
Citation: Hafeez, F; Sheikh, U.U.;

Iqbal, A.; Aman, M.N. Incoherent

and Online Dictionary Learning

Algorithm for Motion Prediction.

Electronics 2022, 11, 3525. https://

doi.org/10.3390/electronics11213525

Academic Editor: Hamid Reza

Karimi

Received: 27 September 2022

Accepted: 26 October 2022

Published: 29 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Incoherent and Online Dictionary Learning Algorithm for
Motion Prediction
Farrukh Hafeez 1,* , Usman Ullah Sheikh 1, Asif Iqbal 2 and Muhammad Naveed Aman 3,*

1 School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
2 Department of Electrical and Computer Engineering, National University of Singapore,

Singapore 117583, Singapore
3 School of Computing, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
* Correspondence: hafeez@graduate.utm.my (F.H.); naveed.aman@unl.edu (M.N.A.)

Abstract: Accurate model development and efficient representations of multivariate trajectories are
crucial to understanding the behavioral patterns of pedestrian motion. Most of the existing algorithms
use offline learning approaches to learn such motion behaviors. However, these approaches cannot
take advantage of the streams of data that are available after training has concluded, and typically
are not generalizable to data that they have not seen before. To solve this problem, this paper
proposes two algorithms for learning incoherent dictionaries in an offline and online manner by
extending the offline augmented semi-non-negative sparse coding (ASNSC) algorithm. We do this
by adding a penalty into the objective function to promote dictionary incoherence. A trajectory-
modeling application is studied, where we consider the learned atoms of the dictionary as local
motion primitives. We use real-world datasets to show that the dictionaries trained by the proposed
algorithms have enhanced representation ability and converge quickly as compared to ASNSC.
Moreover, the trained dictionaries are well conditioned. In terms of pedestrian trajectory prediction,
the proposed methods are shown to be on par (and often better) with the state-of-the-art algorithms
in pedestrian trajectory prediction.

Keywords: dictionary learning; human motion analysis and synthesis; incoherence; online learning

1. Introduction

With the advent of self-driving vehicles in urban environments, safe navigation via
precise motion prediction of other moving agents such as motor vehicles, cyclists, and pedes-
trians is of utmost importance. Out of the three aforementioned agents, understanding
and predicting the pedestrian mobility patterns poses the biggest challenge. This can
be attributed not only to the mobility rules being less clear and their frequent violations,
but also to the complicated interaction between pedestrians and other commuters.

Recently, many machine learning methods have been proposed to model the complex
pedestrian mobility patterns by utilizing contextual features [1,2] and/or the interactions
among other commuters [3,4]. In addition to these, the classical methods for trajectory
modeling, i.e., Markovian-based [5] and clustering-based [6] methods have also been used
to solve this problem. The aim of Markovian-based methods is to learn a state-transition
model from the training trajectory samples. Once this model is trained, it can then be
used to predict the motion trajectory by utilizing the current state and the agents’ latent
intent (e.g., goal). On the other hand, clustering-based techniques group the training
trajectories into a small group of clusters, fit a predictive motion model, e.g., a Gaussian
Process [7] to each cluster, and make predictions by sampling from the model. As the
Markovian methods make predictions using the current state only, it is much more affected
by the ever present measurement noise. Although clustering-based methods have been
shown to make comparatively accurate predictions, their ability to detect agents’ behavioral
changes is rather slow [8]. Additionally, they (in accordance with [5]) also suffer from

Electronics 2022, 11, 3525. https://doi.org/10.3390/electronics11213525 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11213525
https://doi.org/10.3390/electronics11213525
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1936-7876
https://orcid.org/0000-0002-4657-4451
https://orcid.org/0000-0002-4629-7589
https://doi.org/10.3390/electronics11213525
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11213525?type=check_update&version=2


Electronics 2022, 11, 3525 2 of 21

incomplete/occluded trajectory samples, typically found in real datasets. This causes issues
with the trajectory clustering of the partial samples, frequently leading to the creation of
similar clusters, resulting in repetitive predictions. Collecting datasets with fully un-
occluded trajectories is difficult, as such collections are often made in crowded locations,
e.g., traffic intersections, shopping centers, parks, and university campus areas; where a
pedestrian trajectory can often be hidden behind other pedestrians, agents or immovable
obstacles etc.

In another work [9], which is the inspiration for this paper, the authors proposed a
pedestrian trajectory prediction model by combining the advantages of Markovian-based
and clustering-based methods. They modeled the pedestrian trajectories using a Dictionary
containing segmented trajectories (termed motion primitives), which are learned using
a sparse representation-based dictionary learning algorithm (also known as embedding
learning) [10]. Once the motion primitives have been learned, the transitions between
these motion primitives are modeled via Gaussian Processes (GP). In comparison to [5],
this method can be trained using partial trajectories and does not require estimation of
the agents’ goal. Recently, this method has been extended by a number of research works
towards solving the pedestrian trajectory estimation problem. As a dictionary learning
algorithm, the key to its success is the ability of the learned dictionary to provide the best
possible sparse representation of the training dataset. To achieve this, the motivation is to
learn a dictionary whose column vectors (atoms) are minimally correlated, called incoherent
dictionaries, which helps the sparse coding algorithms in finding sparser solutions [11].
Moreover, low coherence has been shown to result in dictionaries which are referred to as
well-conditioned [12].

In most of the techniques discussed so far (except for [5]), learning is performed in an
offline (batch) mode. However, with the popularity of big data, this offline setting becomes
impractical in the scenario where the training samples are made available incrementally or
when the autonomous agent moves to a new environment where it has not been trained
before. As batch learning cannot be performed incrementally, in such scenarios, the pre-
trained models lose their generalization ability when facing new pedestrian behaviors and
environments. Here, the incremental learning models, often called online learning models,
have the flexibility of capturing new behaviors by considering the newly available samples
instead of having to train from scratch. This online paradigm is relevant for creating a
system which is efficient and significantly better aligned towards autonomous driving
applications where real-time learning is a necessity. Additionally, storing and relearning
from old and newly available data, in the case of batch learning, could be detrimental to
pedestrian privacy as well. However, an online learning agent can continue to improve
the prediction model by training on new data examples without requiring the storage of
past data. Moreover, online learning can enable systems with resource-constrained devices
to learn using batches of big data gradually, whereas working with the entire dataset may
be infeasible.

Based on the discussion presented so far and inspired by the work presented in [9],
this paper presents two extensions of [9] aiming at improving it even further; first, we
extend its framework to learn incoherent dictionaries which are a basic requirement for
achieving efficient sparse representation. Second, we present an online learning algorithm
to learn incoherent dictionaries which can update the learned model with new information
whenever new pedestrian trajectory data are made available.

To summarize, the major contributions of this research are as follows: (i) A new inco-
herent dictionary learning algorithm for pedestrian motion prediction; (ii) a new online
incoherent dictionary learning algorithm which can perform incremental training while
maintaining knowledge from different environments; (iii) a detailed performance analysis
of data representation ability of the learned dictionaries, highlighting the advantages of
learning incoherent dictionaries; (iv) and a detailed comparison between the proposed
algorithms and its contemporary methods in pedestrian trajectory estimation on bench-
mark datasets.



Electronics 2022, 11, 3525 3 of 21

We begin by reviewing the relevant research works in Section 2, Section 3 provides
some preliminary background of dictionary learning formulation and summarizes the
augmented semi-non-negative sparse coding algorithm and the prediction model. The
proposed incoherent dictionary learning algorithms are presented in Section 4; specifically,
the batch dictionary update approach is presented in Section 4.2.1, followed by the online
dictionary update approach in Section 4.2.2. A comprehensive performance evaluation of
the proposed methods is given in Section 5. Finally, Section 6 concludes the manuscript.

2. Related Work

This section provides a summary of the related works falling under the pedestrian
motion prediction class and methods that learn the motion primitives incrementally.

A number of research works have been presented recently in the domain of pedestrian
motion prediction. In [13], authors use graph-attention networks to capture the spatio-
temporal interactions among pedestrians. Similarly to [13], the authors in [14] model the
pedestrian interactions with an attention graph and perform significantly better in terms
of fewer learned model parameters and prediction accuracy. In [3], authors propose an
LSTM-based model (conveniently called Social-LSTM) geared towards incorporating social
interactions in the pedestrian trajectories. These social interactions were modeled using
social pooling with predefined local grids. Instead, the authors in [15] use a multi-layer
perceptron network to extend the social pooling technique and use the recurrent Generative
Adversarial Networks (GAN) in place of LSTM. In [16], authors utilize a directed social
graph to model the agent location and speed direction. Furthermore, they use a temporal
stochastic method to model the uncertainty in social interactions to improve trajectory
predictions in crowded scenarios. The authors in [4] modify the Info-GAN [17] architecture
by replacing the `2 loss term with an entropy-based loss function to improve networks’
generalization performance for the trajectory-prediction horizon of over several seconds.
For a detailed review of deep learning-based techniques for pedestrian trajectory detection,
the reader is referred to Section 3 in [18].

In [9], the authors proposed a dictionary learning algorithm, termed Augmented
Semi Non-negative Sparse Coding (ASNSC), to represent the pedestrian trajectories in
terms of motion primitives (atoms of a dictionary) and their pair-wise transitions. This
work was extended in [19] called Transferable ASNSC (TASNSC) where the trajectories
were projected into a normalized alternate environment independent coordinate system
with the aim of learning a prediction model which can easily be generalized to different
environmental geometries.

TASNSC was further extended as an incremental learning framework, SILA [20],
where the model was incrementally updated when new trajectory samples/datasets were
available. SILA used the TASNSC method to separately learn dictionaries/motion prim-
itives on different datasets. These motion primitives were then combined together in a
single model by fusing similar motion primitives together. This way, the model size was
kept from growing linearly and better prediction performance was reported. Similarly
to SILA, which could merge two sets of motion primitives at a time, the authors in [21]
proposed a fusion framework which could fuse any number of models. An online learning
method for motion patterns is proposed in [8] where GPs are used to compare newly
learned behaviors with old ones and if considered novel enough, adding the new behavior
into the model. Authors in [5] proposed a Growing Hidden Markov Model (GHMM) to
perform incremental learning for pedestrian motion prediction. This method had a strict
requirement of training on complete trajectories, which as discussed earlier, is difficult in
crowded environments. An incremental learning model to predict full-body human motion
is proposed in [22], where the authors use a pre-defined set of motion primitives and the
relationship among them is incrementally extracted using HMMs.

The recently proposed incremental learning algorithms SILA [20] and SimFUSE [21]
have been shown to generate high quality predictions when compared with other state-of-
the-art algorithms. These methods learn the baseline motion primitives using the dictionary



Electronics 2022, 11, 3525 4 of 21

learning method ASNSC [9] and perform fusion of the learned motion primitives for
performance improvement. However, as will be shown in the experimental Section 5.2.2,
the dictionary extracted with the ASNSC method can contain atoms which are highly
correlated, which affects the overall performance of the downstream methods when using
such coherent dictionaries. To alleviate this issue, we extend the ASNSC method to learn
incoherent dictionaries. When leveraging the post-processing methods such as SILA, our
learned dictionaries lead to significant performance improvement as compared to ASNSC,
(see Section 5.2.3). Furthermore, we present an online dictionary learning algorithm which
has the flexibility to seamlessly update learned model when new samples are available.
Detailed preliminary information about ASNSC [9], the agent trajectory model, and the
used prediction model are provided in the next section.

3. Background

This section reviews the basics of the dictionary learning framework and sets the
baseline for methods presented in this work. We further discuss the augmented semi-non-
negative sparse coding (ASNSC) [9] method for the application of pedestrian trajectory
modeling. In the upcoming sections, matrices will be represented as bold capital letters A,
vectors as bold small letters a, scalars as small letters a, and subscripts/superscripts will be
clarified according to the context.

3.1. Dictionary Learning-Based Sparse Signal Representations

Consider a data matrix Y ∈ Rp×N consisting of N real-valued data vectors yi of size p.
In order to generate a sparse signal representation of Y, dictionary learning (DL) algorithms
aim to find an over-complete (fat) dictionary D ∈ Rp×K and a sparse representation matrix
X ∈ RK×N . In this framework, each sample yi is represented by a linear combination of a
few dictionary columns (atoms), i.e., yi = Dxi, with a sparse xi. These methods have been
shown to work well in applications such as compressed sensing [23], image restoration [24],
fMRI signal analysis [25], and face recognition [26], etc.

As natural data can take many different forms, e.g., non-negative image pixel val-
ues, further research has been conducted to find interpretable part-based representations.
Examples include non-negative sparse coding (NSC) [27] and non-negative matrix factor-
ization (NMF) [28] algorithms, where the non-negativity constraint is imposed on sparse
coefficients xi and dictionary atoms dk. Similarly, the semi-non-negative sparse coding
algorithm [29] constrains the sparse coefficients as non-negative, while allowing dictio-
nary atoms to take on any value. Keeping the sparse codes non-negative simplifies their
interpretation, i.e., the activation or absence of a basis function, however they bring other
issue along with them. For example, two atoms with the same magnitude but opposite
signs might cancel each other out [29], thus making the sparse coefficients’ interpretation
difficult.

3.2. Augmented Semi-Non-Negative Sparse Coding

Consider the following optimization problem [9],

arg min
D,X

L(D, X) =
1
2
‖Y−DX‖2

F + λ ∑
i
‖xi‖1 (1)

subject to: dk ∈ D, xki ≥ 0, ∀ k = [1, . . . , K], i = [1, . . . , N].

Here, the loss function is composed of two parts, the first is called the data fidelity term
(a Frobenius norm of the residual) and the second is the sparsity penalty (`1-norm of
the representation vector), λ ≥ 0 is the sparsity controlling parameter, and D is the
feasible set containing atoms dk. The data fidelity term forces the model to learn a good
signal approximation, while the sparsity penalty is used to promote the sparseness of the
learned coefficients.



Electronics 2022, 11, 3525 5 of 21

This optimization problem is linked with prior works in multiple important ways.
For example, constraining D = Rp

+ in (1) results in the non-negative sparse coding (NSC)
problem of [27]; furthermore, λ = 0 leads to the non-negative matrix factorization (NMF)
problem [30]. Finally, with dk being unconstrained, a semi-non-negative matrix factoriza-
tion (Semi-NMF) formulation is produced [29]. The main difference between the problem
formulation in (1) and prior works is its flexibility to impose different constraints on differ-
ent parts of the dictionary atom. This feature is the main use case of this formulation for
trajectory prediction problem [9]. Suppose our signal vector y is created by concatenating
two different signals coming from some sensors measuring an event in different modalities,
i.e., y> = [yu, yv]

>, where yu and yv are from different modalities and could have different
lengths. As a result of such a formulation, the dictionary atoms can be similarly partitioned
into d>k = [duk, dvk]

>, and can be constrained differently as well. Consequently, D in (1)
can be defined as [9]

duk ∈ Du, dvk ∈ Dv, f (duk, dvk) ≤ 0, ∀k, (2)

here, Du and Dv are the feasible sets and f (·, ·) is a joint constraint. We can choose Du and
Dv to reflect the properties of the data under consideration, e.g., dynamic range, sampling
rate, and discretization levels of the respective sensor measurements.

3.3. Agent Trajectory Model

Consider a two dimensional ith mobile agent trajectory, denoted as ti as a sequence of
2D positional measurements taken at a frequency of ∆ f . At each location, we can approximate
the agents’ velocity using the finite positional differences, i.e., (vxi, vyi) ≈ (∆xi ∆ f , ∆yi ∆ f ).
Here, we assume the mobile agents’ movement to be unconstrained, i.e., their velocities
(speed and direction) can vary depending upon different environmental conditions, in-
cluding traffic, signals, obstacles, and proximity to other agents. So, instead of speed, we
are interested in the agents’ heading direction which can then be used to approximate the
shape of a set of probable future paths. As a result of this formulation, our focus is on
modeling the trajectory shape which will help us in predicting the agents’ future trajectory
by using its current speed and the possible heading directions. To this end, we normalize
the input velocities at each point to be of unit magnitude; v2

x + x2
y = 1.

In order to work with the motion trajectories tis, we represent them as a column vectors
yi and combine them in a matrix Y. This is achieved by dividing the entire environment
where trajectories exist into a grid of size R× C (number of rows and columns) blocks
with width w. For each trajectory ti passing through a specific block rc, we compute their
normalized x-y velocities (vrc

xi, vrc
yi). Similarly, if the trajectory does not pass through a

block, its velocity is defaulted to zero. We keep track of an additional binary variable called
activeness arc

i , which stores whether the trajectory passed through a specific grid block or
not. Finally, following the formulation given in (2), the data vectors are established as

yui = [v11
xi , . . . , vRC

xi , v11
yi , . . . , vRC

yi ]> ∈ R2RC

yvi = [a11
i , . . . , aRC

i ]> ∈ {0, 1}RC. (3)

An example of a simple trajectory and its discrete representation is shown in Figure 1.



Electronics 2022, 11, 3525 6 of 21

Figure 1. Vectorized trajectory representation of a mobile agent [9]. ti is a sample trajectory which is
represented in a discretized world with an R× C grid size, and width w. The trajectory is represented
as a vector yi = [v>xi, v>yi , a>i ]>, where normalized velocities are represented by vxi, vyi, with ai being
the binary activeness variable.

The advantage of working with velocities instead of absolute positional values stems
from enforcing the non-negativity constraint on the sparse coefficients xki, as a result of
which, we are able to distinguish trajectories travelling in opposite directions, which is
useful in the prediction stage. The issue of two identical but opposite moving trajectories
is solved by incorporating the binary activeness variable, i.e., if the two atoms lower the
sample error in the optimization problem, the addition of their binary activeness variables
will increase it. This is further enforced by bounding the magnitude of velocity components
by their respective activeness variable, i.e., |vrc

xi| ≤ arc
i , |vrc

yi| ≤ arc
i . Additionally, if we relax

the binary assumption on the activeness variable and allow it to be a non-negative real
variable, they can be interpreted as the degree of confidence that a learned motion primitive
(atom) passes through some grid location [9].

Formalizing the above conditions in terms of the ASNSC formulation of (2), we obtain

duk ∈ R2RC, dvk ∈ RRC
+ , |dj

uk| ≤ dj
vk , |d2j

uk| ≤ dj
vk , (4)

here, bj refers to the jth entry of a vector b and (4) provides the constraints on velocity
variables of the motion primitives and their respective activeness variables.

3.4. Prediction Model

Once the ASNSC [9] learning process concludes, we receive a set of motion primitives
(atoms) D = [d1, d2, . . . , dK] and their respective sparse code matrix X. An example of
three learnt motion primitives is given in Figure 2a where each motion primitive has a
designated color. These learnt motion primitives are then used to segment the training
sample trajectories into clusters based on their similarity [9]. Figure 2b shows these clusters,
color coded according to the motion primitive that best describes them. In order to perform
motion predictions, a transition matrix T ∈ ZK×K is constructed from these clusters such
that each entry T(m, n) denotes the number of training sample trajectories transitioning
from the dm atom to dn atom.

Each sample trajectory is thus modeled as a concatenation of a set of dictionary atoms.
Starting with a given path, we first locate the atom m which most likely generated this
path; then, based on the transition matrix, we find the set of all possible subsequent
atoms {dn|T(m, n) > 0} to make a prediction. Here each transition is modeled as a two-
dimensional Gaussian Process flow field [6], leading to a set of transitions R such that
R = {rmn|T(m, n) > 0}. The final prediction is performed by sampling from this set.



Electronics 2022, 11, 3525 7 of 21

(a) (b)

Figure 2. An example of motion primitives learnt using ASNSC [9,20]. (a) Three sample motion
primitives from the learned dictionary presented in discretized grid, each motion primitive dk is
shown in different color. (b) Shows a number of training sample trajectories which have been
segmented into three clusters using their similarity with the motion primitives given in (a). The black
arrows signify the transition from cluster i to cluster j based on the Transition matrix T when their
respective entry in non-zero, i.e., T(m, n) > 0. The x and y axis are in meters.

4. Proposed Methods

One key requirement for the success of any dictionary learning algorithm is its ability to
learn a dictionary which can provide the best possible sparse representation for the training
dataset. In order to perform efficient sparse coding, the sparse coding algorithms require
coherence between the given dictionary atoms to be as low as possible [31]. The coherence
µ(D), called mutual coherence, is a property that characterizes the correlation (similarity)
among dictionary atoms. For a dictionary of size K, it can be defined as [11]

µ(D) = max
1≤m,n≤K, m 6=n

d>mdn

‖dm‖2‖dn‖2
. (5)

Consider the following constrained optimization problem (Basis Pursuit) [31]

min
x
‖x‖1, subject to ‖y−Dx‖2 < ε, (6)

then, Theorem 3.1 in [31] provides a relationship between the sparsity of the representation
vector x and the mutual coherence µ(D). It states that if ‖x‖0 < 0.25(1 + 1/µ) (x is sparse
enough), then the solution stability of (6) is bounded by

‖x− x̂‖2
2 ≤

4ε2

1− µ(4‖x‖0 − 1)
. (7)

Here, x̂ is the approximated solution, ‖ · ‖0 is the `0-pseudo-norm which counts the number
of non-zero entries of its argument, and ε is the representation error (signal noise) given
in (6). (7) shows that for ε = 0, the exact solution of (6) is guaranteed. Furthermore, authors
in [11] have shown that a dictionary with low coherence requires less atoms to better
represent the data, i.e., they improve signal sparsity [11], as their atoms are forced to be as
discriminative as possible.

In this section, we present our proposed extensions to the ASNSC model [9] given
in (1) by introducing an incoherence penalty into the optimization problem

arg min
D,X

L(D, X) =
1
2
‖Y−DX‖2

F +
µ

2
‖G− IG‖2

F + λ ∑
i
‖xi‖1 (8)

subject to: dk ∈ D, xki ≥ 0, ∀ k, i,



Electronics 2022, 11, 3525 8 of 21

here, D is the set of all possible vectors adhering to the constraints given in (4). Similar
to (1), the first term in the right side of our objective function is the data fidelity term,
the second term is introduced to promote learning mutually incoherent dictionary atoms
(incoherence penalty) [32], the third term is the sparsity penalty, and µ ≥ 0 and λ ≥ 0
are the incoherence and sparsity controlling parameters. In the incoherence penalty term,
G = D>D is the Gram matrix and IG contains the main diagonal of G. The off diagonal
entries of the gram matrix G are the inner products seen in (5) (ignoring denominator
terms), with the highest off diagonal entry being the mutual coherence µ(D). The proposed
penalty measures the Frobenius distance between the matrix G and IG, where IG can be
considered as a Gram matrix of an orthogonal dictionary with zero µ(D). This method
of enforcing incoherence between dictionary atoms has been shown to be effective as it is
directly linked with the approximation accuracy of the objective function [32].

Although the objective in (8) is non-convex, it does admit a multi-convex structure in
D and X, separately [33], and can be solved via an alternating optimization strategy that
guarantees its convergence to a local minima. This approach is used in most dictionary
learning algorithms to approximately solve (8) which consists of two alternating steps,
a sparse coding step and a dictionary update step. These steps are alternated until some
convergence criteria are satisfied. These steps are discussed next.

4.1. Sparse Coding Step

Keeping the dictionary D fixed, solving for X reduces (8) to

min
X

1
2
‖Y−DX‖2

F + λ ∑
i
‖xi‖1 s.t.: xki ≥ 0, ∀ k, i. (9)

Since each sparse code vector xi corresponding to the signal vector yi is modeled inde-
pendently from the others, the above problem can be solved for each xi individually.
Furthermore, (9) can be written as a constrained quadratic program (QP) by considering
the `1 norm penalty as ∑ki xki due to the non-negativity constraint on it. Thus, there are
several off-the-shelf optimization algorithms available to solve (9). We chose to work with
qpsolvers (https://pypi.org/project/qpsolvers/ accessed on 15 August 2022), a quadratic
programming solvers library for the Python programming language, which contains a
number of individual solvers optimized for different structured problems. From available
solvers, we chose quadprog which uses a dual algorithm [34] to solve the sparse coding
problem. This solver was found to be faster than the rest and provided fairly accurate
results for our problem.

4.2. Dictionary Update Step

In this step, the sparse code matrix X is kept fixed, and the solution for D is found by
solving the following reduced problem

min
D

1
2
‖Y−DX‖2

F +
µ

2
‖G− IG‖2

F s.t.: dk ∈ D, ∀ k. (10)

Solutions to (10) generally follow two different avenues to solve the above dictionary
update step, i.e., sequentially updating dictionary atoms [24,35], by breaking the global
minimization problem of (10) into K sequential minimization problems or by solving for
the entire dictionary at once [9].

We propose two different solutions to solve the problem given in (10);

A1 A batch learning approach, where the entire dictionary is updated at once, using the
entire dataset.

A2 An online learning approach, where we train the dictionary atoms, one at a time,
using a small batch from the entire dataset.

https://pypi.org/project/qpsolvers/


Electronics 2022, 11, 3525 9 of 21

The batch learning approach is called A1, and the online learning approach is called A2 in
the rest of the manuscript. The dictionary update rules under both approaches are given
next.

4.2.1. A1: Batch Learning Approach

For the batch learning approach, taking the gradient of (10) with respect to dictionary
D, we obtain

∇D = (DXX> − YX>) + 2µ D(G− IG). (11)

Let Dold be the dictionary at the previous iteration; the updated dictionary is approximated
by taking a step in the opposite direction of ∇D to perform the steepest gradient descent,
i.e.,

D̃ = Dold − α∇D, (12)

where α > 0 is the step size which should satisfy 0 < α < 2/‖XX>‖2 to guarantee
convergence. So, we choose to set α = min(0.01, 1/‖XX>‖2) which has been found to
achieve stable results. The reason for upper bounding α = 0.01 stems from our dictionary
initialization, which is initialized with random entries taken from a Normal distribution,
followed by constraining its column entries according to (4). As a result of this, the initial
sparse code matrix X contains very few small entries, as the initial dictionary used to
compute it is not representative of the data. This leads to a small ‖XX>‖2 (low largest
singular value) with a high inverse. Thus, upper bounding it with α = 0.01 has been found
to bring stability in the first few iterations.

In this dictionary update step, we did not consider the constraints given in (8). For the
trajectory modeling application considered here, these constraints are given in (4), where
each entry of the atom is constrained separately, so, following the dictionary update, we
project all dictionary atoms into the feasible set according to (4). The stopping criteria
for the overall process are set using the dictionary convergence rate (The dictionary con-
vergence is computed as dconv = ‖Dold −D‖F/K ≤ 0.001) and a maximum number of
iterations, whichever comes first. The pseudo-code of the proposed A1 algorithm is shown
in Algorithm 1.

Algorithm 1: A1: Incoherent dictionary learning algorithm

Input: Data matrix Y ∈ Rp×N , D ∈ Rp×K, λ, µ, max iterations (noIt)
1 Initialization:
2 Set X = 0, α̂ = 0.01, Initialize D with a random matrix and project its columns to
D using (4),

3 while not converged do
4 X← qpsolver(Y, D, λ)
5 Compute ∇D using (11)
6 Update α = min(α̂, 1/‖XX>‖2)
7 D̃ = Dold − α∇D
8 D← project(D̃) using (4)

Output: D, X

4.2.2. A2: Online Learning Approach

In this section, we present our online dictionary update strategy to solve (10). This
strategy can be seen as an extension to the algorithm proposed in [35] to learn an incoherent
dictionary in an online manner, called A2. The pseudo-code for this algorithm is outlined
in Algorithm 2.



Electronics 2022, 11, 3525 10 of 21

Algorithm 2: A2: Online incoherent dictionary learning algorithm

Input: Data matrix Y ∈ Rp×N , λ, µ, and BatchSize (nB)
1 Initialization:
2 Set X = 0, α̂ = 0.01, t = 1, Initialize D ∈ Rp×K with a random matrix and project its

columns to D using (4)
3 A0 ← 0, B0 ← 0 (No past info)
4 while not converged do
5 Draw an nB sampled mini-batch Yb randomly from Y,
6 Xb ← qpsolver(Yb, D, λ)

7 Update leverage parameter β = t
t+(N/nB) , t = t + 1

8 Accumulation step:
9 At ← βAt−1 + 0.5 XbX>b

10 Bt ← βBt−1 + 0.5 YX>b
11 Dictionary update step:
12 for k = 1 : K do
13 Let e ∈ RK be a zero vector with ek = d>k dk,
14 Update α = min(α̂, 1/akk)

15 h = dk − α
[
Dak − bk + 2µD(D>dk − e)

]
16 dk ← project(h) using (4)

Output: D, X

Assuming the training data samples yi to be i.i.d. samples from some probability
distribution p(y), instead of using the entire dataset Y, we will work with a mini-batch
taken from Y, denoted by Yb at each iteration of the learning process (sparse coding and
dictionary update). As the samples of mini-batch Yb are i.i.d., the sparse coding step can be
kept same as that used for algorithm A1 (Section 4.1), but instead of finding codes for the
entire dataset, at each iteration, we only find codes for the mini-batch samples.

Similar to [35], our dictionary update step utilizes the block coordinate descent with
warm restarts to update the dictionary for each new data batch. Starting from zero, the ma-
trices A and B are used to carry all the information from past sparse coefficients (see lines 9–
10 in Algorithm 2). Their updates are tempered by using a leverage parameter β = t

t+c ,
which starts out with a small value, and slowly increases towards unity, i.e., 0 < β < 1.
This slope is controlled by parameter c, which is set as c = N/nB, where N is the size of
the dataset (or a large number) and nB is the mini-batch size. This selection is observed to
work well in our experiments. Moreover, this parameter can be reinitialized on the go if the
new batch is considered slightly out of distribution or deemed more important during the
online updates.

For the dictionary update step, we update each dictionary atom sequentially, using
the atomic gradient of (10) as given below:

∇dk = Dak − bk + 2µD(D>dk − e), (13)

where dk is the kth atom, ak is the kth column of A, bk is the kth column of b, µ is the
incoherence controlling parameter, and e ∈ RK is vector of all zeros except its kth entry
which is ek = d>k dk. The learning step α is updated automatically using a similar strategy
as for the A1 algorithm, i.e., α = min(α̂, 1/akk), where akk is the kth diagonal entry of matrix
A. Since the coefficients Xb are sparse, and the learned dictionary is incoherent, most of the
coefficients of A are concentrated along its main diagonal, making the block-coordinate
descent even more efficient. This update step ensures that the learned atom is forced to
have low coherence with all other dictionary atoms. Finally, the updated atom is projected
back to the feasible set using (4). The entire procedure is repeated until convergence.



Electronics 2022, 11, 3525 11 of 21

4.3. Convergence Analysis

Although the objective in (8) is non-convex, it admits a multi-convex structure in
D and X separately [33], and can be solved via an alternating optimization strategy that
guarantees its convergence to a local minima. We have used this approach in both of our
methods to approximately solve (8), which consists of two alternating steps, a sparse coding
stage and a dictionary update stage. The same sparse coding step is used in both A1 and
A2 algorithms which we solve using a constrained quadratic problem which guarantees
convergence to a local minima [34]. Similarly, the objective function for the dictionary
update (10) is convex and is updated using gradient descent in the A1 algorithm and block-
coordinate descent in the A2 algorithm, which guarantee the reduction in the objective
towards a local minimum [35]. Additionally, the feasible setD in (10) is shown to be convex
as well [9].

5. Performance Evaluation

In this section, we perform two sets of experiments to evaluate our proposed algo-
rithms. First, we compare the proposed methods in terms of the learned dictionary quality
in the context of signal reconstruction, dictionary coherence, and average signal sparsity.
Second, we present a performance comparison of the pedestrian trajectory prediction
problem using real world pedestrian trajectory datasets in two additional settings, to be
explained later in Sections 5.2.2 and 5.2.3.

The datasets used in these sections are as follows: ETH [36] and UCY [37]. The ETH
dataset contains two scenes, ETH-University (called ETH for short) and Hotel. The UCY
dataset contains three scenes Zara01, Zara02, and Univ. The majority of trajectories in these
datasets are in the horizontal direction except the Hotel scene, where the majority of the
trajectories are vertical. The sampling rate for all measurements is 2.5 Hz. For illustration
purposes, 25 randomly chosen trajectories from each dataset are shown concurrently in
Figure 3. For additional details, readers are referred to [36] for ETH, and [37] for UCY
datasets.

All experiments were carried out on a Windows 10 laptop, equipped with 11th Gen
Intel(R) Core(TM) i7 and 16 GB 4267 MHz RAM. The programming language used was
Python v3.8.

Figure 3. 25 randomly sampled trajectories from each dataset. ? represents the trajectory start-
ing point.



Electronics 2022, 11, 3525 12 of 21

5.1. Experiment 1: Dictionary Quality Assessment

In order to compare the quality of dictionaries learned by different algorithms, we
consider the following three general metrics:

1. Signal Representation Power: How well the dictionary can represent the given signals,

Reconstruction Error =
‖Y−DX‖F
‖Y‖F

. (14)

2. Dictionary Condition: This relates to the dictionary atom coherence; a smaller value
is better,

Dictionary Coherence =
K

∑
i=1

K

∑
j=i+1

d>i dj

‖di‖2 ‖dj‖2
, (15)

which can be easily computed by summing the upper triangular part of the Gram
matrix G = D>D.

3. Average Signal Sparsity: The number of atoms used to represent a given signal on
average, a smaller number is better.

Average Signal Sparsity =
‖X‖0

N
. (16)

Here, ‖ · ‖F is the Frobenius norm of a matrix, ‖ · ‖2 is the `2 norm of a vector, ‖ · ‖0 is the `0
pseudo-norm which counts the number of non-zero entries of the argument, and N is the
dataset size. These metrics are not independent, i.e., increasing the number of dictionary
atoms leads to a reduction in the reconstruction error at the expense of dictionary coherence.
On the other hand, reducing the number of atoms, typically leads to an increase in the
reconstruction error and average signal sparsity. In order to perform a fair comparison,
in this experiment, we fix the size of the dictionaries to K = 50 atoms.

The tests on all five datasets were performed separately. For each dataset, the data
matrix Y ∈ Rp×N is created as discussed in Section 3.3 with w = 50 cm, containing all
trajectories with length ≥ 20. In order to reduce the size of each vector y, we omit those
grid positions where no trajectory passes. This simple pre-processing step leads to p� RC.
The spatial resolution (w) of the grid should be selected carefully as a small value will not
only lead to a significantly large data vector, but will also result in empty grid slots between
two trajectory sampled points for a relatively fast moving agent. On the other hand, setting
a larger value could cause multiple sample points to end up in the same grid location.
As the datasets under consideration contain pedestrian trajectories, a spatial resolution of
50–100 cm is considered sufficient.

Starting with a randomly initialized dictionary D, we use ASNSC [9], A1 and A2
algorithms to train the dictionaries. For each algorithm, the gradient descent step size is set
to α̂ = 0.01 and maximum training iterations are upper bounded by 150. For ASNSC, A1
and A2, the incoherence controlling parameter µ and sparsity controlling parameter λ are
chosen by performing a grid search, as discussed in Section 5.1.2. For A2, the batch size is
set to 32. All experiments were repeated 10 times and the average scores for each algorithm
and each dataset are reported in Table 1.

Looking at the reconstruction error scores in Table 1 for all algorithms, we find that
their final scores are very similar, with A1 being slightly better on average, and that
all algorithms were able to converge within 150 iterations. This is the consequence of
keeping the dictionary size the same. This highlights the fact that all three algorithms
are stable, as with everything else remaining the same, their performance (on average)
is within a small margin of error. Moving on to dictionary coherence scores in Table 1,
we see that on average, A1’s coherence score is 20% and A2’s coherence score is 23%
lower than ASNSC. Furthermore, the average signal sparsity achieved by A1 and A2
is 11% and 15% lower than ASNSC’s scores, respectively. This shows that A1 and A2
algorithms were able to reach the error floor by using less atoms on average. Thus, the



Electronics 2022, 11, 3525 13 of 21

atom redundancy level in the dictionary recovered by ASNSC is much higher than that
of A1 and A2’s dictionaries. Having a low coherence dictionary does lead to atoms with
better generalization capabilities, which will be further highlighted in the next experiment
of pedestrian trajectory prediction.

Table 1. Performance comparison between dictionaries learned by ASNSC [9], and the proposed
algorithms A1 and A2. Lower is better.

Algorithm ETH Hotel Zara1 Zara2 Univ Average

Reconstruction Error

ASNSC 0.391 0.563 0.729 0.742 0.877 0.661

A1—(Batch) 0.386 0.570 0.723 0.730 0.862 0.654

A2—(Online) 0.395 0.562 0.721 0.732 0.870 0.656

Dictionary Coherence

ASNSC 9.986 18.737 19.822 18.157 19.636 17.267

A1—(Batch) 8.259 16.938 17.245 15.722 13.715 14.376

A2—(Online) 7.392 17.514 16.162 14.140 14.804 14.002

Average Signal Sparsity

ASNSC 3.198 2.972 6.528 4.764 5.336 4.560

A1—(Batch) 2.882 2.614 5.704 4.062 5.334 4.119

A2—(Online) 2.632 2.514 5.208 3.812 5.626 3.958

The run-times of a single iteration over the ETH dataset for the three algorithms is
given in Table 2. We observe that the execution times for ASNSC and A1 are almost the
same. This is expected as they both perform block dictionary updates and have similar
complexities for the dictionary update step. Here, most of the time is taken by the non-
negative sparse coding algorithm. On the other hand, A2 takes almost double the time
for a single complete iteration which is attributed to the fact that it is an online learning
algorithm and goes through the dataset one batch at a time. Thus, the sparse coding
method is implemented for each batch separately. Additionally, the dictionary is updated
sequentially, i.e., one atom at a time. These two loops contribute to the increase in execution
time of the A2 algorithm.

Table 2. Single iteration time (in seconds) for each algorithm for training a dictionary with 50 atoms
on ETH dataset.

D Update X Update Time

ASNSC 0.073 0.121 0.194

A1 0.071 0.121 0.192

A2 - - 0.375

5.1.1. Dictionary Convergence

To visualize the convergence behaviour of the three algorithms, we present their
convergence graphs for the three aforementioned metrics on all datasets in Figure 4. From
the graphs, we observe that the convergence of the reconstruction error is directly linked
with how incoherent the dictionary atoms are; the lower the coherence, the faster the
reconstruction error convergence. This is especially true for ASNSC’s convergence graphs.
Looking at the graphs for the Hotel dataset, we see that the coherence curve of ASNSC falls
within range after 120 iterations, leading to a slower convergence of the reconstruction
error as well. On the other hand, the reconstruction error and average sparsity graphs of
A1 approach their respective floors much earlier than others. Furthermore, from the graphs
of the University dataset, we see that A2’s reconstruction error graph converges last; this



Electronics 2022, 11, 3525 14 of 21

could be attributed to the fact that the University dataset has the highest number of sample
trajectories, and during the accumulation phase of the A2 (see line 9 and 10) Algorithm 2,
the growth rate of β is low. This can be avoided by changing the scaling constant in line 7
of the Algorithm 2. Finally, for the Zara02 and Univ datasets, the oscillation frequency of
the ASNSCs’ coherence curve is much higher than A1 or A2. This oscillation also manifests
in its reconstruction error and signal sparsity graphs as well.

Figure 4. Cont.



Electronics 2022, 11, 3525 15 of 21

Figure 4. Convergence graphs for the three metrics, for all algorithms and datasets. The reconstruction
error, dictionary similarity (coherence), and signal sparsity metrics are computed using (14), (15) and (16),
respectively. (For interpretation of the line colors, the reader is referred to the web version of this article).

5.1.2. Parameter Selection

In addition to the sparsity-controlling parameter λ, the proposed algorithms also
require selection of the incoherence controlling parameter µ. For the results reported in the
previous section, for each dataset, we performed a grid search with λ = [0.0005, 0.0008, 0.0015,
0.0025, 0.005] and µ = [0.005, 0.01, 0.025, 0.05, 0.06] and selected the ones which gave us the
lowest scores in terms of the reconstruction error. An example of such a search on the ETH
dataset is shown in Figure 5, where we can see that a higher µ generally leads to a lower
dictionary coherence and reconstruction error. Moreover, for A1, it is observed that for a
low µ < 5× 10−2, increasing λ up to 2.5× 10−3 leads to an increase in the reconstruction
error and dictionary coherence; however, for λ = 5× 10−3, the scores see a small dip. This
effect, however, is not so visible in A2’s results, where increasing λ generally leads to slight
increase in both metrics. Moreover, for µ ≥ 5× 10−2, an increase in λ does not show any
specific trend. On the other hand, for a fixed λ, increasing µ, on average, leads to a lower
recon error and dictionary coherence.

Figure 5. The effects of incoherence parameter µ and sparsity controlling parameter λ on reconstruc-
tion error (14) and dictionary similarity metric (15) are shown on both algorithms performance using
ETH dataset and w = 50 cm.



Electronics 2022, 11, 3525 16 of 21

5.2. Experiment 2: Pedestrian Trajectory Prediction

For this experiment, we follow the methodology of prior works [13–15,20] and use the
following two metrics for prediction performance evaluation:

1. Average Displacement Error (ADE) [15], which is the mean Euclidean distance be-
tween the true and predicted trajectory over a given time horizon H, given by

ADE =
1
H

tobs+H

∑
i=tobs+1

‖pi
true − pi

pred‖2, (17)

here, pi
true and pi

pred are the samples at time t in the true and predicted trajectories,
respectively. The last observed time sample is tobs, after which the prediction starts.

2. The final Displacement Error (FDE) is the final prediction error at the end of the time
horizon H, given by

FDE = ‖ptobs+H
true − ptobs+H

pred ‖2 (18)

5.2.1. Prediction Method

Starting with an observed trajectory, we first find the dictionary atom (motion primi-
tive) which most likely represents the given observed trajectory, referred to as the observed
primitive. Then the transition set R is used to find all possible future directions the trajec-
tory (of set rmn) might take from the observed primitive, i.e., all possible GPs. This gives us
a set of Gaussian distributions, which are then sampled to obtain a set of predicted future
trajectories.

5.2.2. Comparison with Baseline

In this section, we compare the raw prediction performance of ASNSC with the
proposed A1 and A2 algorithms. Similar to [20], we use 4 out of 5 datasets for learning
the dictionaries and evaluation is performed on the remaining dataset in a leave-one-out
strategy. Two additional datasets (Zara03 and UCY uni examples) are also used for training,
but not for testing [13–15,20].

For evaluation, we observe each trajectory for eight sample points (3.2 s) and predict
the next twelve points (4.8 s). The methods compared are; a Linear model which assumes
constant velocity as at the last observation point, ASNSC, A1, and A2 algorithms. ASNSC
and A1 algorithms are offline, and A2 is an online learning algorithm. Apart from the
Linear model, the rest perform trajectory predictions as summarized in Section 5.2.1. Similar
to [13–15,20], we sample 20 trajectories from the predicted distributions and choose the one
closest to the true trajectory for evaluation. The dataset feeding order for the online A2
algorithm is chosen in a similar way to [20], given in Table 3, which will also be used as the
training order in Section 5.2.3. Similar to ASNSC, for A1 and A2 we set the initial dictionary
size to K = 30 and increase the dictionary size every 15 iterations, and the maximum
learning iterations limit is set to 300. The final prediction results are outlined in Table 4.

Table 3. Dataset feeding order for the online learning.

Evaluation Set Training Order

ETH uni examples, Univ, Zara03, Hotel, Zara02, Zara01

Univ Hotel, Zara03, uni examples, Zara02, Zara01, ETH

Hotel uni examples, Univ, Zara03, ETH, Zara02, Zara01

Zara01 uni examples, Univ, Zara03, ETH, Zara02, Hotel

Zara02 uni examples, Univ, Zara03, ETH, Zara01, Hotel



Electronics 2022, 11, 3525 17 of 21

Table 4. ADE/FDE scores for each evaluation dataset using the leave-one-out strategy.

ETH Hotel Univ Zara01 Zara02 Average

Linear 0.92/2.20 0.37/0.84 0.62/1.44 0.45/1.04 0.58/1.33 0.53/1.24

ASNSC 0.78/1.40 0.42/0.90 0.61/1.34 0.50/1.05 0.52/1.14 0.56/1.16

A1 0.75/1.38 0.40/0.87 0.59/1.31 0.51/1.04 0.49/1.11 0.54/1.14

A2 0.70/1.39 0.35/0.81 0.57/1.29 0.45/0.88 0.42/0.89 0.50/1.05

Looking at Table 4, we see that the prediction scores of A1 are slightly lower than
ASNSC’s scores except for Zara01 where ASNSC’s ADE score is better than A1’s. However,
the A2 algorithm is seen to perform better than its competition over all the testing datasets
consistently. Moreover, the average final dictionary size of A2 algorithms was found to
be less than A1 which was close to ASNSC, i.e., 55 < 60 < 62, respectively. This further
highlights that the dictionary learned by the proposed algorithms are better conditioned
and have fewer redundant atoms. For illustration, we show two example trajectories from
the ETH dataset concurrently in Figure 6. Here, the first eight samples are the input and
the next twelve are predictions of their respective methods. For the top example, the linear
method fails as it predicts motion in the same direction as that of the final input sample,
whereas ASNSC, A1, and A2 were able to follow the ground truth path much better. Here,
in terms of ADE, A2 < A1 < ASNSC << Linear, and for FDE, A1 < ASNSC < A2 << Linear.
A similar trend can be observed in the bottom example as well, where A2’s prediction was
able to follow the ground truth much better than the other methods.

Figure 6. Two example trajectories from the ETH dataset and their predicted trajectories. (For
interpretation of the line colors, the reader is referred to the web version of this article).

5.2.3. Comparison with Recent Works

In this section, we use the motion primitive fusion algorithm SILA [20] as a post-
processing method to obtain even better results as compared to the raw scores presented in
Section 5.2.2. SILA is an incrementally learning algorithm which uses ASNSC to learn a
dictionary from different datasets and incrementally fuses the learned dictionary atoms
together using the atom coherence metric (5). Let γ (the fusion parameter) be the coherence



Electronics 2022, 11, 3525 18 of 21

metric between two motion primitives dm and dn; if the coherence is greater than some
threshold, SILA merges both primitives together by taking their average. This way, the SILA
algorithm can update the learned dictionary when a new dataset is acquired and is shown
to perform better than the naive batch learning approach [20].

Next, we augment our learning algorithms with SILA to leverage its performance
extraction capabilities and compare them to recently presented works on interaction-aware
pedestrian motion prediction algorithms like Social-STGCNN [14], STSGN [16], STGAT [13],
GAT [38], and SGAN [15]. To this end, we use four SILA-based variants as described below:

1. SILA-ASNSC: Here ASNSC [9] algorithm is used to train a dictionary (from ran-
dom initialization) for each dataset in the training order given in Table 3, with each
dictionary fused with the previous one using SILA [20].

2. SILA-A1: Same as part 1, except the dictionaries are learned using A1 algorithm.
3. SILA-A2-Simple: Here, we train a new dictionary (from random initialization) for

each dataset using A2 algorithm. We reset accumulation variables A, B, and the
dictionary for training over the next dataset. The resulting dictionaries are fused
using SILA.

4. SILA-A2-Snap: Here, after learning the dictionary from the first dataset, we keep
the accumulation variables A and B, set the leverage parameter β = 0.5 and keep a
snapshot of the learned dictionary. Training over the next dataset leads to a warm
restart using A, B, and the previously updated dictionary. Upon training completion,
SILA is used to fuse the snapshot dictionary and updated dictionary together, resulting
in a new fused dictionary.

For the above SILA-based algorithms, (similar to [20]), we set the threshold for fusion
parameter γ = 0.6 as it was found to provide a good balance between the final dictio-
nary size and prediction accuracy. All considered models, except the Linear model, are
probabilistic, where we consider the best out of 20 sampled trajectories. The prediction
results for all aforementioned algorithms are given in Table 5. The results for SGAN,
STGAT, and Social-STGCNN were obtained using their code available in their respective
repositories from github. The rest were taken from their respective papers.

Table 5. ADE/FDE scores for each evaluation dataset under the leave-one-out strategy. Except the
Linear model, all other models are probabilistic, where we consider the best out of 20 sampled
trajectories.

Algorithm ETH Hotel Univ Zara1 Zara2 Average

Linear 0.92/2.20 0.37/0.84 0.62/1.44 0.45/1.04 0.58/1.33 0.53/1.24

GAT 0.68/1.29 0.68/1.40 0.57/1.29 0.29/0.60 0.37/0.75 0.52/1.07

SGAN-20VP 0.77/1.40 0.43/0.87 0.75/1.50 0.35/0.70 0.36/0.72 0.51/1.02

CGNS 0.62/1.40 0.70/0.93 0.48/1.22 0.32/0.59 0.35/0.71 0.49/0.97

STSGN 0.75/1.63 0.63/1.01 0.48/1.08 0.30/0.65 0.27/0.57 0.48/0.99

Social-STGCNN 0.63/1.08 0.49/0.86 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.74

STGAT 0.72/1.45 0.24/0.44 0.50/1.09 0.34/0.72 0.28/0.63 0.41/0.86

SILA-ASNSC 0.57/1.24 0.28/0.64 0.56/1.27 0.30/0.64 0.34/0.73 0.40/0.91

SILA-A1 0.55/1.21 0.27/0.62 0.53/1.25 0.28/0.61 0.33/0.74 0.39/0.88

SILA-A2-Simple 0.52/1.18 0.25/0.60 0.51/1.21 0.26/0.59 0.31/0.71 0.37/0.86

SILA-A2-Snap 0.51/1.16 0.24/0.59 0.51/1.20 0.24/0.57 0.27/0.69 0.35/0.84

The scores reported in Table 5 show that among the SILA-based algorithms, our pro-
posed variants were able to beat SILA-ASNSC in all scenarios based on both FDE and ADE
metrics. Furthermore, our A2-Snap variant ADE scores are very competitive as compared
with other algorithms, as, on average, it achieves the lowest ADE for 4/5 scenarios as well.



Electronics 2022, 11, 3525 19 of 21

Furthermore, in terms of FDE, it is the second best based on the reported average scores,
losing only to Social-STGCNN. This effect could be attributed to the pedestrian interactions,
which are incorporated by Social-STGCNN but not by us. Additionally, compared to vanilla
A2’s results, reported in Table 4, the A2-Snap variant scored 30% and 20% lower in terms
of ADE and FDE scores, respectively, owing to SILA fusion algorithm [20]. On average,
the final dictionary sizes for all SILA-based algorithms were similar.

5.2.4. Summary

In this section, we presented an in-depth performance review of the two proposed
incoherent dictionary learning algorithms. The first experiment compared the proposed A1
(batch) and A2 (online) algorithms with ASNSC [9] by comparing the quality of the learned
dictionaries in terms of their representation power. As discussed in Sections 1 and 4, for an
efficient sparse representation of some dataset, a dictionary with low coherence is desired;
thus, the metrics selected for dictionary quality comparison were data reconstruction error,
overall dictionary coherence, and the resulting average signal sparsity. The idea being that
an incoherent dictionary will require less number of atoms to well represent the dataset.
Using the 5 real-world datasets, in Table 1 we showed that the proposed algorithms not
only achieved a lower reconstruction error (owing to better representation ability), but they
achieved this by using, on average, fewer dictionary atoms (lower average signal sparsity).
This effect was expected as the overall dictionary coherence metric for the dictionaries
learned by proposed algorithms was much smaller than ASNSC.

Once the baseline assumption (incoherent > coherent dictionary) was validated, we
compared the raw trajectory prediction performance of the proposed methods with ASNSC
and presented the results in Table 4. In terms of both ADE and FDE, the proposed A2
algorithm performed better for all five datasets individually and on average as well. This
validated our belief that an incoherent dictionary should perform better for the trajectory
prediction application as well. Finally, we augmented the proposed algorithms with
an incremental learning fusion-based algorithm SILA [20] to leverage its performance
extraction capabilities and compared them with several interaction-aware and unaware
pedestrian motion prediction algorithms. The overall results presented in Table 5 show
that the proposed A2 variant SILA-A2-Snap was able to match the interaction-aware
method Social-STGCNN and clearly outperformed other SILA-based algorithms including
SILA-ASNSC.

6. Conclusions

In this paper, we presented two incoherent dictionary learning algorithms for the
pedestrian trajectory prediction problem, using offline and online learning strategies.
The offline training algorithm learns a dictionary using the entire training dataset, while
online learning uses the warm restart strategy to learn on incrementally available data. The
learned incoherent dictionaries were first compared against the dictionaries learned by the
baseline ASNSC algorithm in terms of convergence rate, and representation power. We
showed that the incoherent dictionaries were able to not only converge faster, but also led
to lower reconstruction errors while utilizing fewer atoms from their respective dictionaries.
Next, the pedestrian trajectory prediction performance analysis was presented, where we
showed that the proposed algorithms consistently scored better than their baseline method
and provided comparable performance with respect to other pedestrian interaction-aware
prediction algorithms as well.

Under the framework used in this manuscript, the input trajectories were assumed
to be independent, leading to independently learned motion primitives. This is a limiting
assumption. Our next objective is to create a prediction framework where the temporal
information of an agents’ trajectory is also taken into account during prediction. Further-
more, in real-world environments, the sampled trajectories are often correlated. Thus,
an interesting research direction would be to augment the dictionary learning algorithm to



Electronics 2022, 11, 3525 20 of 21

capture such correlations, similar to [39], to further enhance the representation power of
the learned dictionaries.

Author Contributions: Conceptualization, F.H. and A.I.; Formal analysis, F.H. and A.I.; Methodology,
F.H., U.U.S. and M.N.A.; Supervision, U.U.S. and M.N.A.; Validation, M.N.A.; Visualization, A.I.;
Writingg—original draft, F.H. and A.I.; Writing—review & editing, U.U.S. and M.N.A. All authors
have read and agreed to the published version of the manuscript.

Funding: The APC was funded by the University of Nebraska-Lincoln.

Acknowledgments: The authors would like to acknowledge the facilities provided by Universiti
Teknologi Malaysia for the accomplishment of this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schneemann, F.; Heinemann, P. Context-based detection of pedestrian crossing intention for autonomous driving in urban

environments. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon,
Korea, 9–14 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2243–2248.

2. Bartoli, F.; Lisanti, G.; Ballan, L.; Del Bimbo, A. Context-aware trajectory prediction. In Proceedings of the 2018 24th International
Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1941–1946.

3. Alahi, A.; Goel, K.; Ramanathan, V.; Robicquet, A.; Li, F.-F.; Savarese, S. Social lstm: Human trajectory prediction in crowded
spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 961–971.

4. Amirian, J.; Hayet, J.B.; Pettré, J. Social ways: Learning multi-modal distributions of pedestrian trajectories with gans. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA,
15–20 June 2019.

5. Vasquez, D.; Fraichard, T.; Laugier, C. Incremental learning of statistical motion patterns with growing hidden markov models.
IEEE Trans. Intell. Transp. Syst. 2009, 10, 403–416. [CrossRef]

6. Joseph, J.; Doshi-Velez, F.; Huang, A.S.; Roy, N. A Bayesian nonparametric approach to modeling motion patterns. Auton. Robot.
2011, 31, 383–400. [CrossRef]

7. Ellis, D.; Sommerlade, E.; Reid, I. Modelling pedestrian trajectory patterns with gaussian processes. In Proceedings of the 2009
IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 27 September–4 October
2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1229–1234.

8. Ferguson, S.; Luders, B.; Grande, R.C.; How, J.P. Real-time predictive modeling and robust avoidance of pedestrians with uncertain,
changing intentions. In Algorithmic Foundations of Robotics XI; Springer: Berlin/Heidelberg, Germany, 2015; pp. 161–177.

9. Chen, Y.F.; Liu, M.; How, J.P. Augmented dictionary learning for motion prediction. In Proceedings of the 2016 IEEE International
Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 2527–2534.

10. Hou, C.; Nie, F.; Li, X.; Yi, D.; Wu, Y. Joint embedding learning and sparse regression: A framework for unsupervised feature
selection. IEEE Trans. Cybern. 2013, 44, 793–804. [PubMed]

11. Ubaru, S.; Seghouane, A.K.; Saad, Y. Improving the incoherence of a learned dictionary via rank shrinkage. Neural Comput. 2017,
29, 263–285. [CrossRef] [PubMed]

12. Tropp, J.A. On the conditioning of random subdictionaries. Appl. Comput. Harmon. Anal. 2008, 25, 1–24. [CrossRef]
13. Huang, Y.; Bi, H.; Li, Z.; Mao, T.; Wang, Z. Stgat: Modeling spatial-temporal interactions for human trajectory prediction.

In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019;
pp. 6272–6281.

14. Mohamed, A.; Qian, K.; Elhoseiny, M.; Claudel, C. Social-stgcnn: A social spatio-temporal graph convolutional neural network
for human trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, 13–19 June 2020; pp. 14424–14432.

15. Gupta, A.; Johnson, J.; Fei-Fei, L.; Savarese, S.; Alahi, A. Social gan: Socially acceptable trajectories with generative adversarial
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–23 June 2018; pp. 2255–2264.

16. Zhang, L.; She, Q.; Guo, P. Stochastic trajectory prediction with social graph network. arXiv 2019, arXiv:1907.10233.
17. Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; Abbeel, P. Infogan: Interpretable representation learning by

information maximizing generative adversarial nets. Adv. Neural Inf. Process. Syst. 2016, arXiv:1606.03657.
18. Sighencea, B.I.; Stanciu, R.I.; Căleanu, C.D. A review of deep learning-based methods for pedestrian trajectory prediction. Sensors

2021, 21, 7543. [CrossRef]

http://doi.org/10.1109/TITS.2009.2020208
http://dx.doi.org/10.1007/s10514-011-9248-x
http://www.ncbi.nlm.nih.gov/pubmed/23893760
http://dx.doi.org/10.1162/NECO_a_00907
http://www.ncbi.nlm.nih.gov/pubmed/27764591
http://dx.doi.org/10.1016/j.acha.2007.09.001
http://dx.doi.org/10.3390/s21227543


Electronics 2022, 11, 3525 21 of 21

19. Jaipuria, N.; Habibi, G.; How, J.P. Learning in the curbside coordinate frame for a transferable pedestrian trajectory prediction
model. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA,
4–7 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 3125–3131.

20. Habibi, G.; Jaipuria, N.; How, J.P. SILA: An incremental learning approach for pedestrian trajectory prediction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020;
pp. 1024–1025.

21. Habibi, G.; How, J.P. Human trajectory prediction using similarity-based multi-model fusion. IEEE Robot. Autom. Lett. 2021,
6, 715–722. [CrossRef]

22. Kulić, D.; Takano, W.; Nakamura, Y. Incremental learning, clustering and hierarchy formation of whole body motion patterns
using adaptive hidden markov chains. Int. J. Robot. Res. 2008, 27, 761–784. [CrossRef]

23. Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [CrossRef]
24. Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation.

IEEE Trans. Signal Process. 2006, 54, 4311–4322. [CrossRef]
25. Iqbal, A.; Seghouane, A.K. A dictionary learning algorithm for multi-subject fMRI analysis based on a hybrid concatenation

scheme. Digit. Signal Process. 2018, 83, 249–260. [CrossRef]
26. Xu, Y.; Li, Z.; Yang, J.; Zhang, D. A Survey of Dictionary Learning Algorithms for Face Recognition. IEEE Access 2017, 5, 8502–8514.

[CrossRef]
27. Hoyer, P.O. Non-negative sparse coding. In Proceedings of the 12th IEEE workshop on Neural Networks for Signal Processing,

Martigny, Switzerland, 6 September 2002; IEEE: Piscataway, NJ, USA, 2002; pp. 557–565.
28. Wang, Y.X.; Zhang, Y.J. Nonnegative matrix factorization: A comprehensive review. IEEE Trans. Knowl. Data Eng. 2012,

25, 1336–1353. [CrossRef]
29. Ding, C.H.; Li, T.; Jordan, M.I. Convex and semi-nonnegative matrix factorizations. IEEE Trans. Pattern Anal. Mach. Intell. 2008,

32, 45–55. [CrossRef]
30. Seung, D.; Lee, L. Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process. Syst. 2001, 13, 556–562.
31. Donoho, D.L.; Elad, M.; Temlyakov, V.N. Stable recovery of sparse overcomplete representations in the presence of noise.

IEEE Trans. Inf. Theory 2005, 52, 6–18. [CrossRef]
32. Ramírez, I.; Lecumberry, F.; Sapiro, G. Sparse Modeling with Universal Priors and Learned Incoherent Dictionaries. 2009. Available

online: https://conservancy.umn.edu/bitstream/handle/11299/180327/2279.pdf?sequence=1 (accessed on 26 September 2022).
33. Gorski, J.; Pfeuffer, F.; Klamroth, K. Biconvex sets and optimization with biconvex functions: A survey and extensions.

Math. Methods Oper. Res. 2007, 66, 373–407. [CrossRef]
34. Goldfarb, D.; Idnani, A. A numerically stable dual method for solving strictly convex quadratic programs. Math. Program. 1983,

27, 1–33. [CrossRef]
35. Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G. Online dictionary learning for sparse coding. In Proceedings of the 26th Annual

International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; ACM: New York, NY, USA, 2009;
pp. 689–696.

36. Pellegrini, S.; Ess, A.; Schindler, K.; Van Gool, L. You’ll never walk alone: Modeling social behavior for multi-target tracking.
In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–October 2009;
pp. 261–268.

37. Lerner, A.; Chrysanthou, Y.; Lischinski, D. Crowds by example. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ,
USA, 2007; Volume 26, pp. 655–664.

38. Kosaraju, V.; Sadeghian, A.; Martín-Martín, R.; Reid, I.; Rezatofighi, H.; Savarese, S. Social-bigat: Multimodal trajectory forecasting
using bicycle-gan and graph attention networks. arXiv 2019, arXiv:1907.03395.

39. Seghouane, A.K.; Iqbal, A. Sequential Dictionary Learning From Correlated Data: Application to fMRI Data Analysis. IEEE Trans.
Image Process. 2017, 26, 3002–3015. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/LRA.2020.3048652
http://dx.doi.org/10.1177/0278364908091153
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1109/TSP.2006.881199
http://dx.doi.org/10.1016/j.dsp.2018.09.007
http://dx.doi.org/10.1109/ACCESS.2017.2695239
http://dx.doi.org/10.1109/TKDE.2012.51
http://dx.doi.org/10.1109/TPAMI.2008.277
http://dx.doi.org/10.1109/TIT.2005.860430
https://conservancy.umn.edu/bitstream/handle/11299/180327/2279.pdf?sequence=1
http://dx.doi.org/10.1007/s00186-007-0161-1
http://dx.doi.org/10.1007/BF02591962
http://dx.doi.org/10.1109/TIP.2017.2686014
http://www.ncbi.nlm.nih.gov/pubmed/28333636

	Introduction
	Related Work
	Background
	Dictionary Learning-Based Sparse Signal Representations
	Augmented Semi-Non-Negative Sparse Coding
	Agent Trajectory Model
	Prediction Model

	Proposed Methods
	Sparse Coding Step
	Dictionary Update Step
	A1: Batch Learning Approach
	A2: Online Learning Approach

	Convergence Analysis

	Performance Evaluation
	Experiment 1: Dictionary Quality Assessment
	Dictionary Convergence
	Parameter Selection

	Experiment 2: Pedestrian Trajectory Prediction
	Prediction Method
	Comparison with Baseline
	Comparison with Recent Works
	Summary


	Conclusions
	References

