Dahiru, M. Z. and Hashim, M. and Hassan, N. (2021) Sharpening of thermal satellite imagery from Klang industrial area in peninsular Malaysia using the tsharp approach. In: 2021 Joint International Conference on Geospatial Asia-Europe 2021 and GeoAdvances 2021, 5 October 2021 - 6 October 2021, Casablanca, Morocco.
PDF
1MB |
Official URL: http://dx.doi.org/10.5194/isprs-archives-XLVI-4-W3...
Abstract
Measuring high spatial/temporal industrial heat emission (IHE) is an important step in industrial climate studies. The availability of MODIS data products provides up endless possibilities for both large-area and long-term study. nevertheless, inadequate for monitoring industrial areas. Thus, Thermal sharpening is a common method for obtaining thermal images with higher spatial resolution regularly. In this study, the efficiency of the TsHARP technique for improving the low resolution of the MODIS data product was investigated using Landsat-8 TIR images over the Klang Industrial area in Peninsular Malaysia (PM). When compared to UAV TIR fine thermal images, sharpening resulted in mean absolute differences of about 25 °C, with discrepancies increasing as the difference between the ambient and target resolutions increased. To estimate IHE, the related factors (normalized) industrial area index as NDBI, NDSI, and NDVI were examined. The results indicate that IHE has a substantial positive correlation with NDBI and NDSI (R2 Combining double low line 0.88 and 0.95, respectively), but IHE and NDVI have a strong negative correlation (R2 Combining double low line 0.87). The results showed that MODIS LST at 1000 m resolution can be improved to 100 m with a significant correlation R2 Combining double low line 0.84 and RMSE of 2.38 °C using Landsat 8 TIR images at 30 m, and MODIS LST at 1000 m resolution can still be improved to 100 m with significant correlation R2 Combining double low line 0.89 and RMSE of 2.06 °C using aggregated Landsat-8 TIR at 100 m resolution. Similarly, Landsat-8 TIR at 100 m resolution was still improved to 30 m and used with aggregate UAV TIR at 5 m resolution with a significant correlation R2 Combining double low line 0.92 and RMSE of 1.38 °C. Variation has been proven to have a significant impact on the accuracy of the model used. This result is consistent with earlier studies that utilized NDBI as a downscaling factor in addition to NDVI and other spectral indices and achieved lower RMSE than techniques that simply used NDVI. As a result, it is suggested that the derived IHE map is suitable for analyzing industrial thermal environments at 1:10,000 50,000 scales, and may therefore be used to assess the environmental effect.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Uncontrolled Keywords: | downscaling, heat emission, indicators |
Subjects: | G Geography. Anthropology. Recreation > G Geography (General) > G70.212-70.215 Geographic information system |
Divisions: | Built Environment |
ID Code: | 103636 |
Deposited By: | Narimah Nawil |
Deposited On: | 20 Nov 2023 03:32 |
Last Modified: | 20 Nov 2023 03:32 |
Repository Staff Only: item control page