units while the TS

determined their placement. Lin et al. [57] proposed a hybrid technique to reduce real power

loss, which combines an analytical LSF method for sizing DGs with a meta-heuristic and PSO

method for sitting DGs based on optimal reactive power dispatch. In [58], the master stage

used the Population-Based Incremental Learning (PPBIL) to optimize the location of the gen-

erators and the slave stage used Particle swarm optimization (PSO) to optimize the corre-

sponding sizes. In [21], the Salp Swarm Algorithm (SSA) optimized the sites, while the

analytical approach optimized the sizes of DGs. However, the problem occurred in dedicating

one algorithm for optimal sizing and the other for optimal siting resulting in inaccurate size or

site due to the limitation of an individual algorithm. A hybrid approach for loss reduction and

voltage improvement was proposed in [59]; the position of DG was determined using an

empirical discrete metaheuristic (EDM), while the size was determined using the steepest
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descent method (SD). However, in the later technique (SD), calculating exact step size was

time consuming and challenging task, while non optimal selection of step size results in higher

power losses. In [43], LSF was utilized to select candidate buses for DGs placements, while an

analytical approach was used to find the optimal DG sizes for the combinations of candidate

buses; these values were then used as the beginning values in the Sine cosine algorithm (SCA)

to specify the DGs sizes. However, the final solutions of SCA were purely dependent on the

LSF and analytical algorithm as both the algorithms decide the initial search space. The initial

search of SCA was limited to the solutions of LSF and analytical algorithm which was not a

practical approach. The contributions of recently developed hybrid techniques and the respec-

tive limitations applied on DG optimal DG allocation problem are presented in Table 1.

The contemporary literature suggests that the hybrid MHTs have widely been adopted in

the last decade. Hybrid algorithms allow the positive aspects of different algorithms and elimi-

nate the inherited deficiencies present in standard metaheuristic algorithms. Even though a

variety of work has been presented for minimizing losses with optimal allocation of DG units

using various MHT taxonomies, there are numerous methodological limitations in it. One of

the limitations observed is the dependency of the later algorithm on the former algorithm,

which minimizes the search space of the later algorithm and traps it in local optima. The sec-

ond limitation is that the dedication of one algorithm for optimal sizing and the other for opti-

mal siting will result in inaccurate size or site due to the limitation of an individual algorithm.

To address these limitations, it is imperative to develop a hybrid algorithm that can indepen-

dently search the sizes and locations of DG units and is independent of initial search space. In

this context, parallel hybrid AOASSA methodology has been developed, which provides an

independent initial search space. The proposed hybrid algorithm runs independently to deter-

mine the optimal sizes and location of DG units. The associated power loss value is compared

in every iteration, and the control variables (DG sizes and locations) of the weak algorithms

are replaced with dominant algorithms. The overall combination of hybrid AOASSA avoids

local optima stagnation and navigates towards the optimal solution. The parallel operated

hybrid AOASSA taxonomy motivates the authors because of two reasons; firstly, the AOASSA

mitigates the exploration limitations of AOA and exploitation limitations of SSA by utilizing

the iterative parameters c1 (corresponding to SSA) and Math Operator Probability (MOP cor-

responding to AOA) in the exploration and exploitation phase, respectively. Secondly, the par-

allel operated AOASSA provides equal opportunity to AOA and SSA to search optimal sizes

and locations individually. However, in the literature, it has been observed that one algorithm

is dedicated to search optimal size while other algorithm searches the locations. Therefore, any

Table 1. Contributions and limitations of recently developed hybrid techniques for DG allocation.

Ref Authors Year Contributions limitations

[21] A. Mohamed et.al. 2021 minimized power losses with hybrid analytical and

SCA

Both algorithms were not utilized simultaneously for optimal sizing and

location which produced local/global optima stagnation

[43] Ali Selim et. al. 2021 Minimized Active power losses with LSF and

analytical technique fed to SCA

Analytical and LSF technique feeding SCA would limit the initial search of

SCA leading to sub-optimal size and locations of DGs

[60] Ayman Awad et.al. 2021 Solved weighted sum multi-objective model with

tunicate swarm algorithm/sine-cosine algorithm

(TSA/SCA)

Though the improved TSA/SCA resulted in good exploration yet it lacked

exploitation capabilities resulting in sub-optimal solution of DG sizes and

locations

[59] Francisco Carlos

Rodrigues Coelho

et al

2020 Hybridized EDM and SD to minimize power losses

and introduced penalty factor to voltages at desired

levels

Both algorithms were not utilized simultaneously for optimal sizing and

locations. Furthermore, it was difficult to find appropriate step size in SD

resulting in non-optimal sizing of DGs.

[58] Luis Fernando

Grisales-Noreña et.al.

2020 Proposed Master-slave combination of PPBIL and

PSO to minimize the power losses

The individual algorithm did not search the optimal size and locations of

DGs simultaneously. The mechanism would result in sub optimal solutions

of DG sizes and locations.

https://doi.org/10.1371/journal.pone.0264958.t001
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unoptimized selection of size or location using a particular algorithm result in higher power

losses. In addition, the parallel operated mechanism mitigates the probability of local

optima stagnation. The proposed AOASSA runs two algorithms (AOA and SSA) in parallel

throughout the entire search process, mitigating the uncertainty of poor exploration or

exploitation.

In contrast to the highlighted research gaps and significance of the proposed algorithm, the

main contributions of the proposed study are stated as below:

1. To develop a methodology based on parallel operated hybrid AOASSA.

2. To apply the developed parallel operated AOASSA optimizer for determining the optimal

sizes and locations of multiple DG units in the radial distribution network for minimizing

active power losses and associated Annual Financial Losses (AFL).

3. To analyze the performance of proposed parallel operated AOASSA on optimal DG alloca-

tion problem against standard version of AOA, SSA, PSO and their possible hybrid combi-

nations (i.e., AOAPSO and SSAPSO) in terms of convergence quality, convergence speed,

robustness, and annual financial losses.

4. To validate the performance of proposed parallel operated AOASSA in terms of PLR

against recent analytical, metaheuristic and hybrid metaheuristic algorithms using standard

33-bus and 69-bus RDN.

This paper is organized as follows: First, the problem formulation and constraints are dis-

cussed. Second, the description of the proposed AOASSA adopted for the DG allocation prob-

lem is elaborated in detail. Third, results and discussions highlighting the performance of the

proposed algorithm are discussed. In the end, the conclusions and future road maps based on

the current study are summarized.

Problem formulation

Since the resistance to reactance ratio is comparatively higher in distribution networks com-

pared to transmission networks, therefore the resistive losses dominate the reactive power

losses in distribution networks. It is estimated that 13% of losses are dissipated as copper losses

in distribution networks. Therefore, the primary objective function of the proposed study is to

minimize the active power losses. In addition, the power losses are translated in terms of AFL.

The operational and topological constraints are considered while optimally sizing and sitting

DG units

Power Loss Reduction (PLR)

The dominance of active power losses in the distribution network makes active power losses

more prevalent than reactive power losses. The system power loss is the aggregated sum of the

active power loss across the individual branch and is generally stated in Eq (1).

Objective Function ¼ MinimizeðPlossÞ ¼ Minimize
XN

i¼1

I2

i Ri ð1Þ

Where Ii is the current flowing through the ith branch, Ri is the resistance of the ith branch

and N represents number of buses. It must be highlighted that the power losses in branches

depend upon the flows of currents in the respective branch, which is ultimately influenced by

the power injections on the nodes connected to lines. Therefore, it is imperative to optimize

the size and location of DGs such that minimum power losses are achieved. The term power
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loss reduction (%PLR) is expressed mathematically by Eq (2).

%PLR ¼
Plossðwithout DGÞ � Plossðwith DGÞ

Plossðwithout DGÞ
� 100 ð2Þ

Where Ploss(without DG) and Ploss(with DG) are the power losses in the network without and with

DG allocation, respectively. The main objective of the proposed study is to minimize active

power losses in the network by optimally allocating the DGs using the proposed AOASSA.

The reduction in power losses is translated in terms of economic losses. The installation of

DGs reduces the energy intake from the main grid. However, non-optimal allocation of DGs

increases power losses in the network, hence the financial losses also increase in the distribu-

tion network. The economic losses, translated in terms of energy losses, are defined by the

term AFL and are given by Eq (3).

AFL ¼
$

kwh
�PðlossÞ�8760h ð3Þ

Where $/kWh is the per-unit cost of electricity and is taken as 0.052$ (0.2121MYR) [61],

P(loss) is the cumulative power loss in all branches and 8760 is the number of hours in 1 year.

Distribution network constraints

The constraints are the set of boundary conditions that must be copped before obtaining the

resultant solution. In terms of the distribution network, active power flow, reactive power

flow, and bus voltage (p.u) are considered in Eqs (4–6), respectively.

XNbus

j¼1

Pj
load þ

XN branches

i¼1

Pi
loss >

XZ DGs

i¼1

PZ
DG ð4Þ

XNbus

i¼1

Qj
load þ

XN branches

i¼1

Qi
loss >

XZ DGs

i¼1

QZ
DG ð5Þ

1:05 p:u < VJ > 0:95 p:u ð6Þ

The active and reactive loads on the jth bus are represented by Pj
load and Qj

load, respectively.

The active and reactive powers delivered by zth DG are represented by PZ
DG and QZ

DG and the

voltage at jth bus are represented by VJ.

Proposed methodological framework

This section proposes a methodology for efficiently deploying the DG units in the grid-con-

nected distribution networks using an AOA and SSA based hybrid optimization algorithm

(AOASSA). Initially, the standard AOA and SSA are discussed individually. Then a hybrid

model (AOASSA) has been presented in detail.

Salp Swarm Algorithm (SSA)

The standard SSA is a population-based algorithm and was proposed by Mirjalili et al. [62].

The behavior of SSA can be demonstrated using a salp-chain searching for optimal food

sources (i.e., the swarm’s target is a food source in the search space F). The salps are classified

as leaders or followers in SSA based on their place in the chain. The chain begins with a leader

and is followed by the followers to guide their movements. It starts by initializing the salp
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population, which is represented by the swarm X of n salps. The fitness of each salp is calcu-

lated to identify which salp has the best fitness (i.e., leader). The updated moment of leader

position is obtained by Eq (7)

x1

i ¼
yi þ c1ððUbi � LbiÞ � c2 þ LbiÞ c3 � 0:5

yi � c1ððUbi � LbiÞ � c2 þ LbiÞ c3 < 0:5

(

ð7Þ

Where x1
i denotes the first position of the salp in the ith dimension and yi denotes the posi-

tion of the food in the ith dimension. The lower and upper bounds of the ith dimension are

denoted by Lbi and Ubi, respectively. The coefficients c2 and c3 are randomly generated inte-

gers between 0 and 1, while the coefficient c1 is computed by Eq (8)

c1 ¼ 2e�
4l
Lð Þ

2

ð8Þ

Where l represents the current number of iteration and L represents maximum number of

iterations. The term c1 is significant in SSA because it balances the exploration and exploitation

during the entire search process. The position of the follower’s salps are represented by Eq (9).

xji ¼
ðxji � xðj� 1Þ

i Þ

2
ð9Þ

The salps update their position based on population, and the program runs until the iteration

count reaches its maximum. The entire working procedure can be visualized from its basic

paper [48].

Arithmetic Optimization Algorithm (AOA)

The AOA is a recently introduced population-based algorithm. Its standard variant was pro-

posed by Abualigah et al. in 2021 [63]. The use of arithmetic operators (addition, subtraction,

multiplication, and division) in solving optimization problems is the primary source of inspi-

ration for AOA. It starts with initializing a set of random integers. Before starting with the use

of mathematical operators, a feasible search space is selected with the help of coefficient Math

operator accelerated (MOA) which is calculated by Eq (10).

MOAðC iterÞ ¼ Minþ C iter
Max � Min

M iter
ð10Þ

Where MOA (C_iter) denotes the function value at the tth iteration, as determined by Eq

(10). The current iteration, which is between 1 and the maximum number of iterations

(M_iter), is denoted by C_iter. The minimum and maximum values of accelerated functions

are represented by Min and Max, respectively. According to the Arithmetic operators, mathe-

matical computations using the Division (D) or Multiplication (M) operators results in high

distributed values that commit to the exploratory search mechanism. Therefore, the division

operator initially comes into action at the start of the search space due to its high dispersion in

the search space. The multiplication operator follows the search mechanism, which has the

second-highest dispersion in the search space. The updating equations for the position during

the exploration phase are presented in Eq (11).

Xi;jðCiter þ 1Þ ¼
Bestxj � ððMOPþ 2Þ � ðUbj � LbjÞ � mLbjÞ r2 < 0:5

Bestxj � ððMOPþ 2Þ � ðUbj � LbjÞ � mLbjÞ otherwise

(

ð11Þ

Where Xi,j(Citer+1) represents the ith solution in the next iteration, Xi,j(Citer) represents the
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jth position of the ith solution in the current iteration, and Bestxj represents the jth place in the

best-obtained solution. The upper bound value and lower bound value of the jth position are

represented by Ubj and Lbj, respectively. A number that works in the nested loop and balances

division and multiplication operators during the exploration process in the search process is

represented by r2. 2 is a small integer number, μ is a control parameter for adjusting the search

process. It is set at five with respect to test results obtained in the study. MOP is an exponen-

tially decreasing function and can be obtained with Eq (12)

MOPðC iterÞ ¼ 1 �
C iter1

a

M iter1
a

ð12Þ

In the exploitation phase, the solutions are updated with subtraction and addition opera-

tors, respectively. This is due to the fact that the subtraction operator observes the compara-

tively lower dispersion. Finally, the least dispersion is observed with the addition operator in

the search space. The position updating equations are described in Eq (13).

Xi;jðCiter þ 1Þ ¼
Bestxj � ððMOPþ 2Þ � ðUbj � LbjÞ � mLbjÞ r3 < 0:5

Bestxj þ ððMOPþ 2Þ � ðUbj � LbjÞ � mLbjÞ otherwise

(

ð13Þ

Where r3 is a randomly generated integer which balances between subtraction and addition

operators during the search process. The program continues to run until maximum iterations

are reached, the coefficients MOA and MOP update their values, and four basic arithmetic

operators explore, and exploit based on the extent of respective dispersions.

Parallel operated hybrid Arithmetic Optimization Algorithm Salp Swarm

Algorithm (AOASSA)

As per the no-free lunch theorem, no algorithm is feasible for all optimization problems. Every

algorithm has few strengths and weaknesses that introduce an opportunity to either modify

the basic version of the algorithm or hybridize two algorithms. In this paper, the active power

losses are minimized with the developed parallel hybrid AOASSA. The prominent features

and major differences amid individual algorithms (AOA and SSA) are discussed in Table 2.

Table 2. Prominent differences in features amid AOA and SSA.

Prominent Features Salp Swarm Algorithm (SSA) Arithmetic Optimization Algorithm (AOA)

Operational

phenomenon

The population bifurcated into leaders and followers The population is divided into division, multiplication, subtraction,

and addition operators

Exploration and

exploitation

capabilities

The coefficient c1 is an exponentially decreasing function providing

better exploration than MOP

Math Optimizer Probability (MOP) is also an exponentially

decreasing function providing better exploitation than c1

Propulsion equation of

particles

Balance of exploration and exploitation depends on c1 Balance of exploration and exploitation depends on MOA

Working principle After initializing and sorting the best salps in the first iteration, the

main loop runs. The Salp positions are updated based on the leader

and follower equation; hence the program runs up to the maximum

number of iterations.

After the initialization of solutions, MOA and MOP are updated. The

main loop runs based on the value of MOA, enabling division and

multiplication, subtraction and addition, solutions are updated up to

the maximum number of iterations

Level of complexity The convergence is based on leader, follower, and c1 equations

making the algorithm architecture relatively simple.

The convergence is based on division, multiplication, subtraction,

addition, MOA, and MOP equations making relatively a complex

phenomenon

Strengths and

weaknesses

The iterative parameter c1 provides better exploration but lacks

exploitation. The sorting mechanism supports exploration search.

The iterative parameter MOP provides good exploitation but lacks

exploration. The subtraction and addition operators provide relatively

better exploitation

https://doi.org/10.1371/journal.pone.0264958.t002
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It can be concluded from Table 2 that both the algorithms (AOA and SSA) are capable

enough to converge towards the optimal solution. The coefficient c1 in updating leader Salp

position is an exponentially decreasing function with highly diversified values in exploration

and less diversified in the exploitation phase, while MOP in AOA is also an exponentially

decreasing function with comparatively lower divergence in the exploration phase and rela-

tively lower divergence of particles in the exploitation phase, making SSA superior over AOA.

As per the no-free lunch theorem, no algorithm is perfect in all problems, so a parallel operated

hybrid combination of AOA and SSA is proposed to compare the best solutions in every run

and store the best value after comparing it with upcoming run. The phenomenon will

undoubtedly reduce the deficiencies of both algorithms.

It is visualized from Fig 1 that the coefficients c1 and MOP are equally important during

the search process. The coefficient c1 in SSA has good exploration capabilities at the begin-

ning of the search process. The searching capability of c1 is fast as compared to MOP. In

contrast, while the coefficient MOP has good exploitation capabilities at the end of the

search process (however, the search process is comparatively slow). Thus, the hybrid

AOASSA provides an opportunity to enhance the search capabilities during the entire

search process.

The flowchart of the proposed hybrid AOASSA for the optimal DG allocation problem is

presented in Fig 2 and the steps are discussed below:

Step 1: Define the load data (branch resistance, reactance, conductance, and susceptibility.

Active and reactive load on each node) as well as the line data (branch resistance, reactance,

conductance, and susceptibility) for the 33-bus and 69-bus RDNs

Step 2: Run the base case load flow and calculate the initial power loss (termed as Ploss_old) for

the base case (without allocation of DG units)

Step 3: Define the parameters of AOA and SSA for the DG allocation problem. The parameters

set for the optimization technique and DG allocation problem are presented in Table 3

[48], [49].

Step 4: Randomly initialize DG size and location within the search space as decision variables.

The total number of decision variables is two (DG size and location). DG allocation

Fig 1. Comparison of position updating coefficients in SSA and AOA.

https://doi.org/10.1371/journal.pone.0264958.g001
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Fig 2. Flow chart of parallel operated hybrid AOASSA.

https://doi.org/10.1371/journal.pone.0264958.g002
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problem with x potential solutions and y decision variables the element of population set Z
will be presented as Eq (14)

Z ¼

PDG1;1 PDG1;2.........:: PDG1;y

PDG2;1 PDG2;2............ PDG2;y
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ð14Þ

Step 5: Execute load flow with AOA, update MOA and MOP with Eqs (10) and (12),

respectively.

Step 6: Check, if the randomly generated integer r1 > MOA, then move towards the nested

decision one and compare with r2. If r2 > 0.5, use division Eq (11) to update DG size and

location, else use multiplication Eq (11) to update DG size and location for exploration. It

must be noted that the coefficient MOA linearly increases from 0.2 to 0.9, and after few iter-

ations, MOA exceeds r1 and MOA> r1, then move to decision two and compare r3. If r3 >

0.5, use subtraction Eq (13) to update DG size and location, else use addition Eq (13) to

update DG size and location.

Step 7: After updating particles using Eqs (11) and (13), calculate the updated value of power

loss (Ploss)

Step 8: Obtain the best size/sizes, location/locations of DG, and the updated value of power

loss obtained from AOA (termed as Ploss_new_AOA)

Step 9: Execute the load flow with SSA, update the value of the iterative parameter c1 using Eq

(8).

Table 3. Parameters of the optimization problem and hybrid AOASSA.

Parameters Values

Population size (NoP) 50

Maximum number of iterations (Max_iter) 200

Lower bound for generator size (Lbg) 0

Upper bound for generator size (Ubg) Total active load on the network

Lower bound for generator location (Lbgc) 2 (since bus 1 is a slack bus)

Upper bound for generator location (Ubgc) 33- or 69- (depending on network configuration)

Math operator probability maximum value (MOP_Max) 1

Math operator probability minimum value (MOP_Min) 0.2

Sensitive parameter (α) 5

Control parameter (μ) 0.5 (approx.)

c2, c3, r1 r2, r3 Random integers (0,1)

https://doi.org/10.1371/journal.pone.0264958.t003
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Step 10: Compare the population count; if the number of particles (NoP) is 1, use Eq (7) to

update leader position of DG size and location; else update DG size and location with fol-

lower equation (refer to Eq 9).

Step 11: Run the load flow and calculate the power loss for each salp

Step 12: Sort out the salp population and obtain the best DG size and location that resulted in

the least losses (termed as Ploss_new_SSA)

Step 13: Compare step 8 and step 12, check if Ploss_new_AOA < Ploss_new_SSA than move to next

check, and compare if Ploss_new_AOA < Ploss_old, if again yes replace Ploss_new_AOA with Ploss_-

new_AOA, if no, replace Ploss_new_AOA with Ploss_old. On contrary, if the Ploss_new_SSA < Ploss_-

new_AOA move to next check, if Ploss_new_SSA < Ploss_old, replace Ploss_new_SSA with

Ploss_new_SSA, else replace Ploss_new_SSA with Ploss_old.

Step 14: Update the population based on the superiority of the solution. Replace the DG sizes

and locations with the solutions obtained from the least Ploss.

Step 15: Repeat the program until it reaches the predefined maximum iterations count.

The detailed Pseudo code of proposed parallel operated hybrid AOASSA is presented in

Fig 3

Results and discussions

The standard radial test systems (IEEE 33-node and 69-node) are used to implement the pro-

posed AOASSA algorithm. In addition to the AOASSA, the hybrid SSAPSO, AOAPSO, and

respective standard algorithms (AOA, SSA, and PSO) are implemented to compare different

results. The findings of many recent optimization approaches were obtained from literature

for comparison and validation. The basic case refers to the examination of networks that do

not have any compensating devices (without allocation of DG units). The AOASSA is imple-

mented in the MATLAB 2017 environment. The study has been classified on three cases based

on the number of DG units allocated, as shown in Table 4. The analysis on varying penetration

of DGs revealed the performance analysis of the proposed algorithm (AOASSA) at different

dimensions (number of DG units allocated). All simulations run on a laptop with an Intel

Core i5 4th Generation Intel(R) Core(TM) i5-4210U CPU @ 1.70GHz 2.40 GHz, an SSD

drive, and a 64-bit operating system.

33-Bus Radial Distribution Network (RDN)

The 33-bus RDN has an active and reactive load of 3.715 MW and 2.3 MVArs, respectively.

The network receives 12.66 kV from a step-down transformer linked to node 1. The losses for

33-bus RDNs without allocation of DG units are 211 kW and 143.12 kVAR, respectively, with

a minimum voltage of 0.90 p.u recorded at node 18 in the base scenario. The network structure

of 33-bus RDN is presented in Fig 4.

Power loss minimization in 33-bus RDN

The decision or design variables are the quantities that decision-makers can control or change.

These parameters must be optimized to obtain the required objective function values. In the

proposed grid-connected DG allocation study, the design or decision variables are DG size

and DG location, and the objective function is to minimize the real power losses (Ploss). Ini-

tially, the standard AOA, SSA and PSO are applied to optimize sizes and locations that result

in the least losses. The AOA performs better than SSA and PSO, as evident from Table 4. At
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Fig 3. Pseudo code of parallel operated hybrid AOASSA.

https://doi.org/10.1371/journal.pone.0264958.g003
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the same time, SSAPSO, AOAPSO, and AOASSA exhibit the same characteristics under low

dimensional problems (with the allocation of 1 DG unit). Furthermore, the AOA outcomes

indicate that a DG sized 2373.6 kW at bus 26, SSA outcomes indicate that 2186.1 kW DG

installed at bus 26, and PSO outcomes indicate that a DG sized 2115.4 kW placed at bus 26

results in minimized losses. On the other hand, the hybrid SSAPSO, AOAPSO, and AOASSA

show that optimal size and location in the 33-bus RDN is 2592.5 kW at bus 6, respectively. In

case 2, the AOA outcomes indicate that 1031.5kW DG at bus 30 and 865.72kW at bus 13, SSA

outcomes indicate that 1180.2 kW at bus 30 and 780.33 kW DG at bus 15, and PSO outcomes

indicate that a DG of 893.63 kW and 1042.6 kW installed at bus 31 and 12, respectively result

in most minimized losses. On the contrary, the hybrid SSAPSO show that the optimal size and

location of two DG units in 33 bus radial distribution network is 851.94 kW at bus 13 and

1158.5 kW at bus 30, respectively. The AOAPSO and AOASSA suggest the same DG size and

location in case 2 (i.e., 1158.50 kW and 851.94 kW to be placed at buses 30 and 13, respec-

tively). In case 3, complexity is increased compared to cases 1 and 2 due to the simultaneous

allocation of three DG units. It is evident from Table 5 that the AOA produces DG sizes and

locations that results in the least losses compared to SSA and PSO individually; however, the

power losses are still greater than the three hybrid combinations. The hybrid AOASSA sug-

gested DG sizes and locations that result in better performance than SSAPSO. However, the

performance of the proposed AOASSA is the same as AOAPSO due to the higher

Table 4. Cases based on number of DG allocation units.

Cases Case description

Base case With no DG allocation

Case 1 Optimal siting and sizing of a single DG unit

Case 2 Optimal siting and sizing of two DG units

Case 3 Optimal siting and sizing of three DG units

https://doi.org/10.1371/journal.pone.0264958.t004

Fig 4. IEEE 33-Bus radial distribution network.

https://doi.org/10.1371/journal.pone.0264958.g004
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diversification produced by PSO’s linearly decreasing inertia weight at the start of the search

phase. In contrast, MOP, subtraction, and addition operators produce lesser diversification in

exploitation phase. Therefore, the AOA outperforms SSA and PSO in all three cases by pro-

ducing more PLR. The diversity of particles produced by multiplication and division operators

in the exploration phase and subtraction/addition operators in the exploitation phase helped

to avoid local optima stagnation. However, the exploration capabilities of AOA are still lacking

due to relatively less diversification produced by MOP at the start of the search process. The

exploration capabilities are later improved with SSA (c1 operator), which avoided local optima

stagnation and produced DG sizes and locations, resulting in the least losses. The performance

of the proposed AOASSA with the allocation of multiple DG units is shown in Table 5.

Convergence quality analysis

The proposed AOASSA produces a superior quality solution dealing with high-dimensional

DG allocation problems. A high solution diversity at the beginning of the search mechanism

(exploration phase) and lower diversity at the end of the search mechanism (exploitation

phase) is required to produce quality solutions. It is evident from Fig 5 that the SSA has better

exploration capabilities than AOA and PSO when algorithms are compared individually. In

contrast the exploitation capabilities of AOA are superior to contending algorithms in case 1.

The AOA reduced the power losses from 211 kW to 132.1 kW (37.39%), SSA reduced power

loss to 122.4 kW (41.99%) in the first iteration. In comparison, PSO reduced the power losses

to 135 kW(36.01%) in the first iteration, addressing the superiority of SSA in the exploration

phase (due to higher diversification produced by c1) at the start of the search phase. On the

other hand, AOA converged to 113.01 kW (46.44%), SSA converged to 113.98 kW (45.98%),

and PSO converged to 114.63 kW (45.67%), highlighting the exploitation capabilities of AOA

due to denser solutions produced by AOA (subtraction, addition operator, and denser

Table 5. Performance of proposed AOASSA on 33 Bus RDN with multiple DGs.

Case Optimization Technique DG Size, kW (@Bus location) Power loss (kW) PLR (%)

Base Case - - 211.00 -

Case 1 AOA 2373.6(26)

2186.1(26)

2115.4(26)

2592.5(6)

2592.5(6)

2592.5(6)

113.01 46.44

SSA 113.98 45.98

PSO 114.63 45.67

SSAPSO 111.01 47.39

AOAPSO 111.01 47.39

AOASSA 111.01 47.39

Case 2

AOA 1031.5(30), 865.72(13)

1180.2(30), 780.33(15)

893.63(31), 1042.6(12)

851.94(13), 1158.5(30)

1158.5(30), 851.93(13)

1158.5(30), 851.93(13)

87.65 58.46

SSA 88.17 58.22

PSO 88.98 57.83

SSAPSO 87.16 58.69

AOAPSO 87.16 58.69

AOASSA 87.16 58.69

Case 3 AOA 898.82(24), 807.77(13), 1078.2(30)

798.51(25), 797.25(13), 1020(30)

829.02(25), 724.08(15), 928.89(31)

879(13), 1076.3(24), 1018.8(30)

1054.3(30), 1093.9(24), 802.01(13)

1054.3(30), 802.01(13), 1093.9(24)

73.22 65.30

SSA 73.76 65.04

PSO 76.02 63.97

SSAPSO 73.07 65.37

AOAPSO 72.78 65.51

AOASSA 72.78 65.51

https://doi.org/10.1371/journal.pone.0264958.t005
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exponential decrease of MOP). AOASSA has good exploration and exploitation characteristics

when dealing with a single DG unit’s allocation unit (case 1). The allocation of one or two DG

units is relatively less complex than the optimal allocation of three DG units as the complexity

of the search space increases. The dominance of AOASSA against its counterparts (SSAPSO

and AOAPSO) in terms of exploration and exploitation is evident in Fig 5.

The SSAPSO and AOAPSO have chosen a search space which results in poor exploration as

compared to AOASSA. The SSAPSO reduces the losses from 211 kW to 119.33 KW (43.44%),

the AOAPSO reduced the losses from 211 kW to 113.68 kW (46.12%). The proposed AOASSA

reduced the losses from 211 kW to 112.45 kW (46.70%) in the first iteration while dealing with

the allocation of one DG unit. Later in the exploitation phase, SSAPSO, AOAPSO, and

AOASSA converged to the same power loss value but with different DG sizes at different loca-

tions. The iterative parameter in SSA supports the exploration capabilities, while the iterative

parameter in AOA supports the exploitation capabilities in the search process. The results

demonstrate that the exploration capabilities of AOASSA are superior to its counterpart while

the exploitation capabilities are same compared to counterparts. Due to less complexity, while

dealing with single DG unit allocation, hybrid SSAPSO, AOAPSO, and AOASSA converge to

the same power loss value.

Similarly, while dealing with the allocation of two DG units, the AOA reduced the power

loss from 211 kW to 110.87 kW (47.45%), SSA reduced power loss to 107 kW (49.29%), and

the PSO reduced the power loss to 112 kW (46.91%), addressing the superiority of SSA in

terms of exploration capabilities, as shown in Fig 6. AOA leads in the exploitation phase,

selecting the appropriate region with minimum diversification of particles. As a result, the

AOA converged to 87.65 kW (58.46%) SSA converged to 88.17 kW (58.21%), and PSO con-

verged to 88.98 kW (57.83), highlighting the superiority of AOA in the exploitation phase. In

terms of hybrid algorithms, the proposed AOASSA performed better in exploration and

exploitation capabilities. The SSAPSO reduces the losses from 211 kW to 102.14 kW (51.59%),

Fig 5. Convergence characteristics of contending optimization techniques for optimal allocation of single DG

unit in the 33-bus RDN.

https://doi.org/10.1371/journal.pone.0264958.g005

PLOS ONE Hybrid AOASSA technique of optimal DG allocation in distribution networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0264958 April 13, 2022 17 / 38

https://doi.org/10.1371/journal.pone.0264958.g005
https://doi.org/10.1371/journal.pone.0264958


the AOAPSO reduced the losses from 211 kW to 89.23 kW (57.71%), and the proposed

AOASSA reduced the losses from 211 kW to 88.48 kW (58.07%) in the first iteration while

dealing with the allocation of two DG units. Furthermore, the SSAPSO, AOAPSO, and

AOASSA converged to the same power loss value (i.e., 87.16 kW equals 58.69%).

In the third case, while dealing with the allocation of 3 DG units, the AOA converged to

98.41 kW (53.36%), SSA converged to 91 kW(56.87%), and PSO converged to 99.2 kW

(52.99%), highlighting the exploration capabilities of SSA at the beginning of the search pro-

cess. At the end of the search process, the AOA leads SSA and PSO in solution convergence.

The AOA reduced the power loss to 73.22kW (65.30%), SSA reduced the power loss to

73.76kW (65.04%), and PSO reduced the power loss to 76.02kW (63.97%), highlighting the

exploitation capabilities of AOA. In terms of hybrid algorithms, the proposed AOASSA per-

forms better in exploration and exploitation capabilities. The SSAPSO reduces the losses from

211 kW to 84.38 kW (60.01%), the AOAPSO reduced the losses from 211 KW to 82.19 kW

(61.05), and the proposed AOASSA reduced the losses from 211 kW to 78.3 kW (62.89%) in

the first iteration while dealing with the allocation of three DG units. It must be noted that the

proposed AOASSA has superior exploitation capabilities compared to SSAPSO, which stuck

to local optima when three DG units were allocated, resulting in higher losses compared to its

counterparts. However, the exploitation capabilities of AOASSA are similar to AOAPSO as the

power losses obtained by AOAPSO and AOASSA are the same at the end (i.e., 72.78 kW equals

to 65.51%). The proposed AOASSA aggregately takes the benefit of the iterative parameter of

SSA (c1) during the exploration phase, producing high divergence at the beginning of the

search process. On the other hand, MOP, subtraction, and addition operator at the end of the

search process enhances the exploitation capabilities of the AOASSA. The unique search

mechanism of AOASSA can be observed in the case of three DG units allocations, which leads

to avoiding the loss of diversity, resulting in more accurate and précised solutions. The conver-

gence superiority of the proposed AOASSA has been presented in Fig 7.

Fig 6. Convergence characteristics of contending optimization techniques for optimal allocation of two DG units in the

33-bus RDN.

https://doi.org/10.1371/journal.pone.0264958.g006
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Convergence speed analysis

The convergence speed is purely dependent on the diversity of the particles in the search space

and is measured in terms of number iterations count to converge towards the best solution.

The lesser the number of iterations to reach the best solutions, the faster the algorithm. The

convergence speed also depends on the complexity of the problem. In terms of DG allocation,

increasing the number of DG unit’s allocation increases the complexity of the problem (due to

increment in search space). As discussed, the AOASSA support each other during exploration

and exploitation; the solutions quickly converge towards the optimal solution. In case1, AOA

is comparatively slower than SSA and PSO; AOA converges the best solution in 37 iterations,

SSA converges in 16 iterations, and PSO converges in 14 iterations while dealing with the opti-

mal allocation of one DG unit. In terms of hybrid algorithms, the AOASSA achieves the best

DG size and location to obtain the least power losses in 3 iterations, followed by AOAPSO,

which achieves optimal DG size and location to obtain the least power losses in 21 iterations.

In comparison, SSAPSO takes 30 iterations to attain the best DG size and location, resulting in

the least losses. In case2, AOA converges in 47 iterations, SSA converges in 21 iterations, and

PSO converges in 17 iterations. For hybrid algorithms, 51 iterations are required to obtain the

optimal DG sizes and locations by AOASSA, followed by AOAPSO that takes 53 iterations.

The SSAPSO converged to the best solution in 67 iterations. Furthermore, in case3, AOA con-

verged to the optimal solution in 109 iterations, SSA converged in 73 iterations, and PSO con-

verged in 54 iterations. Among hybrid algorithms, AOASSA requires 61 iterations to obtain

optimal DG size and location that produce minimum loss value, followed by AOAPSO that

takes 93 iterations. The SSAPSO converged in 181 iterations to obtain a minimum losses

value. As discussed, the AOASSA and AOAPSO converge to the same power loss value; how-

ever, the AOASSA is faster in response as compared to AOAPSO due to the excellent diversity

Fig 7. Convergence characteristics of contending optimization techniques for optimal allocation of three DG units in the

33-bus RDN.

https://doi.org/10.1371/journal.pone.0264958.g007
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of particles. It must be noted that the number of iterations to reach the best solution increase

as the DG allocation units increase. It can be observed from Table 6 that AOA is comparatively

slower than SSA and PSO (in all three cases) due to loss of diversity (premature convergence

in the case of SSA and PSO). It must be noted that the SSA and PSO are un-doubtfully fast but

have the problem of local optima stagnation and produce less quality solutions compared to

AOA. The AOASSA outperforms in terms of convergence speed and achieve global best solu-

tion due to the superior exploration and exploitation capabilities.

Statistical analysis

The MHTs are stochastic in nature, and the reliability of an algorithm or performance superi-

ority has been evaluated based on its mean, variance, and standard deviation value. For the

DG allocation problem, six algorithms (AOA, SSA, PSO, SSAPSO, AOAPSO, and AOASSA)

have been executed 30 times individually to test the reliability of the solutions obtained. The

AOA offers the least mean, variance and standard deviations when MHTs are compared indi-

vidually due to the search mechanism (AOA providing comparatively higher divergence at the

start of the search process and denser solutions in the end); however, the inherent exploration

capabilities lack due to the iterative parameter (MOP). Therefore, a hybrid combination of

AOA with SSA diminishes the inherent exploration deficiencies of AOA. The proposed

AOASSA has a lesser mean, variance, and standard deviation (based on best and worst values

obtained in each case during 30 runs), as evident from Table 7. The AOASSA has superior sta-

tistical characteristics because the proposed AOASSA has a better exploration and exploitation

mechanism, making it comparatively less dependent on the initial population. The exceptional

exploration mechanism provided by SSA (iterative parameter c1) further followed by exploita-

tion capabilities of AOA(iterative parameter MOP) makes the proposed AOASSA compara-

tively less dependent on initial population generated and guarantees low mean, variance, and

standard deviations. Therefore, the proposed AOASSA is found to exhibit promising statistical

characteristics as compared to its counterpart. The mean, variance, and standard deviations

Table 6. Convergence speed of proposed algorithms with multiple DG allocation units.

Case Technique Minimum iteration to reach global best

Case 1 AOA 37

SSA 16

PSO 14

SSAPSO 30

AOAPSO 21

AOASSA 3

Case 2 AOA 47

SSA 21

PSO 17

SSAPSO 67

AOAPSO 53

AOASSA 51

Case 3 AOA 109

SSA 73

PSO 54

SSAPSO 181

AOAPSO 93

AOASSA 61

https://doi.org/10.1371/journal.pone.0264958.t006
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for the proposed AOASSA and its counterparts (AOAPSO and SSAPSO and respective indi-

vidual algorithms) are presented in Table 7.

Cost analysis

The primary goal of developing the proposed AOASSA is to choose the optimal bus placement

and size of DG to minimize power losses. The decrease in losses also lowers operational costs

and aids grid reinforcement. In addition, the reduction in losses also translates to monetary

savings in terms of cost. For this study, the per-unit cost of electricity (price/kWh) is assumed

as 0.2121MYR, which is equal to $0.052. The initial cost of losses without DG allocation has

been found to be 0.0961 million dollars. The optimal sizes and locations produced by AOA,

SSA, and PSO reduces the power losses to 46.44%, 45.98%, and 45.67%, which reduces the

AFL from 0.09611 million dollars to 0.0515, 0.0519, and 0.0522 million dollars, respectively.

The optimal allocation of a single DG unit reduced the losses up to 47.39% (for SSAPSO,

AOAPSO, and AOASSA), which reduced the proportional cost of losses. The cost of losses has

been reduced from 0.0961 million dollars to 0.0506 million dollars with the optimal allocation

of one DG unit irrespective of the optimization technique (in the case of hybrid SSAPSO,

AOAPSO, and AOASSA). In case 2, the optimal sizes and locations of 2 DG units produced by

AOA, SSA, and PSO reduces the power losses to 58.46%, 58.22%, and 57.83%, which in turn

reduced the AFL from 0.0961 million dollars to 0.0399, 0.0402, and 0.0405 million dollars,

respectively. Furthermore, using hybrid techniques (SSAPSO,AOAPSO and AOASSA), the

optimal allocation of 2 DG units reduced the losses to 58.69%, reducing the financial losses

with the same ratio. The cost of losses reduced from 0.0961million dollars to 0.0397 million

dollars irrespective of the optimization technique applied. In case 3, the optimal sizes and loca-

tions of three DG units produced by AOA, SSA, and PSO reduces the power losses to 65.30%,

65.04%, and 63.97%, which declined the AFL from 0.09611 million dollars to 0.0334, 0.0336,

and 0.0346 million dollars, respectively. However, with the optimal allocation of 3 DG units,

the power losses were reduced to 65.37% with SSAPSO. In contrast, the power losses have

Table 7. Statistical superiority of proposed AOASSA.

Case Number Technique Mean Power Loss (kW) Standard Deviation Variance

Case 1 AOA 115.75 3.42 11.73

SSA 118.64 4.17 17.36

PSO 118.82 5.03 25.30

SSAPSO 112.95 1.44 2.06

AOAPSO 112.76 1.18 1.39

AOASSA 111.29 0.73 0.53

Case 2 AOA 91.94 3.75 14.03

SSA 92.00 4.68 21.95

PSO 94.51 5.07 25.65

SSAPSO 89.68 1.66 2.76

AOAPSO 88.36 1.38 1.90

AOASSA 87.74 0.98 0.96

Case 3 AOA 78.59 3.98 15.81

SSA 82.14 4.77 22.77

PSO 83.40 6.00 36.02

SSAPSO 74.79 1.92 3.70

AOAPSO 74.68 1.84 3.39

AOASSA 73.46 1.19 1.41

https://doi.org/10.1371/journal.pone.0264958.t007
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been reduced to 65.51% for AOAPSO and AOASSA as compared to the base case. Therefore,

the proportional cost of losses has been reduced from 0.0961 million dollars to 0.0333 million

dollars for SSAPSO. The cost of losses reduced from 0.0961 million dollars to 0.332 million

dollars for AOAPSO and AOSSA. The cost of losses for all three cases is depicted in Fig 8.

Benchmarking power losses on 33-bus distribution network

In order to validate the superiority of the proposed AOASSA, benchmarking against recent

state of the art meta-heuristic algorithms has been presented. The optimal size, locations and

PLR obtained by some existing state of the art MHTs presented in Table 8. A summary show-

ing power loss reductions with multiple DG units obtained from literature has been illustrated

in Fig 9A, 9B and 9C. The proposed AOASSA has superior results in terms of PLR, as shown

in Fig 9A, 9B and 9C.

The PLR obtained with some recent state-of-the-art algorithms are depicted in Fig 9A, 9B

and 9C. Initially, the results are benchmarked under low dimensions (1 DG unit allocation).

While allocating single DG unit, the PLR obtained by the LSF method [29] is 30.48%, Fuzzy

AIS [36] is 37.71%, BSOA [65] is 43.98%, AMPSO [48] is 47.31%, HSA-PABC [55] is 47.39%,

AOA is 46.44%, SSA is 45.98%, PSO is 45.67%, SSAPSO is 47.39%, AOAPSO is 47.39% and

proposed AOASSA is 47.39%. The results are then benchmarked for two DG units allocation.

While allocating two DG units, the PLR obtained by LSF [29] is 52.32%, Fuzzy AIS [36] is

42.43%, BSOA [65] is 57.62%, RESPO [53] is 44.68%, AMPSO [48] is 58.64%, AOA is 58.46%,

SSA is 58.22, PSO is 57.83, SSAPSO is 58.69%, AOAPSO is 58.69% and AOASSA is 58. 69%. In

the end, the results are benchmarked for the allocation of three DG units. The power loss

reduction obtained by LSFSA [51] is 61.11%, TLBO [34] is 64.20%, QOTLBO [34] is 64.88%,

AHA [64] is 65.48%, KHA [35] is 64.26%, GAMS [7] is 65.39%, LSF [29] is 59.72%, Fuzzy AIS

[36] is 42.45%, BSOA [65] is 57.76%, FA [65] is 57.62%, RESPO [53] is 63.55%, AMPSO [48] is

Fig 8. Annual financial losses for three cases with different optimization techniques.

https://doi.org/10.1371/journal.pone.0264958.g008
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Table 8. Optimal capacities and positions of DGs in the 33-bus distribution network for proposed and benchmarked algorithms.

Optimization Techniques 1 DG 2 DGs 3 DGs

DG Size (kW),

@Bus

PLR

(%)

DG Size (kW),

@Bus

PLR

(%)

DG Size (kW), @Bus PLR

(%)

LSFSA [51] - - - - 1112.4(6) 487.4(18) 867.9

(30)

61.11

TLBO [34] - - - - 824.6(10) 1031.1(24) 886.2

(31)

64.20

QOTLBO [34] - - - - 880.8(12), 1059.2(24)

1071.4(29)

64.88

Algorithmic Heuristic Approach (AHA) [64] - - - - 792(13) 1068(24) 1027(30) 65.48

KHA [35] - - - - 810.7(13) 836.8(25) 841

(30)

64.26

General Algebraic Modeling system (GAMS) [7] - - - - 755(14) 1073(24) 1068(30) 65.39

Loss Sensitivity Factor (LSF) [29] 743(18) 30.48 720(18).900(33) 52.32 720(18), 810 (33), 900(25) 59.72

Fuzzy AIS [36] 1931(32) 37.71 383.6(32) 1150.6

(30)

42.43 2071(32) 111.38(30) 150.3

(31)

42.45

Back tracking Searching Optimization Algorithm (BSOA) [65] 1858(8) 43.98 880(13).924(31) 57.62 632(13) 486(28) 550(31) 57.76

Firefly Algorithm (FA) [65] - - - - 652(14) 198.4(18) 1067.2

(32)

57.62

REPSO [53] - - 1483.0(30) 383.6

(32)

44.68 1227.4(6) 606.8(14) 687

(31)

63.55

Analytical method particle swarm optimization (AMPSO) [48] 2490(6) 47.31 830(13) 1110 (30) 58.64 790(13) 1070(24) 1010(30) 65.45

GAPSO [52] - - - - 925(11) 863(16) 1200(32) 51.01

Hybrid Harmony Search Algorithm and Particle Artificial Bee

Colony (HSAPABC) [55]

2598(6) 47.39 - - 755(14) 1073(24) 1068(30) 65.49

GAIWD [54] - - - - 1221.4(11) 683.3(16)

1213.5(32)

47.63

AOA 2373.6(26) 46.44 1031.5(30) 865.72

(13)

58.46 898.82(24) 807.77(13)

1078.2(30)

65.30

SSA 2186.1(26) 45.98 1180.2(30) 780.33

(15)

58.22 798.51(25) 797.25(13)

1020(30)

65.04

PSO 2115.4(26) 45.67 893.63(31) 1042.6

(12)

57.83 829.02(25) 724.08(15)

928.89(31)

63.97

SSAPSO 2592.5(6) 47.39 851.94(13) 1158.9

(30)

58.69 879(13) 1076.3(24) 1018.8

(30)

65.37

AOAPSO 2592.5(6) 47.39 1158.5(30) 851.93

(13)

58.69 1054.3(30) 1093.9(24)

802.01(13)

65.51

AOASSA (Proposed) 2592.5(6) 47.39 1158.5(30) 851.93

(13)

58.69 1054.3(30) 802.01(13)

1093.9(24)

65.51

https://doi.org/10.1371/journal.pone.0264958.t008

Fig 9. Comparative analysis of the AOASSA against the competitive optimization algorithms for the optimal allocation of (a) Single DG unit, (b) two DG units, (c) three

DG units in the 33-bus RDN.

https://doi.org/10.1371/journal.pone.0264958.g009
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65.45%, GAPSO [52] is 51.01%, HSAPABC [55] is 65.49%, GAIWD [54] is 47.62%, AOA is

65.30%, SSA is 65.04%, PSO is 63.97%, SSA-PSO is 65.37%, AOAPSO is 65.51%, and AOASSA

is 65.51%. The AOASSA has superior performance under all three cases due to the parallel

combination of AOASSA supporting each other during the exploration and exploitation

phase.

69-Bus Radial Distribution Network (RDN)

The standard 69-bus RDN has a balanced load configuration with an active load of 3.80 MW

and the reactive load of 2.69 MVAr. A step-down transformer before node 1 reduces the volt-

age to 12.66 kV. The real power losses of 69-bus RDN without DG units were observed to be

225 kW. A standard 69-bus RDN is shown in Fig 10.

Power loss minimization in 69-bus RDN

The decision variables for the 69-bus RDN are DG size and DG placement. The AOA outper-

forms the SSA and PSO in low-dimensional problems, whereas the SSAPSO, AOAPSO, and

AOASSA demonstrate similar characteristics as presented in Table 9. Furthermore, the AOA

results suggest that a 1795.1 kW DG should be placed at bus 61, the SSA results indicate that a

1734.9kW DG should be installed at bus 61, and the PSO results suggest that a DG of 1859.2

kW should be installed at bus 62 for the least losses. The hybrid SSAPSO, AOAPSO, and

AOASSA reveal that the optimal size and position of one DG unit in a 69-bus RDN is 1872.7

kW at bus 61. In case 2, the AOA outcomes indicate DGs of 562.18 kW DG at bus 17 and

1775.6 kW at bus 61, SSA outcomes indicate that 546.1 kW at bus 17 and 1676.4 kW DG at

bus 61, and PSO outcomes indicate that DG of 1723.1 kW and 842.08 KW should be placed at

buses 61 and 66, respectively for the most minimized losses. On the other hand, the hybrid

SSAPSO, AOAPSO and AOASSA reveal the best size and position of two DG units is 531.48

Fig 10. Comparative analysis of the AOASSA against the competitive optimization algorithms for the optimal allocation of (a) Single DG unit, (b) two

DG units, (c) three DG units in the 33-bus RDN.

https://doi.org/10.1371/journal.pone.0264958.g010
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kW at bus 17 and 1781.4 kW at bus 61, respectively. Due to the simultaneous allocation of

three DG units in case3, the DG allocation complexity increases as compared to cases 1 and 2.

The AOA attains the DG sizes and locations that produced the least losses compared to SSA

and PSO individually, as evident from Table 9. However, the power losses are still more signifi-

cant than that of the proposed three hybrid combinations. AOASSA suggests DG sizes and

locations which result in better performance than SSAPSO. In all three cases, the AOA outper-

forms the SSA and PSO due to the diversity of particles generated by multiplication and divi-

sion operators in the exploration and subtraction and addition operators in the exploitation

phase, which helped prevent local optima stagnation.

Convergence quality analysis

A high solution diversity (highly non-uniform) at the start of the search mechanism (explora-

tion phase) and a lower diversity (almost uniform solution) at the end of the search mecha-

nism (exploitation phase) is desired to obtain quality solutions. The proposed AOASSA

running in parallel taxonomy produce quality solutions. The SSA has superior exploration

capabilities than AOA and PSO when algorithms are compared individually and is evident

from Fig 11. In contrast, the exploitation capabilities of AOA are superior to counterparts in

case 1. In the first iteration, the AOA decreased power losses from 225 kW to 92.4 kW

(58.93%), SSA reduced power losses to 91 kW (59.56%). PSO reduced power losses to 94 kW

(58.22%), addressing the superiority of SSA in the exploratory phase (due to higher diversifica-

tion produced by c1). In terms of exploitation capabilities, AOA converged to 83.43 kW

(62.92%), SSA to 83.89 kW (62.72%), and PSO to 84.73 kW (62.34%), showing the exploitation

potential of AOA owing to denser solutions provided by AOA at the end of the search process.

The dominance of AOASSA against its counterparts (SSAPSO and AOAPSO) in exploration

and exploitation is evident from Fig 11. The SSAPSO and AOAPSO have chosen a search

space with poor exploration compared to AOASSA, as shown in Fig 11. The SSAPSO reduced

the losses from 225 kW to 87 kW (61.33%), the AOAPSO reduced the losses to 85.22 kW

Table 9. Performance of the proposed AOASSA in 69-bus RDN with single and multiple DGs.

Case Optimization Techniques DG Size, kW (Bus location) Power loss (kW) PLR%

Case 1 AOA 1795.1 (61) 83.43 62.92

SSA 1734.9(61) 83.89 62.72

PSO 1859.2(62) 84.73 62.34

SSAPSO 1872.7(61) 83.22 63.01

AOAPSO 1872.7(61) 83.22 63.01

AOASSA 1872.7(61) 83.22 63.01

Case 2 AOA 562.18 (17), 1775.6(61) 71.71 68.13

SSA 546.1(17), 1676.4(61) 72.06 67.98

PSO 1723.1(61), 842.08(66) 74.51 66.89

SSAPSO 531.48(17), 1781.4(61) 71.67 68.14

AOAPSO 531.48(17), 1781.4(61) 71.67 68.14

AOASSA 531.48(17), 1781.4(61) 71.67 68.14

Case 3 AOA 358.84(18), 1703.8(61), 679.49(51) 70.58 68.63

SSA 349.02(67), 1691.3(61), 416.37(27) 71.67 68.15

PSO 1313.5(62), 518.79(17), 510.67(60) 72.32 67.86

SSAPSO 399.78(12), 1748.8(61), 327.23(22) 69.70 69.02

AOAPSO 1718.9(61), 526.84(11), 380.35(18) 69.43 69.14

AOASSA 526.84(11), 1718.9(61), 380.35(18) 69.43 69.14

https://doi.org/10.1371/journal.pone.0264958.t009
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(62.12%). The proposed AOASSA reduces the losses to 84.4 kW (62.49%) in the first iteration

while dealing with the allocation of a single DG unit. The iterative parameter in SSA (c1) sup-

ports the exploration capabilities, while the iterative parameter in AOA supports the later

exploitation phase of the search process.

Similarly, while dealing with the allocation of two DG units, the AOA decreases power loss

from 225 kW to 84.2 kW (62.58%), SSA lowers power loss to 81.7 kW (63.69%). The PSO

reduces power loss to 85.2 kW (62.13%), showing better exploration capabilities of SSA, as

shown in Fig 12. Later in the exploitation phase, AOA takes the lead in the exploitation phase,

picking an appropriate region with the least amount of particle diversification. As a result, the

AOA converged to 71.71 kW (68.13%), the SSA converged to 72.06kW (67.97%), and the PSO

converged to 74.5 kW (66.89%), showing the dominance in the exploitation phase of AOA.

Thus, the proposed AOASSA outperformed in terms of exploration and exploitation capabili-

ties. In the first iteration, the SSAPSO lowers losses from 225 kW to 79.42 kW (64.70%), the

AOAPSO reduces losses to 76.7 kW (65.91%) and the proposed AOASSA decreases losses to

74.88 kW (66.72%) while dealing with the allocation of two DG units. Furthermore, the

SSAPSO, AOAPSO, and AOASSA converges to the same power loss value during the exploita-

tion phase. The results show that AOASSA has greater exploration and exploitation capabili-

ties than its counterpart, as a parallel operated AOASSA provides better search inside the

search space.

In the third case, the AOA converges to 95 kW (57.78%), SSA converges to 93 kW

(58.67%), and PSO converges to 99.7 kW (58.69%) in the first iteration, showing the explor-

atory capabilities of SSA at the start of the search phase. In terms of solution convergence, the

AOA outperforms the SSA and PSO at the end of the search process, as shown in Fig 13. The

Fig 11. Convergence characteristics of contending optimization techniques for optimal allocation of single DG unit in

the 69-bus RDN.

https://doi.org/10.1371/journal.pone.0264958.g011
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AOA reduces the power loss to 70.58 kW (68.63%), SSA reduced the power loss to 71.67 kW

(68.15%), and PSO reduces the power loss to 72.32kW (67.86%), highlighting the exploitation

capabilities of AOA. Thus, the proposed AOASSA outperforms the hybrid algorithm in terms

of exploration and exploitation capabilities. In the first iteration, the SSAPSO lowers losses

from 225 kW to 92.56 kW (58.86%), the AOAPSO reduces losses to 85.49 kW (62%), and the

proposed AOASSA decreases losses to 76.18 kW (66.14%) while dealing with the allocation of

three DG units. It must be noted that the proposed AOASSA has superior exploitation capabil-

ities as compared to SSAPSO, which stuck to local optima when three DG units are allocated.

However, the exploitation capabilities of AOASSA are similar to AOAPSO as the power losses

obtained by AOAPSO and AOASSA are the same at the end of 200 iterations. The proposed

AOASSA combines the advantages of iterative parameter c1 in SSA during the exploration

phase (resulting in considerable divergence at the start of the search process) MOP, subtrac-

tion, and addition operators at the end of the search process.

Convergence speed analysis

Convergence speed is influenced directly by the diversity of particles in the search space and is

quantified in terms of the number of iterations required to get the optimal solution. The algo-

rithm is fast if the number of iterations needed to obtain the best solution is minimum. Con-

vergence time is also affected by the complexity of the problem (in terms of network structure

69-bus structure is more complex than 33 bus network). In terms of DG allocation, increasing

the number of DG units increases the complexity of the problem (due to increment in search

Fig 12. Convergence characteristics of contending optimization techniques for optimal allocation of two DG units in the

69-bus RDN.

https://doi.org/10.1371/journal.pone.0264958.g012
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space). The AOASSA help each other during exploration and exploitation, and the solutions

quickly converge in search towards solution. In case1, AOA is slower than SSA and PSO as it

takes 45 iterations to reach the best solution, SSA takes 20 iterations, and PSO takes 18 itera-

tions. In hybrid algorithms, the AOASSA achieves the best DG size and position to produce

the least power losses in 5 iterations, followed by the AOAPSO that reaches the optimal DG

size and location to generate the least power losses in 24 iterations. SSAPSO requires 37 itera-

tions to find the optimal DG size and position resulting in the minimum losses. In case 2,

AOA takes 56 iterations to converge, SSA takes 40 iterations, and PSO takes 24 iterations to

converge. AOASSA takes 85 iterations to reach the best DG sizes and sites in hybrid algo-

rithms, followed by AOAPSO which takes 93 iterations and SSAPSO takes 108 iterations. Sim-

ilarly, in case 3, AOA converges to the optimal solution in 115 iterations, SSA converges in 79

iterations, and PSO converges in 62 iterations. In the case of the hybrid algorithms, 111 itera-

tions are required by the AOASSA to obtain optimal DG size and location, followed by the

AOAPSO which takes 131 iterations and SSAPSO with 188 iterations to converge to minimum

losses value. The AOASSA and AOAPSO converge to the same power loss value; however, the

AOASSA responds faster than the AOAPSO due to solution diversity (better exploration and

exploitation capabilities) and is evident from Table 10. As the number of DG allocation units

increase, the number of iterations required to achieve the optimum solution also increase in

similar manner. Furthermore, the iterations required to reach an optimal solution (in 69 bus

network) are higher than to 33-bus network due to the complexity of the problem (higher

search space). It is worthy to highlight that though the SSA and PSO are fast, yet they suffer

from local optima stagnation and generate lower quality solutions than the AOA. The

Fig 13. Convergence characteristics of contending optimization techniques for optimal allocation of three DG units in the 69-bus

RDN.

https://doi.org/10.1371/journal.pone.0264958.g013
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AOASSA outperforms in terms of convergence speed due to the superior exploration capabili-

ties at the start of the search process and exploitation without the loss of diversity.

Statistical analysis

The MHTs are stochastic in nature, and the mean, variance, and standard deviation are used

to evaluate the performance superiority of algorithms. Similar to 33-bus RDN, the presented

algorithms are executed 30 times to verify the robustness of solutions found in the case of the

DG allocation problem. The AOA provides the lowest mean, variance, and standard deviations

when MHTs are compared separately (AOA provides comparatively higher divergence at the

start of the search process and denser solutions in the end). However, due to the iterative

parameter, the inherent exploration abilities are lacking in MOP. As a result, a hybridization

of AOA and SSA mitigates inherent exploratory limitations of AOA. The proposed AOASSA

has a lower mean, variance, and standard deviation, as shown in Table 11, which are calculated

based on the basis of best and worst values obtained in every execution. In addition, the pro-

posed AOASSA has more robust exploration and exploitation mechanism supported by the

pros of both SSA and AOA, resulting in substantially less dependent on the initial population.

The proposed AOASSA is comparatively less dependent on the initial population generated

and guarantees low mean, variance, and standard deviations due to iterative parameter c1 of

SSA, followed by the better exploitation capabilities provided by the iterative MOP parameter

of AOA. As a result, the proposed AOASSA has promising statistical characteristic compared

to its counterparts, as shown in Table 11.

Cost analysis

The primary goal of implementing the proposed AOASSA is to choose the best bus placement

and size of DG which results in minimized losses. In case 1, the AOA, SSA, and PSO produces

the optimal sizes and positions reducing power losses by 62.92%, 62.72%, and 62.34%, respec-

tively, lowering the AFL from 0.1025 million dollars to 0.0380, 0.0382, and 0.0386 million

Table 10. Convergence speed of proposed algorithms with multiple DG allocation units.

Case Techniques Minimum iteration to reach global best

Case 1 AOA 45

SSA 20

PSO 18

SSAPSO 37

AOAPSO 24

AOASSA 5

Case 2 AOA 56

SSA 40

PSO 24

SSAPSO 108

AOAPSO 93

AOASSA 85

Case 3 AOA 115

SSA 79

PSO 62

SSAPSO 188

AOAPSO 131

AOASSA 111

https://doi.org/10.1371/journal.pone.0264958.t010
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dollars, respectively. For SSAPSO, AOAPSO, and AOASSA, the optimal allocation of one DG

unit reduced power losses by 62.01%, lowering the proportionate cost of losses. With the opti-

mal allocation of one DG unit, the cost of losses decreased from 0.1025 million dollars to

0.0379 million dollars, regardless of the hybrid optimization technique used as shown in Fig

14. In case 2, the optimal sizes and positions of two DG units produced by AOA, SSA, and

Table 11. Statistical superiority of AOASSA.

Case Number Technique Mean Power Loss (kW) Standard Deviation Variance

Case 1 AOA 86.54 3.76 14.14

SSA 89.11 4.70 22.05

PSO 89.33 5.19 26.97

SSAPSO 84.53 1.75 3.08

AOAPSO 84.03 1.57 2.45

AOASSA 83.94 0.83 0.69

Case 2 AOA 74.91 3.87 14.98

SSA 76.98 4.73 22.35

PSO 79.49 5.86 34.35

SSAPSO 74.30 2.15 4.60

AOAPSO 74.04 1.95 3.79

AOASSA 73.97 1.00 1.00

Case 3 AOA 74.38 4.15 17.21

SSA 76.13 4.93 24.32

PSO 80.18 7.27 52.90

SSAPSO 73.74 2.16 4.68

AOAPSO 72.23 2.10 4.40

AOASSA 70.94 1.38 1.89

https://doi.org/10.1371/journal.pone.0264958.t011

Fig 14. Annual financial losses with multiple DG units for different algorithms.

https://doi.org/10.1371/journal.pone.0264958.g014
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PSO reduced power losses by 68.13%, 67.98%, and 66.89%, respectively. The AOA, SSA, and

PSO reduce the AFL from 0.1025 million dollars to 0.0327, 0.0328, and 0.0329 million dollars.

Furthermore, the optimal allocation of two DG units reduced losses by 68.14%, lowering

financial losses with the same ratio. Regardless of the hybrid optimization technique used

(SSAPSO, AOAPSO, or AOASSA), the cost of losses decreased from 0.1025 million dollars to

0.0326 million dollars in proportion to PLR. In case 3, the optimal sizes and positions of three

DG units produced by AOA, SSA, and PSO reduced power losses by 68.63% (from 0.1025 mil-

lion dollars to 0.0322), 68.15% (from 0.1025 million dollars to 0.0326), and 67.86% (from

0.1025 million dollars to 0.0329), respectively. In case 3, when three DG units were optimally

allocated, power losses dropped to 69.02% for SSAPSO and 65.14% % for AOAPSO and

AOASSA. As a result, the proportional cost of losses for SSAPSO has been decreased from

0.1025 million dollars to 0.0318 million dollars. In comparison, the cost of losses for AOAPSO

and AOASSA has been reduced from 0.1025 million dollars to 0.0316 million dollars. The cost

of losses for each of the three cases are shown in Fig 14.

Benchmarking on 69-bus RDN

The optimal sizes and positions of DGs for some recent MHTs are listed, the corresponding

power loss reductions are presented in Table 12. A summary of PLR obtained with multiple

DG units from literature has been presented in Fig 15. The proposed AOASSA provides supe-

rior results in terms of PLR, as shown in Fig 15A, 15B and 15C.

The statistic illustrates the PLR achieved by recent state of the art algorithms involving mul-

tiple DG units. Initially, the findings are compared to low-dimensional benchmarks (1 DG

unit allocation. It can be analyzed from Fig 15 that the power loss reduction obtained by LSM

[66] is 50.17%, Analytical [31] is 62.95%, AMPSO [48] is 62.95%, AOA is 62.92%, 62.72%, PSO

is 62.34%, SSAPSO is 63.01, AOASSA is 63.01 and AOASSA is 63.01%. In case2, the PLR

obtained by LSM [66] is 55.38%, AMPSO [48] is 68.09%, AOA is 68.13, SSA is 67.98, PSO is

66.89%, SSAPSO is 68.14%, AOAPSO is 68.14%, and AOASSA is 68.14%. In case 3, the PLR

obtained by LSFSA [51] is 67.95%, TLBO [34] is 67.82%, QOTLBO [34] is 68.16%, AHA [64]

is 69.0369%, KHA [35] is 69.09%, LSM[66] is 67.28%, GAMS [7] is 68.01%, FA [65] is 66.56%,

AMPSO [48] is 69.09%, Hybrid Teaching Learning Based Optimization-Grey Wolf Optimizer

(TLBOGWO) [67] is 68.12%, GAPSO [52] is 62.40%, HSAPABC [55] is 68.12%, GAIWD [54]

is 64.04%, AOA is 68.63%, SSA is 68.15%, PSO is 67.86%, SSAPSO is 69.02%, AOAPSO is

69.14%, and AOASSA is 69.14%. The exceptional hybrid combination of AOASSA supporting

each other during the exploration (SSA supporting AOA) and exploitation phase (AOA sup-

porting SSA) is the reason AOASSA outperforms compared to other algorithms.

Interpretations based on obtained results

This section provides an argument-based discussion interpreting the results obtained in detail.

Interpretations on power loss reduction. The optimized sizes and locations obtained

from AOA, SSA and PSO resulted in a slight difference in terms of PLR. The arithmetic opti-

mization algorithm provides the highest diversity of particles due to the division and multipli-

cation operators. The exploitation mechanism is followed by lower divergence due to addition

and subtraction operators. However, the iterative parameter MOP lacks the exploration capa-

bilities. Contrary, the SSA provides a sorting mechanism at the start of search process and is

followed by updating leader and follower positions. However, the solutions have higher diver-

gence in the exploitation phase, resulting in comparatively higher power loss compared to

AOA. At the same time, PSO results in the highest power losses compared to other standard

algorithms due to the linear search mechanism provided by inertia weight. The performance
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Table 12. Optimal capacities and positions of DGs in the 69-bus RDN for the proposed and benchmarked algorithms.

Optimization Techniques 1 DG 2 DGs 3 DGs

DG Size (kW),

(@Bus)

PLR

(%)

DG Size (kW),

(@Bus)

PLR

(%)

DG Size (kW), (@Bus) PLR

(%)

LSF-SA [51] - - - - 420.4 (18) 1331.1 (60)

429.8 (65)

67.95

TLBO [34] - - - - 591.9 (15) 818.8 (61) 900.3

(63)

67.82

QO-TLBO [34] - - - - 533.4 (18) 1198.6 (61)

567.2 (63)

68.16

AHA [64] - - - 471 (12) 312 (21) 1689(61) 69.04

KHA [35] - - - - 496.2(12) 311.3 (22) 1735.4

(61)

69.09

LSM [66] 1436.3 (65) 50.17 1379.1 (65) 446.1

(27)

55.38 196.6 (65) 416.8 (27)

1602.6 (61)

67.28

Analytical [31] 1800 (61) 62.95 - - 62.95

GAMS [7] - - - - 813.1 (12) 1444.7 (61)

289.6 (64)

68.01

FA [65] - - - - 295.4 (27) 447.6 (65)

1345.1 (61)

66.56

AM-PSO [48] 1810 (61) 62.95 520 (17) 1720 (61) 68.09 510 (11) 380 (17) 1670 (61) 69.09

Hybrid Teaching–Learning Based Optimization-Grey Wolf

Optimizer HTLBOGWO [67]

- - - - 533 (18) 1000 (61) 773 (62) 68.12

GAPSO [52] - - - - 910.5 (21) 1192.6 (61)

884.9 (63)

62.40

HSAPABC [55] - - - - 530 (18) 1000 (61) 7730

(62)

68.12

GA-IWD [54] - - - - 911.5 (20) 1392.6 (61)

805.9 (64)

64.04

AOA 1795.1 (61) 62.92 562.18 (17) 1775.6

(61)

68.13 358.84 (18) 1703.8 (61)

679.49 (51)

68.63

SSA 1734.9 (61) 62.72 546.1(17) 1676.4

(61)

67.98 349.02 (67) 1691.3 (61)

416.37 (27)

68.15

PSO 1.8592 (62) 62.34 1723.1(61) 842.08

(66)

66.89 1313.5 (62) 518.79 (17)

510.67 (60)

67.86

SSAPSO 1872.7 (61) 63.01 571.58(17) 1768.2

(61)

68.14 399.78 (12) 1748.8 (61)

327.23 (22)

69.02

AOAPSO 1872.7 (61) 63.01 531.48(17) 1781.4

(61)

68.14 1718.9 (61) 526.84 (11)

380.35 (18)

69.14

AOASSA (Proposed) 1872.7 (61) 63.01 531.48(17) 1781.4

(61)

68.14 526.84 (11) 1718.9 (61)

3803.5 (18)

69.14

https://doi.org/10.1371/journal.pone.0264958.t012

Fig 15. Comparative analysis of the AOASSA against the competitive optimization algorithms for the optimal allocation of (a) Single DG unit, (b) Two DG units, (c)

Three DG units in the 69-bus RDN.

https://doi.org/10.1371/journal.pone.0264958.g015

PLOS ONE Hybrid AOASSA technique of optimal DG allocation in distribution networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0264958 April 13, 2022 32 / 38

https://doi.org/10.1371/journal.pone.0264958.t012
https://doi.org/10.1371/journal.pone.0264958.g015
https://doi.org/10.1371/journal.pone.0264958


of hybrid algorithms in terms of power loss reduction is same when dimensions of the problem

are low (with one and two DG unit(s) allocation). However, with increasing dimensions (allo-

cation of 3 DG units), the SSAPSO has comparatively higher power losses due to the absence

of mathematical operators (division, multiplication, subtraction, and addition) which provides

significantly higher divergence at the start of search mechanism and lower divergence at the

end of search mechanism. AOASSA and AOAPSO have equal performance due to the pres-

ence of mathematical operators and supporting iterative parameters at different stages of the

search process.

Interpretations on solution quality. The solution quality has been observed in terms of

exploration and exploitation capabilities amid the algorithms used. The SSA has the greatest

exploration capabilities due to its iterative parameter c1 but lacks the exploitation capabilities

(which can be observed prominently with the allocation of 3-DG units). On the contrary, the

AOA has great exploitation capabilities but lacks in the exploration phase. At the same time,

PSO has the least diversity of particles in the exploration phase and comparatively higher

divergence in the exploitation phase (due to fast converging inertia weight) that led to higher

power losses (most prominent while dealing with 3 DG allocation). However, among hybrid

algorithms, the performance of AOASSA is found to be superior amid the contending tech-

niques due to the iterative parameters MOP and c1. On the contrary, SSAPSO lacks the mathe-

matical operators, resulting in weak exploration and exploitation search.

Interpretations on convergence speed. The convergence speed among the standard ver-

sions of AOA, SSA, PSO and their possible combinations have been observed. The algorithm

that reaches the global best with the least number of iterations is considered the fastest algo-

rithm. However, it must be noted that the global best values (power loss value) obtained are

not the same (especially when dimensions of the problem are high). AOA is comparatively

slower as compared to other standard versions of SSA and PSO since PSO has linearly decreas-

ing inertia weight, which has a faster decline than contending iterative parameters (c1 and

MOP). However, among the hybrid algorithms, AOASSA converges fast (especially with

higher dimension problems) due to the diversity of the particles provided by the iterative

changing parameters c1 and MOP.

Interpretations on statistical analysis. The considered algorithms are stochastic which

produce randomly generated set of DG size and locations. The statistical analysis is carried out to

test the robustness of standard versions of AOA,SSA,PSO and their possible hybrid combinations.

The algorithms having dependencies on initial solutions are usually less robust and have higher

variations in individual executions. The AOA algorithm has an excellent search mechanism that

produces quality solutions due to the presence of mathematical operators but lacks better explora-

tion. The mentioned weakness is mitigated with the iterative parameter of SSA. PSO has linearly

decreasing inertia weight providing fast convergence but does not guarantee a quality solution.

The parallel operated AOASSA tends to provide higher diversion of particles in exploration and

lesser divergence of particles in exploitation phase, which provides a greater chance to converge to

optimal solution for individual execution and converge to minimal power losses.

Interpretations on Annual Financial losses (AFL). The appropriate placement and size

of these DGs can help to cut down on energy losses and the annual monetary losses. The pro-

posed study considers AOA, SSA, PSO and the possible combinations for analyzing the AFL.

The AFL are purely dependent on system power losses which in turn depends on the sizes and

locations of DG units in the distribution network. Among the set of algorithms, the least

power losses are produced by AOASSA and AOAPSO, and hence least financial losses are

achieved with these hybrid combinations.

Interpretations on benchmarking. Although a variety of analytical, metaheuristic and

hybrid algorithms are presented in the literature but have some methodological limitations.
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The solutions obtained from various algorithms and the associated control variables (sizes and

locations) are presented in Tables 8 and 12 (for 33 and 69 bus networks) respectively. It is evi-

dent that the proposed parallel hybrid combination of AOASSA has the highest power loss

reduction compared to the presented and contending algorithms available in the literature.

Conclusion and future roadmaps

From the brief review of literature, it can be concluded that the hybrid techniques are more

capable for optimal allocation of DG units. However, the existing hybrid techniques have

some taxonomical limitations. The inherent limitations in the hybrid techniques lead to non-

optimal solutions of DG sizes and locations, leading to increased power losses in RDNs. To

address such taxonomical limitations, the article proposes parallel operated hybrid AOASSA

for minimizing active power losses with optimal allocation of DG units in AC distribution net-

works. The proposed hybrid mechanism initiates by running AOA and SSA independently,

compares the power loss reduction and replace the control variables with the dominant solu-

tion in each run. The numerical results confirms that the proposed parallel operated AOASSA

shows superior results. Among the parallel operated hybrid optimizers, the PLR and associated

AFL obtained with AOASSA, and AOAPSO is highest (i.e., 65.51% and 69.14% for 33-bus and

69-bus systems, respectively). Furthermore, the proposed AOASSA is more robust and con-

verge faster towards best solution compared to contending algorithms as the final solutions do

not depend on the initial solution in each run. The proposed parallel operated AOASSA opti-

mizer is an efficient optimization technique to determine the optimal sizes and location of DG

units and is benchmarked against recent optimization algorithms with the help of 3 cases. In

future, the parallel hybrid AOASSA can be applied to control problems. The upcoming

researchers can vary the default parameters of algorithms in order to observe the improve-

ments in PLR. In addition, the study is focused on minimizing the power losses, while the

study may be extended to a multi-objective function.
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