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Abstract

Moore’s Law is approaching its end as transistors are scaled down to tens or few atoms per

device, researchers are actively seeking for alternative approaches to leverage more-than-

Moore nanoelectronics. Substituting the channel material of a field-effect transistors (FET)

with silicene is foreseen as a viable approach for future transistor applications. In this study,

we proposed a SPICE-compatible model for p-type (Aluminium) uniformly doped silicene

FET for digital switching applications. The performance of the proposed device is bench-

marked with various low-dimensional FETs in terms of their on-to-off current ratio, sub-

threshold swing and drain-induced barrier lowering. The results show that the proposed p-

type silicene FET is comparable to most of the selected low-dimensional FET models. With

its decent performance, the proposed SPICE-compatible model should be extended to the

circuit-level simulation and beyond in future work.

1. Introduction

In the modern lives, the computing power of digital devices has been improved by the technol-

ogy innovations in the miniaturisation of semiconductor transistors [1]. The famous Moore’s

Law will soon experience its fundamental limit because of various constraints in bulk silicon

(Si) technology, especially in the sub-10-nm atomic scales [2–4]. Therefore, the more-than-

Moore development of the alternative field-effect transistors (FETs) has attracted much atten-

tion in the nanoelectronic research communities. Numerous industrial and public funds and

programmes were initiated globally to overcome these “roadblocks” for long-terms advances

in computing technology beyond Moore’s Law [5].

Among the options in the more-than-Moore race, two-dimensional (2D) materials have

emerged as the prospective contenders owing to their atomically thin structure. Following the

success of graphene since 2004 [6], research activities regarding 2D materials are intensely

stimulated. Until now, more than 1800 exfoliable 2D candidates are theoretically predicted

based on density-functional theory (DFT) [7], among which silicene could play a major role in

future transistors owing to its outstanding carrier mobility [8] and compatibility with the
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cutting-edge Si wafer technology [9]. Silicene was also shortlisted as a potential material for

transistor miniaturisation in the International Roadmap for Devices and Systems (IRDS) [10].

In 2015, Tao et al. [9] fabricated the first silicene-based transistor operating at room tem-

perature. Moreover, silicene nanosheets have successfully been fabricated on various substrates

in their buckled [11–13] and planar [14] forms. However, the deposition of silicene monolay-

ers on metals substrates is less practical viable for transistor applications, as compared to the

direct growth on insulating layers, such as dielectrics or oxides [15]. This shortcoming can be

addressed by using computational modelling and simulation while waiting for the break-

through in silicene-based fabrication techniques.

Concerning the computational models of silicene-based transistors [16, 17], rigorous efforts

were invested by many groups of researchers. The absence of bandgap in pristine silicene did

not halt its exploration for nanotransistor applications. In spite of the challenges, various band-

gap engineering techniques have been explored, and such examples include confinement

through silicene nanoribbons (SiNRs) [18–20], co-decoration [21], and doping [22–24].

Among the aforementioned techniques, doping is the most commonly employed technique in

the semiconductor industry to alter the electronic properties [25]. Furthermore, the perfor-

mance of SiNR FETs are sensitive to their device dimensions [20, 26]; and it is still a major

challenge to precisely control the widths of nanoribbons even for the established graphene

monolayers [27]. Therefore, a uniformly aluminium (Al) doped silicene monolayer was pro-

posed to engineer the bandgap of silicene, producing the AlSi3 monolayer. In addition, a

SPICE-compatible model was created to facilitate studies beyond the device-level simulation

[28], such as the gate and logic levels.

Fig 1 shows the schematic diagrams of the proposed AlSi3 FET and the simplified top-

of-the-barrier (ToB) nanotransistor circuit model. In this study, we developed of a SPICE-

compatible model for the proposed AlSi3 FET from the ToB nanotransistor model and

benchmarked its device performance metrics with other published low-dimensional tran-

sistor models. Section 2 describes the modelling procedures to obtain the current-voltage

(I-V) characteristics and the respective model evaluation methodology. Section 3 dis-

cusses the device performance of AlSi3 FET with respect to its close low-dimensional con-

tenders. Finally, Section 4 includes the conclusion of this work and future work

recommendation.

2. Methodology

This section describes the overall modelling procedures employed in this study, where the

overall flowchart is shown in Fig 2.

2.1. ToB nanotransistor and SPICE models

The atomic structure of the AlSi3 monolayer (as shown in Fig 1) was adapted from published

DFT study [29]. By using the derivation from time-independent Schrödinger equation [30],

the electronic transport effective mass was then obtained by using nearest neighbour tight-

binding (NNTB) model and parabolic band assumptions as m�e ¼ 0:235m0 and m�h ¼ 0:255m0

for electrons and holes, respectively. The material-level modelling was shown in details in our

previous work [22].

Table 1 summarises the device parameters of the AlSi3 FETs. In the ToB nanotransistor

model [31], net induced mobile charge can be obtained by ΔP = (PS+PD)−P0 where PS and PD

are the non-equilibrium charge densities at the source and drain terminals, respectively, and

P0 is the equilibrium charge density. The self-consistent potential USCF at the ToB is obtained

PLOS ONE Device performances analysis of p-doped silicene-based field effect transistor using SPICE-compatible model

PLOS ONE | https://doi.org/10.1371/journal.pone.0264483 March 3, 2022 2 / 11

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0264483


by using

USCF ¼ � q aGjVGSj þ aDjVDSj þ aSVS � q
DP
CS

� �

; ð1Þ

where q is the constant for electric charge and the total terminal capacitances is expressed as

CS = CG+CD+CS. Because the source terminal is always set to be zero, αS can be ignored. In an

ideal FET, the perfect gate and drain control parameters αG = 1 and αD = 0 [18] are used to

mimic the ideal I-V characteristics. However, the default gate and drain control parameters αG

= 0.880 and αD = 0.035 [31] were used in this work.

Subsequently, the current-voltage (I-V) characteristics of p-type AlSi3 FET can be obtained

in terms of VDS and VGS, by employing Landauer-Büttiker ballistic transport equation [31]

along with Fermi-Dirac integral solutions [32], given as

jIDSðjVGSj; jVDSjÞj ¼
gW
ℏ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�hq2ðkBTÞ3

2p3

s

log½1þ eZSðjVGSj;jVDSjÞ� � log½1þ eZDðjVGSj;jVDSjÞ�
� �

; ð2Þ

Fig 1. Schematic diagrams of AlSi3 FET: (a) the structure and (b) the ToB nanotransistor circuit model. The gate,

drain and source terminal capacitances are denoted as CG, CD, and CS, respectively.

https://doi.org/10.1371/journal.pone.0264483.g001
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with the normalised energies of

ZS jVGSj; jVDSjð Þ ¼
EF � USCFðjVGSj; jVDSjÞ

kBT
; ð3Þ

ZD jVGSj; jVDSjð Þ ¼
EF � USCFðjVGSj; jVDSjÞ � qjVDSj

kBT
; ð4Þ

for source and drain, respectively. In the equations, g is the degeneracy factor (set as 2 to

include up and down spins); ℏ is the Planck’s constant; and kB is the Boltzmann constant. Fig

3(A) shows the I-V characteristics for AlSi3 FET produced by the ToB nanotransistor model.

Following that, the results from ToB nanotransistor were further used to create the SPICE

model to allow cross-platform and non-iterative simulation. Moreover, SPICE models are one

of the essential tools in the IC design industry for simulation [28]. Before creating the SPICE

model, a non-linear regression model [33] was employed to fit the self-consistent potential

Fig 2. Overall flowchart of this study.

https://doi.org/10.1371/journal.pone.0264483.g002

Table 1. The device parameters of AlSi3 FETs.

Parameters Values

Band structures NNTB

Hole effective mass, m�h 0.255m0

Bandgap, Eg 0.78 eV
Oxide material SiO2

Oxide thickness, tOX 1.5 nm
Temperature, T 300 K

https://doi.org/10.1371/journal.pone.0264483.t001
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USCF, given as

USCFðjVGSj; jVDSjÞ ¼
Xj¼0 to k

k¼0 to 5

Pfjgfk� jgðjVGSj
j
þ jVDSj

k� j
Þ; ð5Þ

where the coefficients P{j}{k−j} for each respective |VGS|j|VDS|k−j term were computed and opti-

mised using MATLAB curve fitting tool. By using the MATLAB Curve Fitting tool, it was

found that the lower orders of polynomial equations fail to fit the USCF well and, as a result,

are unable to reproduce accurate I-V characteristics. Therefore, the fifth-order polynomial

equation (highest number of order available in the MATLAB Curve Fitting tool) is chosen

Fig 3. I-V characteristics of AlSi3 FET simulated using (a) ToB nanotransistor model and (b) SPICE model.

https://doi.org/10.1371/journal.pone.0264483.g003
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although the resulting equation is slightly long. The expansion of Eq (5) and the respective

coefficients P{j}{k−j} are attached along with the SPICE model library files in the S1 File. Fig 3

(B) shows the I-V characteristics for AlSi3 FET produced by the SPICE model.

2.2. Model evaluation

In this subsection, a statistical method is employed to evaluate the accuracy of the SPICE

model with respect to the ToB nanotransistor model for the proposed AlSi3 FET. The models

were evaluated by using the normalised root-mean-square-deviations (RMSD) [29], given as

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðpi � qiÞ

2
=N

q

maxðpi; qiÞ � minðpi; qiÞ
� 100%; ð6Þ

where N denotes the total number of data, pi and qi are the values of ith data for the ToB nano-

transistor model and the SPICE model, respectively. Fig 4(A) shows the I-V characteristics

Fig 4. Comparison between the ToB nanotransistor model and SPICE model of the AlSi3 FET. The empty dots in

(a) represent the results of the ToB nanotransistor model while the solid lines in (a) represent the results of the SPICE

model.

https://doi.org/10.1371/journal.pone.0264483.g004
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combining the results of the ToB nanotransistor model and the SPICE model. The point-by-

point differences to compute RMSD are plotted in Fig 4(B). Overall, 0.91% of RMSD is pro-

duced by the SPICE model when it is benchmarked with the results from the ToB nanotransis-

tor model, indicating that the model has produced a decent fit.

3. Performances analysis and discussion

We can analyse the device performances by extracting the device metrics from the proposed p-

type AlSi3 FET model. Fig 5 shows the graphical extraction approach to obtain on-to-off cur-

rent (Ion/Ioff) ratio, subthreshold swing (SS), and drain-induced barrier lowering (DIBL). The

proposed AlSi3 FET produces an Ion/Ioff ratio of 2.6×105, a SS of 67.8 mV/dec, and a DIBL of

48.2 mV/V.

In this work, we compared our proposed p-type AlSi3 FET with respect to other low-dimen-

sional FETs. We have selected other published works on low-dimensional FETs to fairly assess

the device performance of the proposed AlSi3 FET. The selected published models include co-

decorated SiNR FET [21], 27-ASiNR FET [20], Si nanowire (SiNW) FET [34], Si thin sheet

FET [35], carbon nanotube (CNT) FET [36], graphene nanoribbon (GNR) FET [37], black

phosphorene (BP) FET [38], and monolayer molybdenum disulfide (MoS2) FET [39]. To con-

cisely compare the device performance metrics, the comparisons are presented as bar graphs

as shown in Fig 6. Regarding the Ion/Ioff ratio, the performance of AlSi3 FET model is slightly

inferior to 27-ASiNR FET [20] and MoS2 FET [39]. Regarding the SS, AlSi3 FET model is also

Fig 5. Definitions of the device performance metrics of a FET.

https://doi.org/10.1371/journal.pone.0264483.g005
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slightly higher than the 27-ASiNR FET [20]. Concerning the DIBL, AlSi3 FET model is also

outperformed by 27-ASiNR FET [20] and CNT FET [36]. However, the challenges remain

owing to the fabrication compatibility of non-Si-based materials and the difficulty to precisely

control the widths of nanoribbons [27, 40]. Therefore, the proposed AlSi3 FET model is still a

prospective alternative for future nanotransistor applications.

4. Conclusion

In this paper, we have investigated a SPICE-compatible model for p-type uniformly Al-doped

silicene FET. Following that, the device performance of the proposed model is compared with

Fig 6. Device performances analysis between the proposed AlSi3 FET model with published transistor models

based on various low-dimensional materials. NA (not available) in the bar graphs denotes the unavailable data.

https://doi.org/10.1371/journal.pone.0264483.g006
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other published low-dimensional nanotransistors. Although the proposed silicene FET is

slightly inferior to a few competitors, silicene-based FETs are still one of the potential ways for

more-than-Moore nanoelectronic applications owing to its Si-based nature. This work can be

extended by performing further circuit-level simulation beyond the transistor device level by

using the proposed SPICE model.
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