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a b s t r a c t

In this paper, an intelligent method for fault detection and classification for a microgrid (MG) was
proposed. The idea was based on the combination of three computational tools: signal processing
using the maximal overlap discrete wavelet packet transform (MODWPT), parameter optimization
by the augmented Lagrangian particle swarm optimization (ALPSO), and machine learning using the
support vector machine (SVM). The MODWPT was applied to preprocess half cycle of the post-fault
current samples measured at both ends of feeders. The wavelet coefficients derived from the MODWPT
were statistically evaluated using the mean, standard deviation, energy, skewness, kurtosis, logarithmic
energy entropy, max, min, and Shannon entropy. These were the input feature datasets and were used
to train the SVM classifier. The ALPSO was utilized to reduce the feature subsets and select the sensitive
parameters of the SVM (i.e., penalty factor and the slack variable) to further improve the performance
of the SVM. The intelligent relaying scheme was executed on a real-time digital simulator (RTDS)
which is integrated with Matlab. The performance of SVM-based protection method is compared to
several different protection models in terms of signal processing tools, optimization techniques used
for selecting datasets and sensitive parameters, and classifiers under different operating conditions.
Numerous operating conditions, including islanded or non-islanded operation modes and radial and
or loop topologies introducing different characteristics of fault were included as the case studies for
the proposed technique. A comprehensive evaluation study of the consortium for electric reliability
technology solutions (CERTS) MG system and IEEE 34-bus confirms that the proposed protection
scheme is accurate, fast, and robust to noisy measurements. In addition, the obtained results illustrate
that the proposed method is superior to the recently published works in the literature.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Microgrids (MG) distributed generation and renewable energy
RE) will play important and distinctive roles in future energy
oncepts (Hirsch et al., 2018). These combinations are becoming
n integral part of modern electrical power distributed systems
EPDS) that were designed to reduce carbon emissions, increase
eliability, diversify the energy resources, and reduce cost (Hirsch
t al., 2018; Lopez-Garcia et al., 2020). MG are controllable and
perate in either grid connected mode or islanded mode. They
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are envisaged to offer significant benefits to customers and power
generation companies. From the customer’s point of view, MG
enhance system efficiency, improve power quality, and increase
reliability with reduced carbon emissions. From the perspectives
of utility companies, they can be deployed to decrease consump-
tion demands and to eliminate electricity consumption during
peak hours, thus resulting in increased network losses (Gabbar,
2016). Despite the rapid development of MG in recent years, there
are still technical issues pertaining to the MG design, control,
and operation. One significant operational challenge is the pro-
tection of MG, especially when considering the amalgamation of
distributed energy resources. The failure of protection systems
can result different fault current levels, particularly in non-grid
or islanded operations (Chakravorti et al., 2019; Chandra et al.,
2021). This may cause maloperation of the protection relays. The
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ey to resolve this issue is to enhance the fault classification and
etection mechanisms.
Various intelligent schemes were proposed in the literature

egarding fault classification and detection in MG (Casagrande
t al., 2013a,b; Hooshyar et al., 2015; Ahmadipour et al., 2019b;
ehghani et al., 2016; Bakar et al., 2014). In Casagrande et al.
2013a), a combination of Naïve Bayes (NB) and decision tree
DT) classifiers was utilized for fault detection in an islanded
G. The detection of symmetrical and unsymmetrical faults as
ell as high impedance faults in MG using a differential energy-
ased protection scheme were represented in Casagrande et al.
2013b). In another work, the differential sequence component
rotection method to protect the microgrids was investigated
n Hooshyar et al. (2015). Ahmadipour et al. (2019b) relied on
odified Slantlet transform and Ridgelet probabilistic neural net-
ork for grid fault detection in MG regarding grid-connected
nd islanded modes. The method proposed in Ahmadipour et al.
2019b) was based on a combination of wavelet singular entropy
heory and fuzzy logic for detecting fault events. In Dehghani et al.
2016), Shannon entropy was extracted as a feature by wavelet
ransform and applied as input dataset feature vectors for fuzzy
ogic classifiers to detect and classify the fault events. In Bakar
t al. (2014), a combined directional overcurrent and an earth
ault protections were utilized to protect the MG. Nonetheless, it
id not react quickly to trip fault signals. The approach proposed
n Shafiullah and Abido (2018) relied on the extraction of the
uitable features using S-transform from the measured current
ignals and conducted them to multilayer perceptron feedforward
eural networks for grid faults detection and classification. James
t al. (2017) presented wavelet transform in combination with
eep neural networks to classify grid faults in MGs. A wavelet
n combination with data-mining based fault detection technique
as presented for MG in Mishra et al. (2015). The matching
ursuit technique was proposed to find the perfect match for the
ignal’s structure in Abdelgayed et al. (2017b) and Misiti et al.
1997-2015). The primary demerit of these works was the scala-
ility limitation, so the identified set of wavelets for each signal
rew with increased signals. To identify faults events, authors in
hmadipour et al. (2018b) combined the Slantlet transform with
ifferent machine learning tools, including Ridgelet probabilistic
eural network (RPNN), and the probabilistic neural network
PNN) was utilized by Ahmadipour and Hizam (2019). A com-
ination of wavelet multi-resolution singular spectrum entropy
nd support vector machine was applied to classify different fault
ypes (Ahmadipour et al., 2019a). In Singh et al. (2021), to classify
ifferent faults events in a 9-bus MG system, a fault detection
ethod based on wavelet transform analysis and wavelet entropy
pproaches was utilized. A combination of the maximum overlap
iscrete wavelet transform (MODWT) and boosted tree method
ave been utilized for microgrid fault detection and classification
Patnaik et al., 2021). The feature extraction process was done
y MODWT and differential energy of three-phase current and
ts zero-sequence current component at each of the decomposi-
ion levels of MODWT were calculated as input to an Extreme
radient Boost (XGBoost) based machine learning to detect and
lassify the fault events in the microgrid. In Baloch and Muham-
ad (2021), the authors employed a Hilbert Transform and data
ining approach to protecting the microgrid. Other intelligent

echniques have been presented for microgrid fault detection and
lassification such as a combination of data mining and wavelet
ultiresolution analysis (Baloch et al., 2021), a combination of the
avelet transform, and Taguchi-based artificial neural network
Hong and Cabatac, 2019), and Fourier transform with machine
earning algorithm (Ezzat et al., 2021).

Notwithstanding the numerous efforts to provide secure and

ntelligent fault detection methods, there is always room for
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improvement for more effective protection of MGs. The main
interest is to increase the classification accuracy and to decrease
the computational time that will improve the performance of
technique in solving the MG fault detection and classification. In
this paper, a novel method based on machine leaning technique
was proposed for an improved fault classification and enhanced
detection for AC microgrid protection systems. The idea was to
combine a powerful signal processing tool, known as the maximal
overlap discrete wavelet packet transform, (MODWPT) and the
support vector machine (SVM) classifier. The MODWPT is more
immune to noise and power disturbances compared to discrete
wavelet transform (DWT) and has been successfully used in other
fault detection works but not in MG, for example (Alves et al.,
2016; Bagheri et al., 2017). It provides a uniform frequency band
and processes the time-invariance properties that is ideal for
real time estimation. The wavelet coefficients of MODWPT are
analyzed using nine statistical instruments, namely the mean,
standard deviation, energy, skewness, kurtosis, logarithmic en-
ergy entropy, max, min, and Shannon entropy. These statistical
features were used as the input feature datasets for the fault
detections and classifications by the SVM. However, it is known
that the classifier efficiency is influenced by dataset size. Larger
data sizes are preferable, but at the expense of computing times
it will deprive the performance of protection method. Further-
more, the SVM is highly sensitive to control parameters’ values,
namely the penalty factor (C) and the slack variable (ξ ). The
augmented Lagrangian particle swarm optimization (ALPSO) is
also used to select the best values of C and ξ and to optimize
the sizes of the input feature datasets. An electric reliability
technology solutions (CERTS) MG system (Lasseter et al., 2010)
and a IEEE −34 bus test system is modeled in RSCAD that is

simulation software designed for interfacing with the RTDS
latform. To validate the performance of the proposed MODWPT-
LPSO-SVM classifier, its performance is compared with the four
ell-known classifiers, i.e., decision tree (DT), k-nearest neigh-
or (K-NN), probabilistic neural network (PNN), and Naïve Bayes
NB). Moreover, in order to evaluate the effectiveness of the
ODWPT and ALSPO used in the proposed algorithm, they are re-
laced with the signal processing methods (i.e.; discrete wavelet
ransform (DWT), Hilbert Huang (HH), fast discrete s-transform
FDST), and Variational Mode Decomposition (VMD)) and meta-
euristic techniques (i.e., the particle swarm optimization (PSO),
rasshopper optimization algorithm (GOA), gray wolf algorithm
GWA), cuckoo search (CS), political optimizer (PO), Aquila opti-
izer (AO), and African vultures’ optimization algorithm (AVOA))
eparately in order to obtain the results required for comparison.
dditionally, the investigation was extended using the following
riterion: (1) grid-connected mode and islanding mode, (2) radial
nd loop topology, (3) all symmetrical and asymmetrical faults
nd high impedance fault (HIF), (4) various fault resistances, (5)
ifferent inception angles, (6) different fault locations for four
ifferent power lines of the MG, (7) pre-fault loading conditions,
nd (8) measurement noise presences.
The remaining work is organized as follows: Section 2 de-

cribed a case study of MG system to analyze the proposed
echnique; Section 3 presents the theoretical background, and
ection 4 focus on the proposed ALPSO-SVM scheme. Section 5
escribes the obtained results and outlined the discussion. The
onclusion is in Section 6.

. AC microgrid under study

Fig. 1 shows the system used for the case study that is the
onsortium for electric reliability technology solutions (CERTS)
G and the details of which can be found in Lasseter et al. (2010).
he MG operated at 0.48 kV, and 60 Hz; it consisted of two



M. Ahmadipour, M.M. Othman, R. Bo et al. Energy Reports 8 (2022) 4854–4870

o
l
c
t
t
w
t
i
o
R

p
g
w
c
c
f
m
b
b
i
f

t
f
f
1
1
w
S
2
i
c
G
G
i

Fig. 1. The studied microgrid system structure.
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perating modes: the islanded and non-islanded. It supported
oads in both modes, and it was controlled through the common
oupling (PCC) state point switch. During grid-connected mode,
he system was supplied by the step-down 3-phase distribution
ransformer (rated 13.8/0.48 kV); during islanding mode, the MG
as powered by the distributed generators (DGs). Furthermore,
here was a loop switch that enabled the system to be operated
n either the loop or radial topology. To investigate the viability
f the proposed protection scheme, the system was simulated in
SCAD/RTDS.
Three types of DG sources, namely, solar photovoltaic (DG-

hotovoltaic), DG-battery storage, and the DG-diesel synchronous
enerator were considered. The DG-photovoltaic and DG-battery
ere based on voltage source converters. While in the in grid
onnected mode, the former was controlled by the modified
urrent-mode control with DC link voltage controller in the d-q
rame. When operated in the islanding mode, the frequency-
ode control in d-q frame was utilized. By contrast, the DG-
attery storage was controlled by current-mode control. It was
ased on the active/reactive power controller in the d-q frames
n both operation modes. The details about these schemes can be
ound in Yazdani and Iravani (2010) and Yazdani and Dash (2009).

In addition to these sources, the system included loads and
ransformers. The details about the components models can be
ound in James et al. (2017) and Abdelgayed et al. (2017b). Apart
rom that, at both ends of the transmission power lines (i.e., Line
2, 23, 34, and 56) digital protective relays were installed. Lines
2, 34, 56 were AWG2 type with lengths equal to 68.58 m,
hile Line 23 was AWG00 type with length equal to 22.86 m.
imilar to previous works (James et al., 2017; Abdelgayed et al.,
017b), the focus was on these four mentioned lines, as denoted
n Fig. 1. Using current transformers, these relays sampled the
urrent magnitudes at 3.84 kHz, which was in accordance with
uillén et al. (2016), Jiang et al. (2002). The configuration in
uillén et al. (2016) utilized current transformers to obtain the

ncremental differential currents. These values were normalized D

4856
nd used as input signals to signal processing tool. The MODWPT
as applied to the sampled current signals for half cycle after the

ault happened.

. Theoretical background

This section explains the overview of various tools and meth-
ds that are utilized to develop the proposed microgrid fault de-
ection and classification scheme. The first stage of the proposed
ethod involves wavelet tools that are applied to preprocess half
ycle of the post-fault current samples measured at both ends of
eeders. The wavelet coefficients derived from the wavelet tool
re statistically evaluated using the mean, standard deviation,
nergy, skewness, kurtosis, logarithmic energy entropy, max, min,
nd Shannon entropy. These are the input feature datasets and
re used to train the SVM classifier. The main concept behind the
VM is given in Section 3.2. The ALPSO is utilized to reduce the
eature subsets and select the sensitive parameters of the SVM
i.e., penalty factor and the slack variable) to further improve the
erformance of the SVM classifier for fault detection and classi-
ication. Meanwhile, the main steps of ALPSO are summarized in
ection 3.3.

.1. Wavelet transform analysis

To extract the significant features of the MGs faults (from
he obtained data), suitable signals for processing and condition-
ng were pre-requisites. The discrete wavelet packet transform
DWPT) is a digital signal processing technique that offers a wide
ange of possibilities for signal analysis. It has the capabilities to
ecompose both the scaling and wavelet coefficients at a spe-
ific decomposition level (Lasseter et al., 2010). In addition, the
onstant frequency band makes it suitable for power estimation
pplications. The DWPT is primarily used to extract the important
eatures as input data for the Support Vector Machine. However,

WPT is a time-variant transformation; this leads to problems
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n the real-time detection of non-stationary signals (Alves et al.,
016). For this reason, in this paper, the maximal overlap discrete
avelet packet transform (MODWPT) was used to overcome the
rawback of the conventional DWPT (Zhao and Ye, 2010; He,
013).

.1.1. Design of the MODWPT
In principle, the MODWPT design is similar to DWPT. The low

ass and high pass filters are applied to the input signal at each
evel, thereby presenting uniform frequency output bands. This
ransformation can exert any sample size n. However, in contrast
o the DWPT which is a time variant transformation, there is no
own-sampling by factor of two in MODWPT (i.e., time-invariant
ransform) (Alves et al., 2016; Costa, 2014). In the reconstruction,
he decomposition coefficients were convolved to the reverse
ow- and high-filters to reconstruct the original signal. Fig. 2
llustrates the MODWPT decomposition and reconstruction tree
ith three decomposition levels.
The MODWPT decomposition coefficients can be defined as

ollows (Alves et al., 2016):

2z (t) =
1
√
2

l−1∑
n=0

g[n]Sz(t + n− l+ 1) (1)

2z+1 (t) =
1
√
2

l−1∑
n=0

h[n]Sz(t + n− l+ 1) (2)

in which the length of filters is l. t is always the current sampling,
i.e., there are no samples regarding an index above t, and the
computational burden must be less than 1/fs seconds, where the
sampling rate is fs.

The reconstruction coefficient of MODWPT is denoted as:

a2z (t) =
1
√

l−1∑
g[n]S2z(t − n) (3)
2 n=0
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a2z+1 (t) =
1
√
2

l−1∑
n=0

h[n]S2z+1(t − n) (4)

econstructing the original signal x is formulated as follows:

Z (t) = a2z(t)+ a2z+1(t) (5)

n which x = S0.
A carefully choosing wavelet functions is helpful to accurately

xtract the vector of the suitable training classification tech-
iques, to precisely detect the events in the studied MG, and to
nhance the reliability of system. Various wavelet functions were
pplied in microgrid fault detection such as Daubechies (db),
ymlets (sym), coiflets (coif), biorthogonal (bior) and haar (James
t al., 2017; Mishra et al., 2015). These can affect the feature
xtraction capability of MODWPT due to having its own unique
ime–frequency domain characteristics (Alves et al., 2016). Hence,
avelet functions should be strategically selected based on the
roperties of the analyzed data (Alves et al., 2016). In this paper,
en wavelet members in the two wavelet functions Daubechies
db) and biorthogonal (bior), as the mother wavelets, were em-
loyed to transform the input signal. Moreover, considered MOD-
PT decomposition and reconstruction coefficients at level 4
ere given to get the smooth data.

.1.2. Feature extraction stage
The purpose of feature extraction is to specify the inimitable

haracteristics of the current signals that can be utilized to dis-
riminate between different fault situations. To extract these
eatures, the MODWPT was applied. The chronological order for
he extraction was described in the following steps:

tep 1. The line current signals are acquired from current trans-
ormers (CTs) to obtain the incremental differential currents
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Table 1
Statistical features.
Parameters Label Corresponding equations

Energy E E =
∑

S2

Shannon entropy SE SE = −
∑
|S|2 log |S|2

Mean µ µs =
1
N

∑
S

Standard deviation σ σs =

[
1
N

∑
(S − µS )2

]1/2
Minimum Min Mins = Min {S}

Maximum Max Maxs = Max {S}

Skewness Skew Skews =
1

N − 1

∑(
(S − µS )

σs

)3

Kurtosis Kurt Kurts =
1

N − 1

∑(
(S − µS )

σs

)4

Logarithmic energy entropy LEE LEEs =
∑

log [s]2

N is the number of sampling point and S is the MODWPT decomposed
coefficients.

(Guillén et al., 2016). Then, the incremental differential currents
were normalized and used as input signals to MODWPT.

Step 2. The obtained current signals were decomposed by MOD-
WPT into a series of coefficients using each of the mentioned
mother wavelets in all decomposition levels.

Step 3. The statistical features of the MODWPT coefficients that
included the essential data of the considered fault was calculated.
These datasets were used as the input feature vector for machine
learning algorithm. The statistical features of the decomposition
coefficients were mean, standard deviation, energy, skewness,
kurtosis, Logarithmic energy entropy, max, min, and Shannon
entropy. They were computed using the equations shown in
Table 1.

Step 4. Ten wavelet members in the two wavelet functions db
and bior, as the mother wavelets, were employed to convert the
input signal. Moreover, the considered MODWPT decomposition
and reconstruction coefficients at level 4 were given to obtain
the smooth data. Hence, MODWPT was applied to the sampled
line current signals for half cycle after the fault. Next, the equa-
tions in Table 1 are used to determine several statistical features
for wavelet coefficients derived from MODWPT coefficients. The
feature descriptions were as follows:

• F1- energy of phase A.
• F2- energy of phase B.
• F3- energy of phase C.
• F4- Shannon entropy of phase A.
• F5- Shannon entropy of phase B.
• F6- Shannon entropy of phase C.
• F7- standard deviation of phase A.
• F8- standard deviation of phase B.
• F9- standard deviation of phase C.
• F10- mean of phase A.
• F11- mean of phase B.
• F12- mean of phase C.
• F13- skewness of phase A.
• F14- skewness of phase B.
• F15- skewness of phase C.
• F16- kurtosis of phase A.
• F17- kurtosis of phase B.
• F18- kurtosis of phase C.
• F19- max of phase A.
• F20- max of phase B.
4858
• F21- max of phase C.
• F22- min of phase A.
• F23- min of phase B.
• F24- min of phase C.
• F25- Logarithmic energy entropy of phase A.
• F26- Logarithmic energy entropy of phase B.
• F27- Logarithmic energy entropy of phase C.

Step 5. The obtained feature vectors were normalized and used
as input data for the proposed classifier for fault detection and
classification. Features F1 to F18 are given as input along with the
class to build a ALPSO-SVM model for fault detection. The classes
used to build detection SVM are fault and non-fault.

Step 6. To train a ALPSO-SVM model to classify a fault, all features
F1 to F27 are given as inputs along with the class of fault.

The construction of the proposed protection scheme is shown
in Fig. 3.

3.2. Support vector machine design

The support vector machine (SVM) is a powerful tool to solve
regression, classification, and pattern recognition problems. It is
a supervised learning machine that was introduced by Vapnik in
1995 (Cortes and Vapnik, 1995). The SMV is a binary classifier.
It was developed by specifying a decision boundary to separate
the training cases into their related classes. To distinguish the
fault and non-fault cases, SVM produces a hyperplane to divide
information into their separate classes in a d-dimensional feature
space using nonlinear decision boundary.

Consider the dataset as follows:

{xi, yi|i = 1, 2, . . . ,N}, xiϵRd

yiϵ {−1, 1} (6)

in which xi denotes the independent variables, yi denotes the
dependent variables, and N is the number of sampling. A class
decision function linked with a suitable hyperplane is assumed
to be:

f (x) = wT x+ b =
N∑
i=

w.xi + b = 0 (7)

in which w and b represent the weight vector and the bias term,
respectively. These variables are utilized to determine the posi-
tion of the splitting hyperplane, that ought to fulfill the following
constrains:

yif (x) = yi
(
wT xi + b

)
≥ +1 for i = 1, 2, . . . .N (8)

Mathematically, the optimal separating hyperplane can be calcu-
lated as follows:

min
1
2
∥w∥2 + C

N∑
i=1

ξi, i = 1, 2, 3, . . . ,N (9)

which is subject to{
yi (w.xi + b) ≥ 1− ξi

ξi ≥ 0
(10)

where xi represents the input feature vector with the class label
yϵ {−1, 1}. Parameters of C and ξi are the error’s penalty factor
and the slack variable, respectively.

To solve the non-linear classification problems, kernel func-
tions are utilized. Using the non-linear vector function can map
input vector x from n-dimensional to m-dimensional:

ϕ (x) = ϕ1 (x) , ϕ2 (x) , ϕ3 (x) . . . , ϕm (x) m≫ n. (11)
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Fig. 3. The construction of the proposed protection scheme.
hus, the decision function of the SVM is obtained using the
ollowing equation:

(x) = sign

(
N∑
i=1

λiyiK (x, xi)+ b

)
(12)

where λi denotes the Lagrangian multiplier (0 ≤ λi ≤ C). K (x, xi)
= ϕT (x)ϕ(x) represents a kernel function. The linear, polynomial,
Gaussian radial basis, and sigmoid functions are the most com-
monly kernel functions that are utilized in the SVM (Motlagh
and Foroud, 2021). Each of them has inimitable characteristics.
Gaussian radial basis function (RBF) was considered the kernel
function in this paper. It has an outstanding performance in
practice in comparison with other kernels used and can calibrate
easily (Motlagh and Foroud, 2021). The RBF is defined as the
following equation:

K (x, xi) = e(−γ ∥x−xi∥2) (13)

in which γ is the kernel parameter with the following value:

γ =
1

2σ 2 (14)

here σ denotes the width parameter of the radial basis function.
The feature selection plays an essential role in pattern recog-

ition. However, the SVM classifiers were faced with restrictions
egarding feature dataset and optimizing parameter selections.
atasets include irrelevant and unnecessary components that
an affect the classifier performances and increase the response
imes. Thus, it was preferable to find the subset of features
hat were deemed to be more important than the others. Mer-
ts of feature subset selection included (1) decreased size and
torage requirements, (2) simplified data grasp and conception,
3) decreased computational cost, (4) enhanced the classification
ccuracy (due to the removal of unrelated data), and (5) improved
eneralization by decreasing over-fitting. Moreover, there were
4859
sensitive parameters in SVM that can affect performance: the
penalty factor C , slack variable ξi, the type of kernel function.
Hence, choosing a suitable combination among them was vital
to improve the SVM performance. In this study, the augmented
Lagrangian particle swarm optimization (ALPSO) was applied to
address the aforementioned problems.

3.3. Augmented Lagrangian particle swarm optimization

The particle swarm optimization (PSO) is one of the most
interesting global optimal algorithms owed to its search abili-
ties and flexibility in various solution spaces. It was first was
introduced by Eberhart in Kennedy and Eberhart (1995). The algo-
rithm was inspired by the swarm behavior, where the elements
coordinated motion throughout maneuvers for actions, such as
searching food and staging defense. The PSO procedure can be
summarized as follows:

Step 1. Initialized PSO particle position and velocity and randomly
initialized the values of particle position p.p and velocity vel for
each decision variable, as the following equations:{
p.pi,j = Xjmin + rand ϵ (0, 1)× (Xjmax − Xjmin) 0 < i < Np

veli,j = Xjmin + rand ϵ (0, 1)× (Xjmax − Xjmin) 0 < j < Nvr

(15)

in which Np and Nvr represent the number of particles and the
number of decision variables respectively. Furthermore, the max-
imum and the minimum values of each decision variable are
denoted by Xmax and Xmin, respectively. randϵ(0, 1) is a random
number that uniformly distributes in the interval [0,1].

Step 2. Determined the best position of particle p.pbest,k=0i,j and
the best global position p.pbest,k=0 that had the lowest objective
swarm
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unctions for value of each particle and in the whole swarm,
espectively.

tep 3. Checked termination criteria. If fulfilled, the algorithm
erminated with the solution p.p∗ = p.pbest,kswarm, otherwise next step
as applied.

tep 4. In each iteration, the velocity and particle position were
pdated and evaluated regarding the corresponding objective
unction in each position. At iteration k, the velocity and each new
particle position were determined as the follows:

velk+1i,j = W.velki,j + c1 × rand ϵ (0.1)×
(
p.pbest,ki,j − p.pki,j

)
+ c2 × rand ϵ (0.1)× (p.pbest,kswarm − p.pki,j) (16)

.pk+1i,j = p.pki,j + velk+1i,j (17)

here p.pbest,ki,j and p.pbest,kswarm are the best particle position and
he best global position at iteration k, respectively. The term
1 × randϵ (0.1) ×

(
p.pbest,ki,j − p.pki,j

)
is based on cognition, as it

onsiders only the best location of the particle’s own experience.
he term c2 × randϵ (0.1) × (p.pbest,kswarm − p.pki,j) denotes the social
articles interaction. Thus, c1 and c2 are referred to as cognitive
nd social knowledge values, respectively. W is the inertia factor.

tep 5. Stopped condition. If the iteration number k < kmax
maximum number of iterations), increment and go back to step
; otherwise, update the best and global best position of the
articles with the minimum value of objective function as the
inal solution.

Despite of the merits of PSO, such as efficiency, robustness,
nd simplicity, it was faced with a velocity control mechanism
ssue (Eberhard and Sedlaczek, 2009). If the values of velocity are
mall, the particles investigate only their local areas, thereby in-
reasing the possibility of being trapped in local minima. By con-
rast, the large velocity values tend to cause particles to leave the
efined boundary constraints of the issue and to the divergence
rom the swarm. Hence, to overcome the mentioned problem,
n augmented Lagrangian particle swarm optimization (ALPSO)
or constrained optimization problems was proposed (Eberhard
nd Sedlaczek, 2009). Mathematically, ALPSO was formulated as
ollows:

min
x

f (x), xϵD
⋂

F, D ⊆ R
n (18)

hich is subject to:{
g (x) = 0, g :Rn

→ R
me

h (x) ≤ 0, h :Rn
→ R

mi
(19)

n which f (x) is the nonlinear objective function, that is to min-
mize based on the design variable x. Furthermore, it is subject
o the nonlinear equality g(x) and unfairness constrains h(x). F
epresents the achievable region, and D denotes the search space
hat is also bounded by the simple bounds xlow ≤ x ≤ xupper .

To transform the mentioned constrained optimization into an
nconstrained optimization problem, the augmented Lagrange
ultiplier technique is:

(x, λ, β) = f (x)+
me+mi∑
i=1

λiθi (x)+
me+mi∑
i=1

βiθ
2
i (x) (20)

ith

i =

⎧⎨⎩
gi (x) , 1 ≤ i ≤ me

max
[
hi−me (x) ,

−λi

2βi

]
, me+ 1 ≤ i ≤ me+mi

(21)

nd

= [λ , λ , . . . , λ ]
T ϵRme+me (22)
i 1 2 me+mi
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i = [β1, β2, . . . , βme+mi]
T ϵRme+me (23)

here λi, and βi denote the Lagrange multipliers and the penalty
factors, respectively. Based on continuous and differentiable
problems, the term −λi

2βi
is selected for continuous derivatives ∂L

∂x

at x̂ in which hi−me
(
x̂
)
=
−λi
2βi

. Moreover, the term
∑me+mi

i=1 βiθ
2
i (x)

guarantees that x∗ is a stationary point of L for the correct
Lagrange multiplier λ∗. Nevertheless, x∗ in which the symbol ∗
shows the best value of variables is a minimum of L. In addition,
the correct Lagrange multipliers λ∗ and the suitable penalty fac-
ors β∗ are problem dependent, therefore unfamiliar. The solution
x∗ is not able to be directly calculated by a signal unconstrained
minimization of Eq. (20). Thus, an update scheme for Lagrange
multipliers and the penalty factors is applied as follows:

λ
j+1
i = λ

j
i + 2β j

iθi(x
j) (24)

j+1
i =

⎧⎪⎪⎨⎪⎪⎩
2β j

i if
⏐⏐gi(xj)⏐⏐ >

⏐⏐gi(xj−1)⏐⏐ ∧ ⏐⏐gi(xj)⏐⏐ > ϵg,

1
2
β

j
i if

⏐⏐gi(xj)⏐⏐ ≤ ϵg,

β
j
i else,

(25)

1 ≤ i < me

j+1
l+me =

⎧⎪⎪⎨⎪⎪⎩
2β j

l+me if
⏐⏐hl(xj)

⏐⏐ >
⏐⏐hl(xj−1)

⏐⏐ ∧ ⏐⏐hl(xj)
⏐⏐ > ϵh,

1
2
β

j
l+me if

⏐⏐hl(xj)
⏐⏐ ≤ ϵh,

β
j
l+me else,

1+me ≤ l < me+mi (26)

n which ϵg and ϵh denote the user-defined tolerance for accept-
ble constraint violations. Moreover, xj mentioned in Eqs. (24)–
26) is updated as follows:

elk+1i,j = W.velki,j + cki,j × randϵ (0.1)×
(
p.pbest,ki,j − p.pki,j

)
+ dki,j × randϵ (0.1)× (p.pbest,kswarm − p.pki,j) (27)

p.pk+1i,j = p.pki,j + velk+1i,j (28)

Hence,

p.pbest,ki,j := arg min
xpi

{L
(
xpi , λ

j, β j) , 0 ≤ p ≤ k} (29)

p.pbest,kswarm := arg min
xki

{L
(
xki , λ

j, β j) ,∀i} (30)

The p.pbest,ki,j is the best obtained position of the ith particle in
optimization process. The p.pbest,kswarm represents the best position
in the whole swarm at the current th iteration. W is the inertia
weight.

Regarding Eqs. (24), (25) and (26), xj = p.pbest,kmax
swarm , in which

kmax is a predefined iteration number. The flowchart of the ALPSO
implementation is represented in Fig. 4.

4. The proposed ALPSO-SVM scheme

To improve the fault detection and classification performance
of the SVM classifier, the ALPSO was applied. In addition, the
ALPSO can also be used to decrease the redundancy of the input
feature dataset. The detailed procedure of the proposed scheme
was as follows.

Step 1. The feature data set matrix was obtained, and the kernel
function of SVM classifier was decided. In this paper, RBF kernel
function was used. It examined higher dimensional data and
needed only two parameters, C and ξ that are the penalty factor
and the slack variable, respectively. Then, the features used as
input attributed and the parameters (C and ξ ) were optimized
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Fig. 4. The flowchart of the ALPSO.
Table 2
The particle representation.

Particle type

Input feature mask C ξ

Representation xi,1 xi,2 . . . xi,d . . . xi,nf xi,nf +1 xi,nf +2
nf denotes the number features that changes from different datasets.
by the ALPSO-SVM system. Therefore, particles consisted of three
parts, including input features mask, C and ξ , as shown in Table 2.

tep 2. Particle initialization and ALPSO parameters setting:
Initial particles composed of the feature mask, C, and ξ were

generated. Furthermore, ALPSO parameters including the swarm
size, the number of iterations, the number of particles, particle
dimension, the velocity limitation, and inertia weight were set.
Set j = 0, iteration (k = 0), Lagrange multipliers λ0

= 0, penalty
factor β0

= [1, 1, . . . , 1], vel0i = 0, c0i = 2, and d0i = 2.

Step 3. Evaluated the initiate particles’ corresponding function
values using Eq. (20).

Step 4. Checked the satisfying stopping criterion in which the
number of fitness assessments. If the criterion were met, set x∗ =
4861
xj = p.pbest,k
swarm and β = β∗; and do the training procedure from

Steps 5–10.

Step 5. Set iteration k← k+ 1

Step 6. The training of SVM classifier

• The input features, according to feature mask, were selected
to train and validate data sets.
• The calculation of the SVM classifier accuracy: for the train-

ing data set, a 10-fold cross validation was considered on
the training data set, and the average of cross validation
accuracy based on the (C, ξ ) was calculated.
• The classification accuracy on the validation data-set was

assessed based on trained SVM that was dependent on the
(C, ξ ) and the entire training data set.
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Table 3
Dataset generation parameters for simulating the fault cases.
Parameter Possible condition Number of conditions

Grid fault type abc, abc-g, ab, bc, ac, a-g, b-g, c-g, ab-g, bc-g, ac-g, HIF 12
Fault location 10%, 20%, 30%, . . . , 90% on fault line 9
Fault resistance 0.01, 2, 10, and 100 ohm 4
Operational mode Islanded and non-islanded 2
Topology Radial and loop 2
Fault line Line 12, 23, 34, and 56 4
Fault inception angles 00 , 450 , 900 , and 1800 4
L3 and L4 load (90 kW, 45 kVAr) or (45 kW, 25 kVAr) 2
L5 load (90 kW, −40 kVAr) or (45 kW, −20 kVAr) 2
L6 load (90 kW, −20 kVAr) or (45 kW, −10 kVAr) 2
Total 221,184
n
u
o
u
s
a
o
t
r

p
p
f
o
s
a

5

w
o
t
o
c
l
T
s
l
s
w
a
a
c

e
s
t
b
m
h
w
e
f
f
w

(

Step 7. Fitness evaluation: the fitness function was evaluated for
each particle according to the following formula:

Fiti = Wacc × acci +Wf ×

⎡⎣1−

(∑nf
j=1 fi

)
nf

⎤⎦ (31)

s seen in Eq. (31), the fitness function had two predefined
eights, called Wacc (classification accuracy weight) and Wf
number of selected feature weights). The fi is the value of the
eature mask and nf denotes the entire number of features.
urthermore, the acci is the SVM classification accuracy which
as evaluated as follows:

cc =
cc

cc + ic
× 100% (32)

in which cc and ic are the numbers of examples that were
classified correctly and incorrectly, respectively.

Note that accuracy in Eq. (30) was set as average cross-
validation accuracy, as obtained in the previous step.

Step 8. Updated the velocities and positions according to Eqs. (27)
and (28).

Step 9. According to fitness evaluation results, the global and indi-
vidual best were updated. Moreover, their average training cross-
validation accuracies and validation accuracies were recorded.

Step 10. Updated the Lagrange multipliers and penalty factors
according to Eqs. (24), (25) and (26) used xj = p.pbest,kmax

swarm , and
et j = j+ 1, and k = 0.

tep 11. Initialized x0i = p.pkmax
i , vel0i = velkmax

i .

tep 12. Stopped condition checking: The global and individual
est based on the fitness evaluation results were discovered. A
heck was performed on the maximum iteration limit. If the limit
as reached, the best position emerged as the optimal parameter
alues. Otherwise, proceed with Step 5.
The overall procedure of the ALPSO-optimized SVM is demon-

trated by the flowchart in Fig. 5.

. Results and discussion

To assess the performance of the proposed ALPSO-SVM
ethod for fault detection and classification of the MG, a series
f simulations were performed. The efficiency of the ALPSO-SVM
as compared to four well-known classifiers, i.e., decision tree
DT), k-nearest neighbor (K-NN), probabilistic neural network
PNN), and Naïve Bayes (NB). For a fair comparison, all the
foresaid classifiers were subjected to equal conditions, such as
he input data set and the feature selection methods. In addition,
he same training, validation, and testing samples were used
or all classifiers. The impacts of noise on the fault classifi-
ation performance were investigated. The measured metrics,
4862
amely, precision, recall, and F-measure were calculated to eval-
ate the effectiveness of the proposed method. Moreover, in
rder to evaluate the effectiveness of the MODWPT and ALSPO
sed in the proposed algorithm, they are replaced with famous
ignal processing methods and meta-heuristic techniques sep-
rately and their obtained results are compared. Finally, the
btained results from the proposed scheme were compared with
he advanced fault detection and classification techniques in the
ecently published works.

All time-series simulations and numerical calculations were
erformed on a computer with an 8-core Intel Zeon E5-2630V3
rocessor with an Intel C612 chipset that can process data with a
requency of 2.4 to 3.2 GHz with 256 GB RAM. It had a maximum
f 256 GB of supported RAM. Furthermore, this model computer
upported an internal HDD hard drive with a SATA interface and
maximum capacity of 1TB.

.1. Dataset generation

After simulating the CERTS MG system, a RSCAD script is
ritten for generating fault and non-fault scenarios under various
perating conditions including: changing the fault resistances,
ypes of symmetrical and asymmetrical faults and HIF, different
perating modes, different network topologies, changing fault
urrent inception angles, fault lines, locations on the lines, and
oads The operation of simulator is controlled by the script file.
he script file analyzes the data without user interaction. As
hown in Fig. 1, the faults were simulated at the designated
ocation between the two bus. Moreover, the three phase current
ignals were measured at the relying point. The current signals
ere sampled at 64 samples/cycle of the grid frequency 60 Hz,
nd the sampling frequency was 3.84 kHz. Fault condition details
re outlined in Table 3. A summary of conditions for no-fault
ases is outlined in Table 4.
In total, 221,184 fault cases and 1088 no-fault cases were gen-

rated. The simulated current signals were used as measurement
amples in each case through the protective relays at arbitrary
imes. The sampled signals were processed by ten wavelet mem-
ers in the two wavelet functions, namely db and bior, as the
other wavelets of the MODWPT. The analyzed window was
alf cycle after the fault occurred. The sampled current signals
ere decomposed with 4 levels to ensure total features were
xtracted in different frequency bands. Table 5 summarizes the
requency bands of each level (Alves et al., 2016). The sampling
requency was 3.84 kHz, while the sampling number per cycle
as 64 samples (considering f = 60 Hz).
In total, 16 MODWPT coefficient nodes, i.e., s04, s

1
4, s

2
4, . . . , s

15
4

were obtained for each current signal. The MODWPT coefficient
of statistical features, i.e., the MODWPT coefficient for energies
(i.e. ES04 , ES14 , ES24 , . . . , ES154 ), Shannon entropies (SES04 , SES14 , SES24 ,
. . . , SES154 ), means (µS04

, µS14
, µS24

, . . . , µS154
), standard deviations

σ 0 , σ 1 , σ 2 , . . . , σ 15 ), minimums (Min 0 ,Min 1 ,Min 2 ,
S4 S4 S4 S4 S4 S4 S4
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Fig. 5. Flowchart of the ALPSO-SVM method.
Table 4
Dataset generation parameters for simulating the no-fault cases.
Parameter Possible condition Number of conditions

Operational modes Islanded and non-islanded 2
Topology Radial and loop 2
L3 and L4 load (90 kW, 45 kVAr) or (45 kW, 25 kVAr) 2
L5 load (90 kW, −40 kVAr) or (45 kW, −20 kVAr) 2
L6 load (90 kW, −20 kVAr) or (45 kW, −10 kVAr) 2

Event Mode of operation change, topology change, L3, L4, L5, and L6 load change by ±5%,±10%,±15%, and ±20% 34
Total 1088
Table 5
Frequency bands of each level of MODWPT.
MODWPT level Frequency bands (Hz)

1 0–1920; 1920–3840
2 0–960; 960–1920; 1920–2880; 2880–3840
3 0–480; 480–960; 960–1440; 1440–1920; 1920–2400; 2400–2880; 2880–3360; 3360–3840
4 0–240; 240–480; 480–720; 720–960; 960–1200; 1200–1440; 1440–1680; 1680–1920; 1920–2160; 2160–2400, 2400–2640;

2640–2880; 2880–3120; 3120–3360; 3360–3600; 3600–3840
. . . ,MinS154
), maximums (i.e. MaxS04 ,MaxS14 ,MaxS24 , . . . ,MaxS154 ),

skewness’s (i.e. SkewS04
, SkewS14

, SkewS24
, . . . , SkewS154

), Kurtosis’s

(i.e. KurtS04 , KurtS14 , KurtS24 , . . . , KurtS154 ), and logarithmic energy

entropies (i.e. LEES04 , LEES14 , LEES24 , . . . , LEES154 ) for the 3-phase cur-
rent signals were calculated. The vector of each statistical feature
contained 48 elements (16 values for MODWPT coefficient statis-
tical features of the current signal multiplied by 3-phase signals=
48). Hence, the whole features vector contained 432 elements (48
multiplied by 9 statistical parameters). Therefore, the dimension
4863
of the feature matrix was 221,184 fault measurements multiplied
by 432 elements (input data to the classifier).

5.2. ALPSO-SVM modeling and parameter optimization for fault de-
tection and classification

To set up the ALPSO-SVM model, the radial basis function
(RBF) was applied as the kernel function. The selection of RBF
was due to its superior performance and fewer parameters to be
tuned. Only two sensitive parameters, namely the penalty factor
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Table 6
ALPSO based combination of selecting feature and optimizing parameter technique for SVM.
Iteration Fitness value (%) Fault and non-fault accuracy (%) Fault type accuracy (%) Number of selected features Optimized C Optimized ξ

1 95.5566 97.6982 96.5985 090 128.0 0.50000
2 95.9441 98.1061 97.0018 090 16.00 0.12500
3 95.1690 97.6982 96.5985 105 256.0 0.03125
4 95.9543 97.2903 96.1951 060 64.00 0.12500
5 95.7605 97.4942 96.3968 075 32.00 0.50000
6 95.3628 97.9021 96.8001 105 8.000 0.50000
7 96.1379 98.7180 97.6068 105 2.000 0.06250
8 95.7605 97.4942 96.3968 075 0.500 0.50000
9 95.9441 98.5140 97.4051 105 0.125 0.12500
10 95.3628 97.9021 96.8001 105 0.125 0.50000
11 96.1481 97.9021 96.8001 075 2.000 0.01563
12 95.9543 97.6982 96.5985 075 0.125 0.25000
13 95.7503 97.9021 96.8001 090 0.500 0.25000
14 97.3107 99.5338 98.4135 090 16.00 0.03125
15 96.3316 98.5140 97.4051 090 0.250 0.50000
16 96.1379 98.3101 97.2035 090 16.00 1.00000
17 95.7401 98.7180 97.6068 090 8.000 0.50000
18 95.9543 97.6982 96.5985 120 2.000 0.25000
19 96.1690 98.2903 97.1951 075 0.250 0.06250
20 96.1379 98.3101 97.2035 090 128.0 0.50000
(C) and the slack variable (ξ ). had to be optimized. The search
ranges for C and ξ were selected as Cϵ

{
2−24, 2−23, . . . , 224, 225

}
and ξϵ

{
24, 23, . . . , 2−9, 2−10

}
, respectively. The details on pa-

rameter setting for the ALPSO are summarized as follows. The
swarm size was equal to 27; the maximum iteration (kmax = 20);
Lagrange multipliers λ0

= 0; penalty factor β0
= [1, 1, . . . , 1];

vel0i = 0; c0i = 1.1; d0i = 1.1; and ϵg=104 in Eq. (28).
Furthermore, Wacc was adjusted to 95% and Wf was set to 5%
in Eq. (34). The SVM classifier was trained with 70% of the total
dataset and then tested with the remaining 30%. The training
data included the prerequisite to tune the parameters for the RBF
kernel and the optimization of the SVM parameters. Note that
the training and testing data were selected randomly from the
feature dataset. To generalize the performance of SVM, 10-fold
cross-validation was considered.

Table 6 denotes the iteration process of ALPSO to achieve
the best solutions. These included the optimal parameters, the
number of selected features, fitness values, fault, and non-fault
cases accuracies, fault type classification accuracies using the SVM
method. As observed, the best performance occurred at the 14th
iteration. At this condition, the proposed method exhibited the
highest fitness value (97.3107%), distinguished fault and non-fault
accuracy (99.5338%), and yielded fault type classification accuracy
(98.4135%). The recorded values of C and ξ were 16 and 0.03125,
respectively.

To assess the efficacy of the proposed technique, accuracy
and computational time evaluations were made. For the accuracy
assessment, comparisons were made between three variations
of the algorithm: (1) the baseline MODWPT-SVM algorithm (2)
the ALPSO-SVM with the reduced selected feature but without
optimized C and ξ and (3) ALPSO-SVM with the reduced selected
feature and optimized C and ξ . For the baseline MODWPT-SVM,
all generated datasets for the features were fed as inputs to the
SVM classifier. The ALPSO was not involved in the process of
reducing the features. Furthermore, the two critical parameters
of SVM were obtained based on trial and error (C = 2048 and
ξ = 2.0).

As seen in Table 7, the performance of the proposed ALPSO-
SVM method with reduced feature selection and optimized C
and ξ provided the highest fault and non-fault accuracies. In
addition, it also exhibited the highest fault type detection. Its fault
type classification accuracy was 98.4135%, and the fault cases
identification accuracies from the non-fault types were 99.5338%.
In terms of computational time, the baseline algorithm was the
slowest. This was expected because the processing involved all
4864
feature sets. In contrast, the ALPSO-SVM method with reduced
feature selection eliminated approximately 80% of the redundant
features. Thus, it increased the computational speed by almost
one order of magnitude. The significant reduction in the compu-
tation speed suggested that the method could be implemented in
real-time.

The performance of the ALPSO-SVM method in identifying
of the fault and non-fault cases and in assessing accuracy on
fault type classification for each relay in the CERTS MG is shown
Table 8. As seen, the proposed method effectively yielded the
correct information in training and testing cases. More than 99%
accuracy can be achieved to distinguish typical fault and non-fault
cases in each relay. The average accuracy for training cases and
testing cases were 99.7584% and 99.5338%, respectively. For the
fault type classification, the performance of the proposed scheme
was also acceptable. It provided considerable classification accu-
racy with an overall 98.6179% for training cases and 98.4135%
for testing cases. From the obtained results, the selection of
suitable features and sensitive parameters of SVM by ALPSO were
enhanced regarding performance of the proposed fault detection
method, and classification accuracy was rendered.

5.3. Performance of ALPSO with different classifiers

The performance of ALPSO with SVM classifier was compared
with four well-known classifiers, i.e., decision tree (DT) (Ranjbar
et al., 2020), k-nearest neighbor (K-NN) (Cepeda et al., 2020),
probabilistic neural network (PNN) (Ahmadipour et al., 2018a),
and Naïve Bayes (NB) (Mishra and Rout, 2017). For a fair compar-
ison, all of the aforementioned classifiers had equal conditions,
such as the input data set, the feature selection method, and the
same training, validation, and testing samples. These classifiers
had certain parameters that influenced the classification perfor-
mances. Hence, the ALPSO was employed to find optimal values
of classifiers’ parameters. As seen, among all models of Table 9,
ALPSO-SVM had the highest accuracy in classifying and detecting
faults. To distinguish typical fault and non-fault cases, average
accuracy in training cases and testing cases were 99.7584% and
99.5338%, respectively. The average fault type classification ac-
curacies for training cases and testing cases were 98.6179% and
98.4135%, respectively.

5.4. Performance in a noisy environment

To assess the ALPSO-SVM fault detection method in terms
of robustness, its performance was explored in a noisy environ-
ment. Based on the procedures outlined by previous researchers
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Table 7
Fault detection accuracy with and without ALPSO optimal selection.
Algorithm Number of

selected features
Fault and non-fault
accuracy (%)

Fault type
accuracy (%)

Computational
detection time (sec.)

Baseline MODWPT-SVM algorithm Whole feature set 96.2703 95.1868 0.15336
ALPSO-SVM with reduced feature selection 90 99.1258 98.0101 0.02372
ALPSO-SVM with reduced feature selection and
optimized SVM parameter

90 99.5338 98.4135 0.02372
Table 8
Fault detection accuracy on the CERTS microgrid system.
Relay Fault and non-fault accuracy (%) Fault type accuracy (%)

Training Testing Training Testing

R-12 99.7229 99.7831 99.1898 98.6970
R-21 100.000 99.5325 100.000 98.2735
R-23 99.4824 99.4623 98.7663 99.1004
R-32 99.7630 99.9234 98.7361 97.1442
R-34 99.4323 99.2819 97.2861 98.1324
R-43 99.6828 99.3320 98.0707 98.5458
R-56 100.000 99.4223 98.4135 97.9206
R-65 99.9835 99.5325 98.4135 99.4936
Average 99.7584 99.5338 98.6179 98.4135

Table 9
Comparison of overall detection accuracy for different classifiers.
Model Fault and non-fault accuracy (%) Fault type accuracy (%)

Training Testing Training Testing

ALPSO-DT 97.9039 97.1574 96.7846 96.4638
ALPSO-KNN 99.0316 98.2650 97.8994 97.1589
ALPSO-PNN 97.2093 96.4752 96.0979 95.3893
ALPSO-NB 98.9788 98.2131 97.8472 97.1076
ALPSO-SVM 99.7584 99.5338 98.6179 98.4135

Table 10
The performance of the proposed method under no-noise and noisy conditions.
Condition Number of

selected
features

Accuracy Computational
detection time (S)

Fault Type

No noise 90 99.5338 98.4135 0.02372
40 dB SNR 84 99.5137 98.4538 0.03630
30 dB SNR 84 99.4636 98.3630 0.05497
20 dB SNR 90 99.4235 98.3832 0.05816
10 dB SNR 90 99.032 97.8636 0.08058

(Casagrande et al., 2013b; James et al., 2017), the current mea-
sured data was distorted with white Gaussian noise. Hence, the
performance of the proposed method was tested by adding con-
sistently distributed Gaussian noise to the fault signals. A white
Gaussian noise ratio of different values−10 dB single-to-noise
atio (SNR), 20 dB SNR, 30 dB SNR and 40 dB SNR—was uniformly
pplied to all fault signals (Casagrande et al., 2013b). Table 10 de-
otes the obtained results of classification accuracy with different
evels of noise ratios. Despite the insignificant impact of noise
n the offered technique’s performance accuracy, this method’s
erformance was acceptable. In the worst-case scenario (10 dB),
he accuracy was decreased approximately 0.5% in comparison
ith the perfect measurements.
Moreover, the different types of colored noise were tested to

alidate the performance of the proposed method in terms of
ault detection and classification. Colored noise refers to the noise
ith non-uniform distribution of power spectral density (PSD)

n the frequency domain Xiangyu et al. (2021). Here, four kinds
f common colored noises are tested, which are pink noise, blue
oise, purple noise, and brown noise which are applied to all fault
ignals (Xiangyu et al., 2021). The setting of colored noises can be

ound in Xiangyu et al. (2021). Fig. 6 denotes the performance of
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Fig. 6. The performance of the proposed method during no-noise and colored
noise conditions. . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

the proposed method. Despite the insignificant impact of noise
on the offered technique’s performance accuracy, this method’s
performance was acceptable.

5.5. The performance of the proposed method under high impedance
faults (HIFs)

Detection of high impedance fault (HIF) in distributed power
systems poses a serious challenge owing to low fault current
amplitude. This is because the current amplitude is almost similar
to the load current magnitude. Thus, detection using conventional
overcurrent protection is very difficult. To evaluate the perfor-
mance of the proposed MODWPT ALPSO-SVM method under
this condition, the arc-associated HIF model is considered. The
suggested model is shown in Fig. 7 which is based on the work by
Michalik et al. (2006). Fig. 8 shows the measured voltage during a
high impedance fault. The model includes a non-linear resistance
that is connected to the feeder at the fault location. To test the
effectiveness of the proposed scheme, 160 high-impedance fault
cases are imposed. These comprise 85 and 75 scenarios in the
grid-connected and islanded modes, respectively. Furthermore,
the system is operated under different operating conditions as
mentioned in Table 3. The performance of the proposed method
for HIF detection during no-noise and noisy conditions is shown
in Fig. 9. It is clear that the proposed method can detect the
HIFs effectively under the grid-connected and islanded modes.
Furthermore, it is found that the noisy conditions have little
impact on the accuracy of the detection.

5.6. The performance of the proposed method with considering of
several measures test

The classification efficiency may not denote the statistical sig-
nificance of accurate classification of the SVM over the aforesaid
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Fig. 7. The model of high impedance fault (HIF).

Fig. 8. Measured voltage during a HIF.

Fig. 9. The performance of the proposed method for HIF detection during
no-noise and noisy conditions.

classifiers. Hence, measurements, such as precision, recall, and F-
measure were calculated from the confusion matrix between the
proposed method and other mentioned models in Table 9. The
equations for these measured metrics are as follows:

precision =
TP

TP + FP
× 100% (33)

recal =
TP

× 100% (34)

TP + TN
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Fig. 10. Comparison of different classifiers combined with ALPSO in terms of
precision, recall, and F-measure.

F −measure = 2×
precision× recall
precision+ recall

× 100% (35)

in which TP denotes the whole number of fault cases correctly
detected by the models, and TN is the whole number of other
non-fault cases that are correctly predicted. FP and FN are the
total numbers of fault cases incorrectly detected, as other non-
fault cases and the total number of other non-fault cases wrongly
predicted the fault events.

Fig. 10 shows the performance of the proposed method in
comparison with other mentioned models in Table 9. As observed,
the F-measure and precision of the proposed method were high-
est, and the recall measure was lowest in comparison with other
models. It proved that the number of the fault and non-fault
cases, that were predicted by the proposed algorithm, were more
than other methods. Meaning, the performance of the proposed
method is better than other models.

5.7. Validation through IEEE 34-bus microgrid system

To show that the proposed MODWPT-ALPSO-SVM is capable
of real-time implementation, the modified IEEE-34 bus system
(Faqhruldin et al., 2014) is utilized for the analysis fault detection
and classification. The protective relays are installed on trans-
mission lines 808–812, 816–824, 834–842, and 846–848. Using
a similar technique as we conducted on our case study system,
we develop 150,292 cases for training and testing the proposed
scheme. The results corresponding to this additional system val-
idation are shown in Table 11. It can be clearly analyzed from
Table 11 that the proposed method performs well with precision
98.1124%, recall 99.3641%, and F-measure 98.7343% for fault de-
tection in IEEE-34 bus test system. The computational time that
has been recorded by the proposed scheme is 0.01123 s. Hence,
it can be concluded that the proposed method can be generalized
and applied to microgrid systems with large sizes in real-time.

5.8. Comparative analysis

5.8.1. Comparison of the performance of the MODWPT
To evaluate the effectiveness of the proposed feature selec-

tion, the MODWPT it is replaced by discrete wavelet transform
(DWT) (Abdullah, 2017), Hilbert Huang (HH) (Azizi and Seker,
2021), fast discrete s-transform (FDST) (Mondal et al., 2020), and
Variational Mode Decomposition (VMD) (Wang et al., 2019). For
a fair comparison, all aforesaid methods are subjected to the
same classifier (i.e., SVM), and the measurements are made for
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Table 11
Performance of fault detection in IEEE-34 bus test system.
Models Precision (%) Recall (%) F-measure (%) Computational time (S)

The proposed method 98.1124 99.3641 98.7343 0.01123
Table 12
Overall fault detection accuracy for different signal processing techniques.
Model Fault and non-fault accuracy (%) Fault type accuracy (%)

Training Testing Training Testing

DWT-ALPSO-SVM 97.5710 96.8270 96.4555 96.1358
FDST-ALPSO-SVM 98.6948 97.9309 97.5665 96.8285
HH-ALPSO-SVM 98.8229 98.0766 97.6931 96.9727
VMD-ALPSO-SVM 99.0678 98.3014 97.9352 97.1950
The proposed method 99.7584 99.5338 98.6179 98.4135
Fig. 11. Comparison of ALPSO and other meta-heuristic methods in terms of
recision, recall and F-measure.

he three-phase current. As can be observed from the simulation
esults in Table 12, the proposed MODWPT exhibits the highest
etection accuracy among all competing methods. These results
roved the superiority of the MODWPT to other feature selection
ethods.

.8.2. Comparison of the performance of ALPSO
The ALPSO method is incorporated to reduce the feature sub-

ets and to select the sensitive parameters of the SVM (i.e., the
enalty factor and the slack variable). To demonstrate the effec-
iveness of these functions, the ALPSO is compared with other
eta-heuristic optimizers, namely the particle swarm optimiza-

ion (PSO) (Kennedy and Eberhart, 1995), grasshopper optimiza-
ion algorithm (GOA) (Zeng et al., 2021), gray wolf algorithm
GWA) (Chen et al., 2021), cuckoo search (CS)) (Mehedi et al.,
021), Political optimizer (Askari et al., 2020), Aquila optimizer
Abualigah et al., 2021), and African vultures’ optimization al-
orithm (Abdollahzadeh et al., 2021). For a fair comparison, all
ompeting optimizers have the same set of candidate input, pre-
rocessing techniques, training and validation, and forecast sam-
les. Only the optimizer type is changed (i.e., instead of ALPSO-
VM, the GA-SVM is used, etc.). The results are shown in Fig. 11.
ased on the tests, the ALPSO exhibits the highest precision
99.6350%) and F-measure (99.6011%). Thus, it can be concluded
hat the ALPSO has superior fault detection capability compared

o other methods’’.
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5.8.3. Comparison of performance of the performance method with
related fault detection techniques

The performance of the proposed ALPSO-SVM fault detection
method was compared to existing state-of-the-art schemes. The
evaluations were based on the overall accuracy for microgrid fault
detections and classifications. As seen in Table 13, except for work
in Mishra et al. (2015), most techniques exhibited satisfactory
accuracies for classification and detection of faults. The overall
accuracy of the ALPSO-SVM exceeded 99% for fault detection and
classification. Furthermore, the proposed method can outperform
advanced fault detection methods for MGs. However, results in
Table 13 were not essentially assessed using a similar microgrid
system; thus, the numbers were not absolute. The purpose of the
exercise was only to provide an overview regarding the accuracy
of various protection methods for MG.

6. Conclusion

In this paper, a large fault dataset was produced using the
simulated CERT MG system in RSCAD/RTDS under several scenar-
ios, such as different operating modes (i.e., grid-connected mode,
and islanding mode), radial and loop topology, different fault
types (i.e., symmetrical and asymmetrical faults), High impedance
fault, different fault resistances, varied inception angles, different
fault locations in four different power lines of the MG, pre-fault
loading conditions, and measured noises (10, 20, 30, and 40 dB
SNR). The three-phase current signals measurements sampled
by the relaying points were input into the method. A MODWPT
was applied to decompose the measurement data and the most
effective statistical features that contained mean, standard de-
viation, energy, skewness, kurtosis, logarithmic energy entropy,
max, min, and Shannon entropy were extracted from the results.
Then, the mentioned facets were used as input data for the
SVM classifier to yield the final relaying decision. The primary
innovation of this work is in the proposed ALPSO-based method
that aimed at optimizing the SVM classifier performance in terms
of classification accuracies and computational times through de-
tecting the best subset of available features and optimizing the
sensitive parameters of SVM (i.e., C and ξ which are the error’s
penalty factor and the slack variable respectively). For most ac-
curate fault detection and classification, the performance of the
SVM classifier was compared with four well-known classifiers,
i.e. decision tree (DT), k-nearest neighbor (K-NN), probabilistic
neural network (PNN), and Naïve Bayes (NB). Furthermore, the
impacts of noise measurements on fault detection and classifi-
cation performance were assessed. Moreover, the performance
of the proposed method is tested on a modified IEEE 34-bus
system and their obtained results remain satisfactory. Finally, in
order to evaluate the effectiveness of the MODWPT and ALSPO
used in the proposed algorithm, they are replaced with famous
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Table 13
Comparison with other state-of-the-art fault detection techniques.
Ref Name of the technique Overall accuracy (%)

Fault Type

James et al. (2017) Wavelet based deep neural networks 99.31 97.60
Mishra et al. (2015) DWT+DT 97 85
Mishra et al. (2015) DWT+RF 99.00 94.00
Mishra et al. (2015) Overcurrent relay 56 –
Mishra et al. (2015) Current differential relay 96 –
Abdelgayed et al. (2017b) OWFMP+DT More than 90.40 90.40
Abdelgayed et al. (2017b) OWFMP+KNN More than 95.63 95.63
Abdelgayed et al. (2017b) OWFMP+SVM More than 93.30 93.30
Abdelgayed et al. (2017b) OWFMP+NB More than 94.24 94.24
Mishra and Rout (2017) HHT+NB Less than 96.75 Less than 91.41
Mishra and Rout (2017) HHT+SVM Less than 96.15 Less than 91.91
Mishra and Rout (2017) HHT+ELM Less than 96.99 Less than 93.93
Mishra and Rout (2017) Overcurrent relay Less than 61.25 –
Mishra and Rout (2017) Current differential relay Less than 88.53 –
Kar et al. (2015) S-transform+DT Less than 99.475 –
Kar et al. (2015) S-transform+SVM Less than 99.26 –
Gashteroodkhani et al. (2020) TT-DBN 99.80 99.32
Kar and Ranjan Samantaray (2015) A fuzzy rule base Less than 99.22 98.32
Abdelgayed et al. (2017a) SSML+DT More than 97.81 97.81
Abdelgayed et al. (2017a) SSML+KNN More than 96.70 96.70
The proposed method MODWPT+ALPSO-SVM 99.53 98.41
signal processing methods and meta-heuristic techniques sepa-
rately and their obtained results are compared. Furthermore, the
proposed scheme was compared with state-of-the-art methods in
the literature. The simulation results showed that the proposed
method is accurate, fast, robust in noisy environments and able
to detect and classify the fault events in microgrids; it superior
to existing methods regarding accuracies and computation times.

Nomenclatures

MODWPT Maximal Overlap Discrete Wavelet Packet
Transform

RBF Radial basis function
PNN Probabilistic neural network
RF Random forest
DWT Discrete wavelet transform
OWFMP Optimal wavelet functions matching pursuit
ELM Extreme learning machine
HIF High impedance fault
TT Time-time transform
DBN Deep belief network
SSML Semisupervised machine learning
SVM Support Vector Machine
MG Microgrid
PO Political optimizer
AO Aquila optimizer
AVOA African vultures’ optimization algorithm
ALPSO Augmented Lagrangian Particle Swarm

Optimization
CERTS Consortium for Electric Reliability Technology

Solutions
RTDS Real time digital simulator
EPDS Electrical power distributed system
DER Distributed energy resource
PV Photovoltaic
NB Naïve Bayes
DT Decision tree
db Daubechies
sym Symlets
PCC Point of common coupling
DWPT Discrete wavelet packet transform
g[n] Low pass filter
h[n] High pass filter
4868
S0 (t) Scaling
S1 (t) Wavelet function
d2mj [n] Wavelet coefficients
l Length of filters
fs Sampling frequency
Coif Coiflet
bior Biorthogonal
E Energy
SE Shannon entropy
µ Mean
σ Standard deviation
Min Minimum
Max Maximum
Skew Skewness
Kurt Kurtosis
LEE Logarithmic energy entropy
N Number of sampling point
S Decomposed coefficients
xi Independent variables
yi Dependent variables
w Weight vector
b Bias term
C Penalty factor
ξi Slack variable
ϕ (x) Non-linear vector function
λi Lagrangian multiplier
K (x, xi) kernel function
p.p Value of particle position
vel Velocity
Np Number of particles
Nvr Number of decision variables
Xmax Maximum value of each decision variables
Xmin Minimum value of each decision variables

p.pbest,k=0i,j Best position of particle

p.pbest,k=0swarm Best global position

p.pbest,ki,j Best position of particle at iteration k
p.pbest,kswarm Best global position at iteration k
K Number of iteration
c1 Cognitive values
c2 Social knowledge values.
W Inertia factor.
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g(x) Nonlinear equality
h(x) Inequality constrains
D Search space
L (. . .) Augmented Lagrange multiplier
λi Lagrange multipliers
βi Penalty factors
λ∗ Correct Lagrange multiplier
ϵg User-defined tolerance
ϵh User-defined tolerance
Wacc Weight for SVM classification accuracy
Wf Weight for the number of selected features
fi Value of feature mask
nf Total number of features
acci SVM classification accuracy
Fiti Fitness function
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