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Abstract: In recent years, multi-objective cuckoo search (MOCS) has been widely used to settle the

multi-objective (MOP) optimization issue. However, some drawbacks still exist that hinder the further

development of the MOCS, such as lower convergence accuracy and weaker efficiency. An improved

MOCS (IMOCS) is proposed in this manuscript by investigating the balance between development

and exploration to obtain more accurate solutions while solving the MOP. The main contributions of

the IMOCS could be separated into two aspects. Firstly, a dynamic adjustment is utilized to enhance

the efficiency of searching non-dominated solutions in different periods utilizing the Levy flight.

Secondly, a reconstructed local dynamic search mechanism and disturbance strategy are employed to

strengthen the accuracy while searching non-dominated solutions and to prevent local stagnation

when solving complex problems. Two experiments are implemented from different aspects to verify

the performance of the IMOCS. Firstly, seven different multi-objective problems are optimized using

three typical approaches, and some statistical methods are used to analyze the experimental results.

Secondly, the IMOCS is applied to the obstacle avoidance problem of multiple unmanned aerial

vehicles (UAVs), for seeking a safe route through optimizing the coordinated formation control of

UAVs to ensure the horizontal airspeed, yaw angle, altitude, and altitude rate are converged to the

expected level within a given time. The experimental results illustrate that the IMOCS can make

the multiple UAVs converge in a shorter time than other comparison algorithms. The above two

experimental results indicate that the proposed IMOCS is superior to other algorithms in convergence

and diversity.

Keywords: multi-objective cuckoo search; dynamically adjustment; Levy flight; non-dominated

solution; disturbance strategy

1. Introduction

Engineering design optimization could be considered as an NP-hard problem, which
often faces various conflicting factors and constraints under complex high-dimensional
nonlinear constraints. Moreover, it is challenging to find the best solution while inter-
conflicts exist among different goals. Therefore, an appropriate method to find the relative
optimal compromise solution is to transform the engineering design optimization prob-
lem into a multi-objective (MOP) optimization issue due to the specific conflict factors
and constraints.

Due to the low cost and high convergence accuracy, the heuristic algorithm has been
applied to settle the MOP issues and obtain fruitful achievements. Sinivas [1] proposed
a non-dominated sorting genetic algorithm (NSGA) to solve the MOP in 1994. To over-
come the shortage of the NSGA, such as the high time complexity of NSGA dominated
sorting, lack of elite mechanism, and the need to formulate shared parameters, Deb et al. [2]
proposed a fast elitist multi-objective genetic algorithm (NSGAII) utilizing a fast non-
dominated sorting strategy. Experimental results revealed that the NSGAII can improve
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the accuracy of optimization results and reduce the complexity of solving non-dominated
sorting. Zhang and LI et al. [3] discussed a multi-objective evolutionary algorithm based
on decomposition (MOEA/D) to divide a MOP into several small-dimensional goals using
Chershev and weight sum. The MOEA/D can reduce the difficulty of solving the MOP
and improve the algorithm’s convergence efficiency for selecting the best solution set.
Wang et al. [4] proposed a multi-objective self-adaptive difference evolution (MOSADE)
algorithm to control the optimization direction of differential evolution algorithms by varia-
tion parameters and crossover probability adaption, and to further optimize the calculation
for gaining the Pareto solution through introducing the external elite archiving and the
crowded entropy density strategy. Cui et al. [5] proposed a multi-stage multi-objective
Particle Swarm optimization algorithm (MSMOPSO) to improve the convergence perfor-
mance and population diversity due to the leader selection strategy and mutation operator.
Mahalingam et al. [6] used the harmony search (HS) algorithm and technique for order
preference by similarity to the ideal solution (TOPSIS) to find the best drilling parameters
of a horizontal ABRASIVE water jet. The primary thinking is to convert multiple goals into
single goals based on the TOPSIS and to adjust the drilling parameters of abrasive water
injection using the HS, respectively. The experimental results show that the characteristic
error of the abrasive water injection hole predicted by the proposed method in the die
steel model is less than 6%. Wang et al. [7] proposed an enhanced competitive swarm
optimizer with a strongly convex Sparse operator (S-ECSO). The modifications could be
classified into three aspects. Firstly, the strong convex sparse operator is used to optimize
the vital convergence function for generating sparse solutions. Then, the tripartite com-
petition mechanism is introduced to update the worst position searched by the L1 and L2
paradigm, respectively, for ensuring the generated solutions are distributed on the front
surface of the Pareto. The results show that the neural network optimized by the S-ECSO
has relatively high precision in feature selection extraction and can obtain a better sparse
solution. To obtain a satisfying distribution of Pareto optimal solutions, Hu et al. proposed
a niching backtracking search algorithm with adaptive local search to simultaneously locate
and maintain all Pareto optimal solutions in the decision space [8]. Yue et al. propose a
multimodal multi-objective differential evolution algorithm to investigate the mapping
mechanism from more than one Pareto Set (PS) to the same Pareto Fronts (PF) for main-
taining multiple PSs of multimodal multi-objective optimization problems and improve
the diversity in both decision and objective space. Experiments indicate that the proposed
method can gain high comprehensive performance [9]. Zouache and Abdelaziz extended
the Manta Ray foraging optimization (MOMRFO) to address the multi-objective problem.
In the proposed MOMRFO, a population archive is employed to store the non-dominated
solutions generated. The leader’s solutions are selected to lead the Manta Rays’ population
towards promising search regions. Meanwhile, a crowding distance and ε-dominance are
utilized to provide a good compromise between diversity and convergence of the obtained
potential Pareto set. The experimental results demonstrate that the MOMRFO algorithm
outperforms and can provide better convergence and diversity of solutions [10].

Except for the mentioned heuristic algorithms, the cuckoo search (CS) algorithm has
gone deep into various disciplines and gained fruitful achievements, such as engineer-
ing design [11–13], parameter estimation [14,15], prediction recognition [16,17], power
energy [18], image processing [19]. Recently, an extension of CS, namely multi-objective
cuckoo search (MOCS), has also been proposed and widely used to settle the MOP issues
due to the remarkable advantages, such as simple algorithm framework, easy implemen-
tation, and good global convergence, in recent years [20]. To obtain genes with high
correlation with cancer with the minimum number of genes from the high-dimensional
cancer microarray dataset, Othman et al. [21] proposes a hybrid multi-objective CS and
evolutionary operators (MOCS-EO) to optimize the DNN classifier to extract genes with
high correlation. Experimental results illustrate that the MOCS-EO can extract genes as-
sociated with cancer and obtain very high classification accuracy under the condition of
selecting fewer cancer genes. Hanoun et al. [22] presented a Pareto archived multi-objective
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CS (PAMOCS) to address the multi-objective shop scheduling issue by introducing the
pairwise interchange perturbation scheme for replacing the Levy flight mode and utilizing
the external archives for storing all non-dominated solutions. The results demonstrate that
the PAMOCS can reduce the computational overhead to a large extent and improve the
scheduling efficiency. Chen et al. [23] propose a decomposition-based multi-objective CS
(MOEA/D-CS). The amendments could be summarized into the following points. Firstly,
the global and local random walk operators are reconstructed to enhance searchability.
Then, the bandit adaptive operator decision is used to select different operators in the
evolution process. Next, the Cherchev strategy is employed to transform multiple objec-
tives into a series of subproblem aspects. The optimization results of a series of numerical
functions show that the MOEA/D-CS has the advantages of fast convergence speed, high
precision, and low CPU consumption. Paul et al. [24] used MOCS to optimize individual-
based stream feature selection (I-SFS) and group-based stream feature selection (G-SFS),
respectively. The optimization results using the I-SFS and G-SFS show that the MOCS
HAS high classification according to feature a selection of different multi-label datasets.
Other industrial optimization cases using MOCS and related variants could be found in
references [25–29].

To guide the optimization operation towards a better direction in the whole optimiza-
tion process, an improved MOCS (IMOCS) is discussed in this manuscript for exploring
the balance between development and exploration. The main contributions of the IMOCS
could be concluded into the following three strategies.

Firstly, the parameters of MOCS influence the solution quality and search efficiency of
the global migration. An automatic adjustment mechanism of the step factor of Levy flight
is used in the IMOCS to enhance the adaptive ability of global walk. With the increase in
the number of iterations, the step factor decreases linearly to adjust the search range at
different stages and improve the population’s density.

Secondly, because of the weak random migration of the MOCS, a strengthened lo-
cal search mechanism is employed in the IMOCS to dynamically change the random
migration mode using the characteristics of uniform distribution and to refine the accu-
racy of non-dominated solutions after fully tapping the potential individuals around the
current individual.

Finally, to prevent the convergence accuracy of MOCS from deteriorating, a distur-
bance operator is added to the local search mechanism of the IMOCS for maintaining the
differences among individuals and leading the direction of population evolution.

The experiments are executed from two aspects. Firstly, seven classical functions with
different objective constraints are selected to compare with the other three multi-objective
algorithms (NSGAII [2], SPEAII [9], MOCS [20]) to verify the effectiveness of the proposed
IMOCS. The experimental results are analyzed from three aspects: convergence, diversity,
and robustness, using different indicators (Wilcoxon rank-sum test, hypervolume, inverted
general distance, and general distance). The results reveal that the proposed IMOCS is
superior to other algorithms in convergence and diversity. Secondly, the IMOCS algorithm
is applied to the model of cooperative obstacle avoidance of multiple UAVs to broaden the
application prospect of the MOCS algorithm for verifying the feasibility and practicability
of settling the real-world problem using the proposed method.

The remaining sections are organized as follows. Section 2 recalls the basic concepts of
the MOP and MOCS. The modifications of the IMOCS from different aspects are introduced
in Section 3. Section 4 highlights the performance and feasibility of the IMOCS through
optimizing seven classical functions with different objective constraints. Section 5 employs
the IMOCS to optimize the model of cooperative obstacle avoidance of multiple UAVs.
Section 6 summarizes the entire manuscript.

2. Multi-Objective Optimization and MOCS

This section discusses the basic notions of multi-objective optimization and MOCS.
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2.1. Multi-Objective Optimization

The MOP could be considered as a set of objectives. Hence, the optimal solution
of MOP is not a single solution, but a set of intermediate solutions. Assume that the
mathematical definition of MOP’s minimization problem is given as shown in Equation (1):

min F(x) = min[ f1(x), f2(x), . . . , fM(x)] (1)

where M represents the number of objective functions and x is a solution vector or
decision variable.

The core task of the multi-objective optimization is to find a set of non-dominant
solutions with good diversity and convergence.

Furthermore, one decision variable x is called strictly dominated, and the other deci-
sion variable Y can be expressed as x < y, if x dominates y or x is superior to y, as shown in
Equation (2):

∀i : fi(x) ≤ fi(y) and ∃j : f j(x) ≤ f j(y), i, j ∈ 1, 2, 3, . . . , M (2)

In the MOP, a Pareto optimal solution could be achieved when a solution is not
dominated by any other solution.

2.2. MOCS

The cuckoo search (CS) algorithm is a kind of natural heuristic algorithm by analyzing
the parasitic behavior of cuckoo brood and including the Levy flight behavior of birds.
The female cuckoo will find the best nest and lay multiple eggs into it by the Levy flight
mechanism, and the host bird will inadvertently incubate cuckoo chicks. If the host bird
finds an alien bird’s egg in the nest, it will kick out the egg or discard the current nest,
build a new nest, and start breeding its own chicks. Hence, the parasitic reproduction
strategy is employed in the CS method to find the optimal solution. In the implementation
processing of the CS algorithm, the location of cuckoo’s parasitic nests will be mapped to
the solution in the population space, and the advantages and disadvantages of the location
of the parasitic nest will be designed as the optimal fitness value to evaluate the solution.
The MOCS is proposed to further broaden the application field of CS from single-objective
problem optimization to MOP solving, while preserving the population renewal strategy
using Levy flight and the principle of discovery probability.

In MOCS, each cuckoo generates a new variant vector (nest position) by Levy flight
by using Equation (3) to enhance the global search ability of the population.

xt+1
i = xt

i + α ⊗ Levy(λ), i ∈ [1, N] (3)

In Equation (3), xt+1
i and xt

i respectively represent the position of nest i of (t+1)-th and
t-th generation, ⊗ represents the point-to-point multiplication, and Levy(λ) represents the
random search path of Levy’s flight, whose flight direction obeys the uniform distribution
and the walking step obeys the Levy distribution. α > 0 is the step size scaling factor in the
update process. The α could be calculate by the Equation (4).

α = α0

(

xt
j − xt

i

)

(4)

In the Equation (4), xt
j represents the location of next j in the t-th generation.

In addition, the probability Pa ∈ [0, 1] indicates the possibility that an egg could be
found by the host bird. Once the cuckoo egg is found, the cuckoo will lay eggs in another
nest. Then, the new nest position calculation formula is illustrated in Equation (5).

xt+1
i =

{

xt′

i + r ×
(

xt′
k − xt′

j

)

, i f r1 > pa

xt′

i , otherwise
(5)
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In the Equation (5), xt′

k and xt′

j represent two randomly selected individuals from the

population. r and r1 are random numbers within the range of [0, 1].

3. The Proposed Improved Cuckoo Search Algorithm

In the standard MOCS algorithm, the step size generated by Levy flight lacks adapt-
ability in the later iterations of the algorithm, resulting in low population density in the
search. Secondly, in the process of local search, the moving direction of xt+1

i is determined

by xt′

k and xt′

j two individuals, which reduces the local optimization ability of MOCS,

the accuracy of obtaining non-dominated solutions is not high when optimizing complex
problems. Therefore, this paper proposes an improved multi-objective cuckoo algorithm to
solve the above problems.

3.1. Improvements

The main modifications of the IMOCS could be summarized into following two aspects.
To begin with, to amend the search range automatically in different periods and

improve the accuracy in the solution space, Equation (6) is used to make the step factor α
linearly decrease when the number of iterations increase.

α = αmax −

(

t − 1

T − 1

)

× (αmax − αmin) (6)

In the Equation (6), αmax and αmin are the maximum and minimum step size fac-
tors, respectively. t is the current number of iterations, and T is the maximum number
of iterations.

Secondly, to enhance the random migration ability of the local search and find the best
Pareto solution, the uniform distribution characteristics and random disturbance are used
to prevent falling into the local extremum. Thereby, a new random migration operator is
reconstructed, as shown in Equation (7), to fully explore the potential individuals around
the current individual and improve the accuracy of the non-dominated solution.

xt+1
i =

{

rand(D)×
((

ϕxt′

k + ηxt′

j

)

+
(

xt′
r3
− xt′

r4

))

, i f r1 > pa

xt′

i , otherwise
(7)

In the Equation (7), ϕ = 1 − r2, η = r2, and r2 are uniformly distributed numbers in

the range [0, 1]. ϕ and η satisfies the condition ϕ + η= 1.
(

xt′
r3
− xt′

r4

)

is introduced as a

disturbance to prevent falling into a stagnant state.

3.2. IMOCS Implementation steps

Due to the above improvement ideas, IMOCS could be divided into eight implementa-
tion steps as follows.

Step 1: Initialization. Define objective function f (x), population number N, set prob-
lem dimension D, discovery probability Pa, step size α, maximum number of iterations
T, lower and upper bounds (LB, UB), and new dynamic search domain upper and lower
limits.

Step 2: Initialize the MOCS population. Randomly create N sets of solution vectors
in the search space and generate the bird’s nest solution vector using Equation (8), and
calculate the corresponding fitness value.

x0 = LB + rand(D)× (UB − LB) (8)

where rand(D) represents the 0–1 random number of D dimension and x0 is the initial
nest position.
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Step 3: Non-dominated sorting (I). To realize the stratification of the population
due to the dominance relationship between each individual in the population. Then, the
individual with the best Pareto front level will be selected as the optimal solution.

Step 4: Population update. A certain number of offspring will be produced from the
parent population under the combined action of three different strategies, which are Levy
flight strategy, the adaptive step-length factor is calculated by the Equation (6) and the best
individual selected from the elite selection as the learning object. The population update
formula is as follows as shown in Equation (9).

xt+1
i = xt

i + α
(

xt
best − xt

i

)

⊗ Levy(λ), i ∈ [1, N] (9)

In the Equation (9), xt
best represents the best individual selected from the elite; xt+1

i
and xt

i respectively represent the position of nest i of (t+1)-th and t-th generation; Levy(λ)
represents the random search path of Levy’s flight.

Step 5: Random migration. To obtain a random number r1 ∈ [0, 1], when the host
bird finds cuckoo chicks (r1 > pa), it will abandon the current nest and build a new nest
using Equation (5). Otherwise, keep the original position unchanged.

Step 6: Population merger. The initial population and the progeny population are
merged to produce 2N populations, which expands the sampling space.

Step 7: Non-dominated sorting (II). The merged population is processed into lay-
ers to obtain the level information of each individual using the dominance relationship
between individuals.

Step 8: Crowding distance calculation. Allocate the crowding distance for each
individual using normalization due to the projection of adjacent individuals at the same
level. The crowding distance could be calculated using Equation (10).

Dis(xi) = ∑
M

m=1

fm(xi+1)− fm(xi−1)
/

f max
m − f min

m
(10)

In the Equation (10), fm(xi+1) and fm(xi−1) respectively denote the mth objective
function value of the i + 1 and i − 1 individuals. f max

m and f min
m denote the maximum and

minimum function values of the mth objective function.
Step 9: Elite selection. According to the evaluation of all non-dominated solution sets

in the same level, individuals with a larger crowding distance are selected to be retained
until the population size reaches N. If the number of individuals who have joined the
next generation in a certain level exceeds N, the layer is sorted according to the crowding
distance, and a better solution is selected to join until the next generation population is N.

Step 10: Termination. Record the historical Pareto optimal solution and check whether
the current algorithm iteration fulfills the termination condition. If fulfilled, output the
Pareto optimal solution. Otherwise, go to Step 4.

According to the above implementation steps, the entire flowchart of the IMOCS
algorithm is as shown in Figure 1:
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Y

N

 

Figure 1. Flowchart of the IMOCS.

3.3. Time Complexity Analysis

In the IMOCS algorithm, the calculation of the objective function takes up most of the
time of the whole algorithm. Therefore, the use of asymptotic time complexity to evaluate
algorithm performance is one of the important theoretical criteria.

Assuming that the dimension of the objective function f is Dim, the number of pop-
ulations is N, and the number of objective functions is M, the detailed analysis of the
implementation steps of the IMOCS algorithm is as follows:

(1) The time complexity of IMOCS population initialization is O(N × Dim). The time
complexity of each individual evaluation objective function of the population is
O(f(Dim)).

(2) The calculation of the non-dominant solution is divided into two parts. The first
part is used to obtain the number of dominant individuals and the set of dominated
individuals, and the time required is O(M × N2). The second part is used to solve
individual computation except the first Pareto front, and its time complexity is O(N2).
Thus, the algorithm time complexity of this process is O(M × N2).

(3) In the Equation (9), the time complexity of the update stage of Levy flight population
is O(N × (Dim + O(Levy)), where O(Levy) is a random number subject. Hence, its
computational complexity is of a constant order. Therefore, the time complexity of
population renewal process is O(N × Dim).

(4) In the Equation (5), the time complexity of random migration operator optimization
is O(N × Dim).

(5) The worst time complexity after merging parent and child is O(2N).
(6) The worst time complexity of stratification by using non-dominated sorting method

after population merging is O(M × 4N2).
(7) Before calculating the crowding distance of each individual, descending order is

required for each sub-target whose time complexity is O(M × 2N × log(2N)), and the
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time for calculating the crowding distance of each individual is O(M × 2N). Therefore,
the worst time complexity of the algorithm is O(M × 2N × log(2N)).

(8) After calculating the non-dominated ordering and crowding degree, the crowding
degree of all individuals at the same level is compared, and the worst time complexity
required by the pose constructed is O(2N × log(2N)).

(9) According to the above analysis, when T = 1, the worst time complexity is:

O(N × Dim) + O(N × (Dim + f(Dim)) + O(N × (Dim + f(Dim)) + O(N × (Dim +
f(Dim)) + O(M×N2) + O(2N) + O(M×4N2) + O(M × 2N × log(2N)) + O(2N × log(2N)) ≈
O(M × 4N2) ≈ O(M × N2)

Therefore, when T = Maxgen, the worst time complexity is O(Maxgen × M × N2).

4. Numerical Experiment and Analysis

To verify the effectiveness, a numerical experiment is designed below to reveal the
feasibility of the IMOCS. First, the related characteristics of the seven classic multi-objective
test functions and the quality indicators used to evaluate the frontier performance of Pareto
are introduced. Secondly, the algorithm parameter design and operating environment of
NSGAII [2], SPEAII [4], MOCS [20], and IMOCS are described and analyzed. Finally, the
performance of the proposed algorithm is compared with the other three algorithms to
optimize the classical function. All the experiments are run under the environment of Intel®

Core™ i5-10200H CPU @ 2.40 GHz, 16 G memory, Windows 10 operating system. The
programming language is Python 3.7.

4.1. Multi-Objective Benchmark Functions

Table 1 shows the parameter settings of seven classic multi-objective benchmark
functions, which are widely used to verify the effectiveness of heuristic algorithms. Among
them, Dim, M, Characteristics, Space Search, and other parameters respectively represent
the dimension of the problem, the number of targets, Pareto frontier feature attributes, and
the search domain range.

4.2. Quality Indicators

The purpose of the MOO problem is to obtain a set of optimal solutions that are
uniformly distributed and close to the true Pareto front. Therefore, seven classic perfor-
mance evaluation methods, which are hypervolume indicator (HV), generation distance
(GD), Inverted generational distance (IGD), Wilcoxon rank sum-test, mean, and standard
deviation (Std), are used to verify the performance of the proposed IMOCS.

The above seven evaluation methods are selected because they are frequently used
for performance comparison in most literatures of multi-objective swarm intelligence algo-
rithms and have the advantages of strong interpretability and easy calculation. For example,
HV, IGD, and GD can all measure the convergence of multi-objective algorithms, but only
HV and IGD indicators can quickly obtain the corresponding results when measuring the
diversity of multi-objective algorithms. In addition, mean and Std results were calculated
using four heuristic algorithms in different environments (HV, IGD, GD), and the stability
of each algorithm was analyzed. Secondly, Wilcoxon rank-sum test was used to evaluate
algorithm performance based on mean value, which effectively demonstrated the strong
competitiveness of the algorithm.
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Table 1. Seven classic multi-objective benchmark functions.

Name Functions Dim M Characteristics Space Search

ZDT1

g(x) = 1 + 9
dim−1 ∑

dim
i=2 xi,

f1(x) = x1,

f2(x) = g(x)
(

1 −
√

f1(x)/g
)

30 2 convex [0, 1]

ZDT2

g(x) = 1 + 9
dim−1 ∑

dim
i=2 xi,

f1(x) = x1,

f2(x) = g(x)
(

1 − ( f1(x)/g)2
)

30 2 nonconvex [0, 1]

ZDT3

g(x) = 1 + 9
dim−1 ∑

dim
i=2 xi,

f1(x) = x1,

f2(x) = g(x)
((

1 −
√

f1(x)/g
)

− ( f1(x)/g) sin(10π f1(x))
)

30 2
discreteness

convex
[0, 1]

ZDT4

g(x) = 1 + 10(dim − 1)∑dim
i=2

(

x2
i − 10 cos(4πxi)

)

,
f1(x) = x1,

f2(x) = g(x)
(

1 −
√

f1(x)/g
)

10 2
convex

multimodal
x1 ∈ [0, 1]

xi ∈ [−5, 5]

ZDT6

g(x) = 1 + 9
(

∑
dim
i=2 xi

9

)0.25
,

f1(x) = 1 − exp(−4x1) sin6(6πx1),

f2(x) = g(x)
(

1 − ( f1(x)/g)2
)

10 2 nonconvex [0, 1]

DTLZ2

g(x) = ∑
dim
i=3 (xi − 0.5)

2
,

f1(x) = cos
(πx1

2

)

cos
(πx2

2

)

(1 + g(x)),

f2(x) = cos
(πx1

2

)

sin
(πx2

2

)

(1 + g(x)),

f1(x) = sin
(πx1

2

)

(1 + g(x))

12 3 convex [0, 1]

DTLZ4

g(x) = ∑
dim
i=3 (xi − 0.5)

2
,

f1(x) = cos
(

πx100
1

2

)

cos
(

πx100
2

2

)

(1 + g(x)),

f2(x) = cos
(

πx100
1

2

)

sin
(

πx100
2

2

)

(1 + g(x)),

f1(x) = sin
(

πx100
1

2

)

(1 + g(x))

12 3 convex [0, 1]

1. HV: This indicator is used to calculate the volume surrounded by the non-dominated
solution set S of all target minimization problems and a set of pre-set reference points
distributed r = (r1, r2, . . . , rm) ∈ R in the target space. If any solution y ∈ S is satisfied,
there is y ≺ r. The definition of HV is as shown in Equation (11).

HV(S, r) = Vol
(

∪y∈S[y1, r1]× · · · × [ym, rm]
)

(11)

where Vol(•) represents Lebesgue measure. The larger the value of HV is, the closer
the non-dominated solution set S obtained by the algorithm optimization is to the
true Pareto frontier, and the better the convergence and uniformity of the algorithm
are reflected from the side. This metric evaluates convergence and diversity without
knowing the reference set. However, the computational complexity is high, especially
for high-dimensional multi-objective optimization (MOO) issues.

2. IGD: This indicator is mainly calculated by calculating the minimum distance and
between each point (individual) on the true Pareto front surface and the set of individ-
uals obtained by the algorithm. The algorithm is used to evaluate the proximity and
distribution of the true Pareto frontier to the optimal non-dominated solution set, and
the convergence and diversity of the algorithm are comprehensively measured. Let
PF be the true Pareto frontier and S be the best non-dominated solution set obtained
through multi-objective algorithm. The definition of IGD is as shown in (12):

IGD(S, PF) =
∑y∗∈PF d(y∗, S)

|PF|
(12)
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The |PF| is the number of individuals of the point set distributed on the true Pareto
front surface; y∗ is the individual on the real PF; and d(y∗, S) is the minimum Euclidean
distance between an individual y∗ on the PF to the population S, which is calculated by
Equation (13).

d(y∗, S) = miny∈S

(

√

∑
M

i=1

(

yi − y∗i
)2
)

(13)

According to Equations (12) and (13), the smaller the IGD value, the closer the non-
dominated solution obtained by the algorithm is to the true Pareto front, the better the
convergence of the algorithm, and the better the diversity of the non-dominated solution
set. It can be found that the GD method can only evaluate the convergence of the algorithm,
while the IGD can evaluate the convergence and diversity at the same time, and the
calculation cost is small. The disadvantage is that a reference set is required.

3. GD: This indicator is used to measure the distance between the optimal non-dominated
solution set obtained by the algorithm and the true Pareto front, and is a measure of
the convergence of the algorithm. GD indicator is defined as shown in Equation (14):

GD(S, PF) =

√

∑y∈S(d(y, PF))2

|S|
(14)

The |S| represents the number of optimal non-dominated solutions discovered by the
algorithm; d(y, PF) represents the minimum Euclidean distance between the non-dominant
solution Y and all points of PF, and its calculation is shown in Equation (15).

d(y, PF) = miny∗∈PF

(

√

∑
M

i=1

(

yi − y∗i
)2
)

(15)

It can be seen from the Equations (14) and (15) that the smaller the GD value, the
smaller the distance between the non-dominated solution set obtained by the algorithm and
the true Pareto front, and the better the convergence of the algorithm. If GD(S, PF) = 0,
it indicates that the generated non-dominated solution set is on the true Pareto frontier,
and the two completely coincide. Compared with HV, the computational cost of GD is
lightweight, but only the convergence of the solution set is measured, and the diversity
cannot be assessed.

4. Wilcoxon rank-sum test: This statistical method is a non-parametric statistical test used
to detect whether two or more datasets are from the same distributed population, and
its confidence level is 0.05. In order to conduct an in-depth analysis of the superiority
of the algorithm, the performance of the algorithm is judged according to the mean
value in the Wilcoxon rank-sum check. The symbols ‘−’, ‘+’, and ‘=‘, respectively,
indicate that the algorithm proposed in this article compares with other algorithms.
The performance of the algorithm is poor, significantly better than that, and there is
no significant difference.

5. Mean and Std: Mean and Std are used to evaluate the stability of each algorithm and
analyze the results obtained in different operating environments. The mean and Std
are calculated as shown in Equations (16) and (17):

Mean =
∑

Num
i=1 f best

i

Num
(16)

Std =

√

∑
Num
i=1

(

f best
i − Mean

)

Num
(17)

The f best
i is the optimal solution obtained under the current operating environment,

Num is the total number of optimal solutions (times of independent operation of
the algorithm).



Electronics 2022, 11, 704 11 of 34

4.3. Numerical Parameter Design

In this experiment, to reduce the influence of the randomness, these four algorithms
are independently run Num = 30 times. In addition, each algorithm uses an iterative
calculation scheme to solve the MOO problems and considers the fairness of the algorithm.
All the population size and the maximum number of iterations are set to 100 and 1000,
respectively. The design of other parameters is designed with reference to the existing
literature. The specific parameter design is listed in Table 2.

Table 2. Parameters setting of examined algorithm.

Algorithms Population Iterations Parameters

IMOCS 100 1000 amin = 0.1, amax = 0.3, Pa = 0.25, λ = 1.5
NSGAII [2] 100 1000 Pc = 0.9, Pm = 1/dim, ηc = 20, ηm = 20

SPEAII [4] 100 1000
Pc = 0.9, Pm = 1/dim,

M(Archive size) = 100, ηc = 20, ηm = 20
MOCS [20] 100 1000 a = 0.1, Pa = 0.25, λ = 1.5

4.4. Analysis of Simulation Results

Four algorithms are used to calculate seven classic test functions (ZDT1-ZDT4, ZDT6,
DTLZ2, DTLZ4), and statistical results are obtained. Different convergence curves and the
mean and standard deviation of GD, IGD, and HV are obtained. In the convergence result
graph (Figures 2–8), there are curves with different colors to represent different algorithms.
For example, the solid red line represents the true Pareto optimal front, the purple scattered
points represent the IMOCS, the cyan scattered points represent SPEAII, the green scattered
points Represents NSGAII, and the blue scattered dots represent MOCS. As the number
of iterations increases, the algorithm continuously searches for the best non-dominated
solutions so that all non-dominated solutions can approach the true PF frontier and finally
obtain a higher convergence accuracy.

It can be seen from Figures 2–8 that the four algorithms are in the process of solving
the MOO problems. The IMOCS is far superior to the other three comparison algorithms in
terms of non-dominated density and accuracy.

In the ZDT1 function problem, Figure 2a–d show that the non-dominated solutions
found by the IMOCS and MOCS are uniformly covered on the true Pareto front surface,
but the solution of the MOCS on the front surface is relatively sparse compared to IMOCS;
the spacing is large. The non-dominated solutions obtained by the SPEAII and NSGAII are
close to the true Pareto front, but they are not distributed on the true Pareto front.

When optimizing the non-convex function ZDT2, IMOCS shows a high optimization
accuracy in Figure 3a, and all the solutions can be evenly distributed on the Pareto front
surface. In Figure 3b, the non-dominated solutions obtained by the SPEAII do not cover
the entire true Pareto front surface, and the accuracy of the obtained solutions is very poor,
much higher than the real solution. When the NSGAII optimizes ZDT2, the solution ob-
tained is much better than that of the SPEAII and is closer to the true Pareto front. However,
it can be seen from Figure 3c that the non-dominated solution is sparsely distributed, which
indicates that most of the solutions searched by the NSGAII algorithm are relatively low.
Moving in a small area results in poorer accuracy of the later iterative search than the
IMOCS and MOCS. In Figure 3d, the MOCS solutions are all on the real Pareto, but the
distribution of IMOCS solutions is denser than that of the MOCS, SPEAII, and NSGAII. In
the process of optimizing ZDT3 for the four algorithms, the performance of the IMOCS
and MOCS after 1000 iterations is almost the same as when solving ZDT2. The density
distribution of non-dominated solutions obtained by the NSGAII is far worse than that of
the SPEAII.
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Figure 2. The convergence results of ZDT1 test problem over all algorithms. (a) IMOCS, (b) SPEAII,

(c) NSGAII, and (d) MOCS.
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Figure 3. The convergence results of ZDT test problem over all algorithms. (a) IMOCS, (b) SPEAII,

(c) NSGAII, and (d) MOCS.
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Figure 4. The convergence results of ZDT3 test problem over all algorithms. (a) IMOCS, (b) SPEAII,

(c) NSGAII, and (d) MOCS.
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Figure 5. The convergence results of ZDT4 test problem over all algorithms. (a) IMOCS, (b) SPEAII,

(c) NSGAII, and (d) MOCS.
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Figure 6. The convergence results of ZDT6 test problem over all algorithms. (a) IMOCS, (b) SPEAII,

(c) NSGAII, and (d) MOCS.

  

(a) (b) 

  

(c) (d) 

Figure 7. The convergence results of DTLZ2 test problem over all algorithms. (a) IMOCS, (b) SPEAII,

(c) NSGAII, and (d) MOCS.
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Figure 8. The convergence results of DTLZ4 test problem over all algorithms. (a) IMOCS, (b) SPEAII,

(c) NSGAII, and (d) MOCS.

It can be seen from Figure 5 that in the later search process of IMOCS, the local
minimum function can be better escaped through disturbance, and the global optimal
non-dominated solution can be found quickly. While SPEAII uses external archiving
technology to optimize complex multimodal functions, it can be seen from Figure 5b that
the disturbance capability of external archiving technology is relatively weak and cannot
make the SPEAII algorithm jump out of the local extreme state. In the later stage of the
iteration, the NSGAII and MOCS have no disturbance mechanism and external archiving
schemes, and both of them have fallen into a partial stagnation state and cannot search for
the best non-dominated solution.

In Figure 6a–d, it can be seen that both the SPEAII and NSGAII can cover the true
Pareto front surface. Due to the insufficient ability of later optimization, some non-inferior
solutions cannot converge to the real PF. All non-inferior solutions found by the IMOCS
and MOCS can fall on PF, but there is a big gap in particle uniformity distribution.

When optimizing the three-dimensional multi-objective function DTLZ2, the non-
inferior solutions obtained by the IMOCS can be uniformly distributed on the PF, and
the solutions obtained by the NSGAII can also be scattered on the PF, but most of the
solutions are concentrated in a certain area, resulting in uneven particle distribution. In
addition, Figure 7b shows that most of the solutions generated by SPEAII dealing with the
DTLZ2 problem are beyond the optimal PF frontier, which indicates that the convergence
accuracy of the SPEAII optimization is poor. However, the MOCS algorithm achieves a
non-inferior solution (Figure 7d) that is the uniform distribution on the PF, but the parts of
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the non-inferior solution that are not closely of the PF. Figure 7 shows that IMOCS obtained
by the four algorithms are superior to that of MOCS, NSGAII, and SPEAII in terms of
uniformity and diversity of non-dominated solutions, and describes that the IMOCS can
effectively find non-inferior solutions distributed on true PF in the case of 1000 iterations,
and it can quickly converge to the optimal PF.

In optimizing the DTLZ4 problem, NSGAII shows poor convergence performance due
to most of the non-dominated solutions being linearly distributed at the real PF (Figure 8c),
and all non-inferior solutions have not covered the PF. It is also implied that the NSGAII
cannot handle the high-dimensional problems effectively, so the solution fails to cover the
entire PF. Meanwhile, the NSGAII also has a low convergence accuracy due to the poor
solution diversity. Figure 8b reveals that the non-dominated solutions generated by SPEAII
are similar to the optimization DTLZ2 problem. Most of the non-inferior solutions fail to
find the best frontier, resulting in low convergence accuracy of the SPEAII. However, the
non-inferior solution obtained by the MOCS algorithm is better than the former (NSGAII
and SPEAII), but compared with the convergence diagram of the IMOCS in Figure 8a, the
uniformity of the obtained solution is slightly worse than the IMOCS, and there are some
solutions beyond the range of true PF.

According to the convergence results of the above four heuristic algorithms to optimize
the multi-objective benchmark functions, it can be seen that the non-dominated solutions
obtained by IMOCS algorithm can uniformly cover the optimal Pareto frontier. In addition
to the ZDT4 function, the MOCS algorithm can find solutions that converge to the Pareto
front, but the distribution of the solutions is relatively sparse compared to that of the
IMOCS. However, the non-inferior solutions obtained by the NSGAII and SPEAII have
poor convergence accuracy compared with that of the IMOCS and cannot converge to the
optimal Pareto front surface. It can be seen that the IMOCSs are highly competitive in
the convergence measure and have the ability to deal with complex problems. They can
quickly jump out of local extreme values by perturbation and adjustment of Levy flight
strategy, showing high convergence accuracy.

To further analyze the performance of the IMOCS, the indicators including GD, IGD,
and HV are used to analyze the convergence and diversity and the records of the mean,
std, and optimal value of the four algorithms, which are running 30 times independently
under different indicators. Numerical experimental data such as the worst solution and
the results of Wilcoxon rank-sum test, GD, IGD, and HV numerical statistics are shown in
Tables 3–5, respectively. From the data in these tables, the IMOCS can successfully deal
with ZDT, DTLZ2, and DTLZ4 in GD, IGD, HV, and other measures and obtain the optimal
value on the Pareto frontier.

For the ZDT1 problem, it is found from Tables 3–5 that the MOCS and IMOCS are
similar in convergence measures (GD, IGD, HV), but the mean and variance of IMOCS are
slightly better than MOCS and significantly better than SPEAII and NSGAII. In terms of
density indicators (IGD, HV), the density indicators of IMOCS and MOCS are not much
different, and the obtained non-dominated solutions are evenly distributed on the Pareto
front, indicating that the diversity of IMOCS and MOCS solutions is better. However,
algorithms such as NSGAII and SPEAII, especially in the IGD indicators in Table 4, have
significantly worse solution diversity than IMOCS, indicating that the solutions they find
are not all on the true Pareto frontier.

In the ZDT2, the IMOCS ranks first among the GD, IGD, HV, and other indica-
tors, followed by MOCS ranking second, and NSGAII and SPEAII are ranking third and
fourth, respectively.
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Table 3. Related statistical data based on the GD.

GD MOCS SPEAII NSGAII IMOCS

ZDT1

mean 2.46E-04 1.38E-02 2.46E-03 2.10E-04
Std 3.59E-05 8.46E-03 5.95E-04 6.17E-05
best 1.32E-04 7.33E-03 1.26E-03 4.26E-05

worst 3.10E-04 5.50E-02 3.75E-03 3.07E-04
Wilcox test + + +

ZDT2

mean 1.34E-04 1.60E-02 4.66E-03 9.43E-05
Std 1.48E-05 3.92E-03 1.17E-03 5.29E-06
best 1.08E-04 1.10E-02 9.46E-04 8.32E-05

worst 1.67E-04 3.04E-02 7.44E-03 1.06E-04
Wilcox test + + +

ZDT3

mean 6.40E-04 1.07E-02 3.81E-03 6.19E-04
Std 2.91E-05 3.66E-03 4.37E-04 3.08E-05
best 5.90E-04 4.90E-03 3.09E-03 5.61E-04

worst 7.03E-04 2.13E-02 4.80E-03 7.03E-04
Wilcox test + + +

ZDT4

mean 7.39E-01 1.50E+00 3.29E+00 4.68E-04
Std 6.50E-01 6.04E-01 1.29E+00 5.93E-05
best 1.60E-01 3.62E-01 1.36E+00 3.59E-04

worst 3.23E+00 2.52E+00 6.80E+00 5.88E-04
Wilcox test + + +

ZDT6

mean 5.13E-02 4.55E-02 1.86E-02 7.32E-03
Std 4.90E-02 4.17E-02 1.42E-02 1.82E-02
best 1.16E-04 3.52E-04 2.97E-03 1.14E-04

worst 1.65E-01 1.43E-01 5.14E-02 6.80E-02
Wilcox test + + +

DTLZ2

mean 5.62E-03 1.23E-02 6.23E-03 4.61E-03
Std 6.62E-03 5.73E-03 3.59E-03 4.22E-03
best 2.86E-03 5.93E-03 3.99E-03 1.33E-03

worst 3.08E-02 3.21E-02 2.48E-02 2.11E-02
Wilcox test + + +

DTLZ4

mean 4.66E-03 1.85E-02 3.09E-03 3.79E-03
Std 3.78E-03 4.45E-03 1.34E-03 4.52E-03
best 2.32E-03 8.95E-03 2.13E-03 1.82E-03

worst 1.79E-02 2.75E-02 6.76E-03 2.74E-02
Wilcox test + + −

W+/W− 28/0 28/0 26/2
+/−/= 7/0/0 7/0/0 6/1/0

ZDT3 is a convex optimization problem containing a large number of non-continuous
Pareto frontiers. The IMOCS has obtained the best non-inferior solution in the GD, IGD,
and HV, compared with the other three algorithms, and reached the optimal GD-standard
deviation, IGD-standard deviation, and HV-standard deviation. It indicates that the IMOCS
can obtain stable convergence performance when optimizing the ZDT3 problem. Secondly,
in the HV indicators, the mean values of IMOCS and MOCS are the same, but the standard
deviation of IMOCS is smaller, reflecting that the population diversity obtained by IMOCS
after 1000 iterations is relatively denser than that of the MOCS, SPEAII, and NSGAII.
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Table 4. Related statistical data based on the IGD.

IGD MOCS SPEAII NSGAII IMOCS

ZDT1

mean 4.85E-03 7.96E-02 2.64E-02 4.59E-03
Std 2.80E-04 1.32E-02 6.21E-03 1.65E-04
best 4.40E-03 5.54E-02 1.40E-02 4.25E-03

worst 5.59E-03 1.10E-01 3.80E-02 4.97E-03
Wilcox test + + +

ZDT2

mean 5.00E-03 1.06E-01 5.68E-02 4.60E-03
Std 2.31E-04 1.52E-02 1.05E-01 2.51E-04
best 4.60E-03 7.35E-02 2.57E-02 4.31E-03

worst 5.68E-03 1.38E-01 6.12E-01 5.45E-03
Wilcox test + + +

ZDT3

mean 5.17E-03 8.02E-02 3.02E-02 5.17E-03
Std 2.62E-04 1.31E-02 3.27E-03 1.59E-04
best 4.68E-03 5.33E-02 2.38E-02 4.75E-03

worst 5.82E-03 1.06E-01 3.77E-02 5.38E-03
Wilcox test − + +

ZDT4

mean 7.06E+00 7.64E+00 2.17E+01 4.60E-03
Std 6.65E+00 3.37E+00 8.72E+00 2.51E-04
best 1.43E+00 1.68E+00 8.86E+00 4.31E-03

worst 3.29E+01 1.43E+01 4.55E+01 5.45E-03
Wilcox test + + +

ZDT6

mean 3.95E-03 9.31E-02 6.63E-03 3.43E-03
Std 7.45E-04 7.23E-02 3.75E-03 5.62E-04
best 2.84E-03 1.24E-02 2.69E-03 2.56E-03

worst 5.24E-03 2.55E-01 1.86E-02 4.80E-03
Wilcox test + + +

DTLZ2

mean 8.54E-02 8.91E-02 1.11E-01 6.95E-02
Std 3.34E-02 3.38E-02 7.11E-03 3.49E-03
best 7.28E-02 7.04E-02 9.75E-02 6.38E-02

worst 2.52E-01 2.56E-01 1.26E-01 7.83E-02
Wilcox test + + +

DTLZ4

mean 7.33E-02 7.39E-02 2.63E-01 7.11E-02
Std 3.92E-03 2.68E-03 2.18E-01 2.48E-03
best 6.79E-02 6.83E-02 7.64E-02 6.57E-02

worst 8.88E-02 7.87E-02 9.31E-01 7.78E-02
Wilcox test + + +

W+/W− 24/4 28/0 28/0
+/−/= 6/1/0 7/0/0 7/0/0

Focusing on the ZDT4, all evaluation indicators can obtain the best solution. It is
difficult to find the global optimal Pareto front for algorithms with weak adaptive ability
and weak external disturbance ability because the ZDT4 contains 219 different local optimal
Pareto fronts in the search domain. Therefore, the MOCS, NSGAII, and SPEAII are stuck
in different local Pareto fronts when iterating 1000 times and cannot jump out of the local
extremes. Although the ZDT6 has a non-uniform search domain, it can be seen from
the evaluation data of GD, IGD, and HV that the IMOCS algorithm can obtain the best
non-inferior solution in terms of convergence and solution density. In contrast, the MOCS
obtains non-inferior solutions in solution density indicators (IGD, HV), followed by the
IMOCS, SPEAII, and NSGAII.

The results of DTLZ2 optimization by four algorithms that can be seen from the data
are the IMOCS has obtained good non-inferior solutions in both convergence indicator
and density indicator, and its stability is much better than that of the MOCS, SPEAII, and
NSGAII. Although the average value obtained by MOCS in the diversity indicator is not
much different from that of the IMOCS, some non-inferior solutions are dissociated on the
true Pareto front surface, resulting in the diversity of non-inferior solutions obtained by the
MOCS being far worse than that of the IMOCS.
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Table 5. Related statistical data based on the HV.

HV MOCS SPEAII NSGAII IMOCS

ZDT1

mean 6.60E-01 5.54E-01 6.26E-01 6.61E-01
Std 3.82E-04 2.41E-02 8.90E-03 3.57E-04
best 6.61E-01 6.49E-01 6.44E-01 6.61E-01

worst 6.59E-01 5.22E-01 6.09E-01 6.59E-01
Wilcox test + + +

ZDT2

mean 3.27E-01 2.17E-01 2.66E-01 7.68E-01
Std 2.65E-04 4.82E-02 5.09E-02 2.70E-04
best 3.27E-01 4.61E-01 2.90E-01 7.68E-01

worst 3.26E-01 1.81E-01 0.00E+00 7.67E-01
Wilcox test + + +

ZDT3

mean 1.04E+00 9.20E-01 9.69E-01 1.04E+00
Std 1.67E-04 2.34E-02 7.14E-03 1.12E-04
best 1.04E+00 9.66E-01 9.79E-01 1.04E+00

worst 1.04E+00 8.69E-01 9.57E-01 1.04E+00
Wilcox test = + +

ZDT4

mean 0.00E+00 0.00E+00 0.00E+00 8.71E-01
Std 0.00E+00 0.00E+00 0.00E+00 3.41E-04
best 0.00E+00 0.00E+00 0.00E+00 8.71E-01

worst 0.00E+00 0.00E+00 0.00E+00 8.69E-01
Wilcox test + + +

ZDT6

mean 3.22E-01 2.99E-01 3.16E-01 7.06E-01
Std 2.33E-04 6.92E-03 3.93E-03 1.78E-04
best 3.22E-01 3.11E-01 3.21E-01 7.06E-01

worst 3.21E-01 2.79E-01 3.07E-01 7.05E-01
Wilcox test + + +

DTLZ2

mean 3.92E-01 3.95E-01 3.11E-01 6.93E-01
Std 1.66E-01 1.65E-01 1.12E-01 7.66E-03
best 1.00E+00 1.00E+00 8.99E-01 7.12E-01

worst 3.29E-01 3.26E-01 2.50E-01 6.81E-01
Wilcox test + + +

DTLZ4

mean 3.77E-01 3.67E-01 3.17E-01 7.08E-01
Std 7.53E-03 5.82E-03 8.89E-02 8.59E-03
best 3.91E-01 3.78E-01 3.79E-01 7.30E-01

worst 3.65E-01 3.49E-01 0.00E+00 6.90E-01
Wilcox test + + +

W+/W− 21/0 28/0 28/0
+/−/= 6/0/1 7/0/0 7/0/0

For the optimization DTLZ4 problem, the convergence and diversity indicators of
the four algorithms are evaluated. As shown in the statistical results in Tables 3–5, the
non-inferior solution obtained by the NSGAII in the GD indicator is smaller than that of
IMOCS, and then its convergence is better than the IMOCS. However, the comprehensive
evaluation of indicators (such as IGD and HV) shows that the diversity of non-inferior
solutions of the NSGAII is far worse than the IMOCS. Therefore, when NSGAII addresses
the high-dimensional and complex DTLZ4 problems, most solutions are closely distributed
in a small area at the bottom of the true PF surface. As a result, the GD indicator is
considered to coincide with the true Pareto frontier in evaluating the convergence, which
leads to its convergence in the GD indicator being better than other algorithms. Second, in
Tables 4 and 5, IMOCS is far superior to the other three algorithms in both convergence and
diversity evaluation, and the ranking remains the first, while the MOCS ranks the second
and SPEAII and NSGAII are the third and fourth position, respectively.

According to the above experimental statistics, the optimization problems (ZDT1-4,
ZDT6, DTLZ2, and DTLZ4) of the IMOCS in GD, IGD, and HV indicators can obtain
reasonable solutions, and the rank-sum test W+/W− obtained by Wilcoxon rank-sum test
are 28/0. It demonstrates that the strong performance of the IMOCS is superior to other
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comparison algorithms in terms of convergence and diversity, and the ranking remains
the first.

To enhance the conclusions of the previous experimental results, mean analysis is
used to test the performance of the entire algorithm in an environment of 30 independent
runs, and the overall performance of different algorithms to optimize different functions
is shown through boxplots as shown in Figures 9–11. In the box chart, the yellow dotted
line represents the median, the horizontal line below the graph is the minimum value, the
horizontal line above the graph is the maximum value, and the open circle indicates that
the current algorithm optimizes a problem for 30 independent runs. The resulting data
exceed the maximum the abnormal value of the range of the value and the minimum value.

Based on the characteristics analysis of the boxplot, the boxplot of IMOCS occupies
the smallest area (except Figure 9c), and they are all in the range of 0.001–0.005, indicating
that IMOCS has the best convergence performance in the GD indicator relative to the
other comparison algorithms. Secondly, the occupied area of the boxplot obtained by the
NSGAII is much smaller than the other three algorithms in optimizing the DTLZ4 problem.
Moreover, Figure 9a–f show that the area of the boxplot is larger than IMOCS and MOCS
and the convergence of NSGAII is worse than IMOCS and MOCS. However, in the process
of GD indicator evaluation, the boxplot occupied area obtained by the SPEAII optimization
function is the largest of the other three algorithms, implying that the SPEAII algorithm is
the worst in terms of convergence. In addition, the MOCS can also get a smaller graph area
in the GD indicator, but when optimizing functions such as ZDT4-ZDT6, the graph occupies
a larger space (0–1.5, 0–0.17), indicating that the MOCS has relatively poor convergence
performance when solving complex problems. It can be seen that the convergence of the
IMOCS algorithm has been further improved. It can be seen from Figure 10 that the space
occupied by the box diagram of IMOCS and MOCS is roughly similar, while the maximum
and minimum values on the box diagram of IMOCS are smaller than those of the MOCS
and the number and value of outliers generated by the MOCS in DTLZ2 are larger than
those of the IMOCS. While the SPEAII and NSGAII have a large graph span space, it can
be seen from the characteristics of IGD that the convergence performance and non-inferior
solution diversity of SPEAII and NSGAII are worse than that of the IMOCS and MOCS,
but the SPEAII is better than NSGAII. In addition, in Figure 10, the MOCS, SPEAII, and
NSGAII obtained corresponding box diagrams on ZDT1-2, ZDT4-5, and DTLZ2, occupying
a small HV value, and the abnormal points generated by the three in DTLZ2 can be close
to 1, but relative to the entire algorithm, their convergence and diversity are weaker than
IMOCS. The HV value corresponding to the position of the IMOCS box diagram is larger
than the other three algorithms, which shows that the non-inferior solution searched by the
IMOCS algorithm is closer to the true Pareto frontier, and the convergence performance is
obviously improved.

Through the above numerical experiment analysis and discussion, it can be noted that
the proposed IMOCS can better deal with different types of MOPs. On the one hand, it
adjusts the exploration range and changes the random migration mechanism according to
iterative growth to ensure jumping out of the complex local optimal region, improving the
population density, enhancing the convergence of the MOCS, and finding the global optimal
Pareto non-inferior solution quickly. On the other hand, the demonstration of experimental
results also implies that the improved ideas of this algorithm have good feasibility.
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Figure 9. Boxplot of GD values achieved by different algorithms. (a) ZDT1, (b) ZDT2, (c) ZDT3,

(d) ZDT4, (e) ZDT6, (f) DTLZ2, and (g) DTLZ4.
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Figure 10. The results of IGD test problem over all algorithms. (a) ZDT1, (b) ZDT2, (c) ZDT3,

(d) ZDT4, (e) ZDT6, (f) DTLZ2, and (g) DTLZ4.
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Figure 11. The results of HV test problem over all algorithms. (a) ZDT1, (b) ZDT2, (c) ZDT3, (d) ZDT4,

(e) ZDT6, (f) DTLZ2, and (g) DTLZ4.

5. Collaborative Obstacle Avoidance Task of Multiple UAVs Using IMOCS

In the section, to further verify the practically of the proposed method, the IMOCS
is used to optimize the collaborative obstacle avoidance task of multiple UAVs within an
appropriate time.

5.1. UAV Model

It is necessary to consider the relative position between UAVs, and the UAV is regarded
as a particle for addressing the cooperative obstacle avoidance problem of multiple UAVs
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in the obstacle environment. The single-UAV model can be simplified into a UAV kinematic
model and an autopilot model by considering six parameters (including speed, yaw angle,
altitude, and three types of autopilots) [29–31]. The formula is illustrated as shown in
Equation (18).


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where (xi, yi, hi) represents the position coordinates of the i-th UAV in the x, y, and z
direction under the inertial coordinate system, respectively; (Vi, ϕi, ζi) are the horizontal
speed, yaw angle, and altitude rate of the i-th UAV, respectively;

(

τv, τϕ, τζ , τh

)

are the
time constants of Mach channel, heading channel, altitude rate channel, and altitude chan-

nel, respectively;
(

Vc
i

, ϕc
i
, ζc

i

)

are the control inputs of the i-th UAV Mach-hold autopilot,

heading-hold autopilot, and altitude-hold autopilot, respectively, and the three control
inputs of autopilot [31], those specific calculation are shown in Equation (19):
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where
(

U1
i , U2

i , U3
i

)

represents the control inputs components in the x, y, and z directions,
respectively. In addition, the flight constraints also need to be considered in the UAV model,
as shown in Equation (20):
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In the formula, (Vmax, Vmin, nmax, ζmax, g) represent the maximum horizontal velocity,
minimum horizontal velocity, maximum lateral overload, maximum altitude rate, and
gravity acceleration, respectively. The values of these variables are greater than 0, and the
gravity acceleration g = 10 m/s2; ζmin is the minimum altitude rate, and the corresponding
value is marked less than 0 (ζmin < 0).

5.2. Simulation Experiments

The experiment is designed based on the references [30,31]. In the subsection, NSGAII,
MOCS, IMOCS, and multi-objective pigeon-inspired optimization (MPIO) [30] are used
to optimize UAVs’ formation obstacle avoidance control. In order to ensure the normal
operation of these algorithms, the parameters are designed as follows.

The population numbers of the NSGAII, MOCS, and IMOCS are set as 20, but the
population number of the MPIO is set as 58 [30].

The maximum number of iterations are set to 20 times.
In addition, we selected five UAVs to fly in the three-dimensional space, and the

related parameters are listed in Table 6; the initial position value of UAVs are given in
Table 7. Other initial state parameters of UAVs are also set, which include horizontal
airspeed Vi = 10(m/s), yaw angle ϕi = 0(rad), altitude rate ζi = 0(m/s), and expected
altitude he = 10(m). However, when five UAVs fly in formation through the area of seven
obstacles in the horizontal direction and the radius parameters of obstacles, as shown in
Table 8, the maximum running time required by UAVs to fly over different obstacles is set
at 42 s, and the sampling time interval is set at 0.5 s.



Electronics 2022, 11, 704 27 of 34

Table 6. Parameter setting of UAVs.

Parameters Values

τv 1 s
τϕ 0.75 s
τζ 0.3 s
τh 1 s

(Vmax, Vmin) (15, 5) m/s
nmax 10

(ζmax, ζmin) (6, −6) m/s

Table 7. Initial position parameters of five UAVs.

UAVi xi (m) yi (m) hi (m)

1 13.8 148 66.8
2 20.4 157.6 33.5
3 19.5 154.7 23.3
4 2.7 150.0 95.1
5 9.4 152.3 28.8

Table 8. Position and radius parameters of seven obstacles.

Obstaclej xj (m) yj (m) Rj (m)

1 80 190 5
2 100 130 5
3 200 175 5
4 220 250 5
5 190 110 5
6 310 200 10
7 300 125 10

Figure 12 displays the simulation results of the proposed method in this paper. The
circle graph represents obstacles, the triangle represents UAVs, the yellow curve, the
magenta curve, the red curve, the black curve, and the green curve, respectively, represent
the flight routes of the first, second, third, fourth, and fifth UAVs.

Figure 12a shows that the five UAVs smoothly pass through the obstacles’ information
while the obstacles are very closely arranged. Moreover, the five UAVs that failed to detour
from the top obstacle were controlled by the control strategy of the UAV to find the shortest
safe route and easily pass through the obstacle area. Figure 12b illustrates the horizontal
airspeed change curves of the UAVs 1–2, and UAVs 4–5 are converged to 10 m/s at the
38 s, while the UAV3 has fluctuated after 42 s. Since the amplitude of oscillation is within
the allowable range, it was also considered consistent with the horizontal airspeed of
the other four UAVs. Meanwhile, all UAVs converged to 0rad within 25 s in Figure 12c
and remained the same until 42 s. This indicates that the five UAVs flying in the exact
directions after 25 s can effectively avoid the obstacle. When the UAV reaches the expected
altitude in the vertical direction, the UAVs start from the preset altitude and slowly through
the obstacle area during the iterations. Its vertical altitude tends to the expected altitude.
Figure 12d exhibits that all UAVs converge to the expected altitude and remain consistent
in 10 s, and the altitude rate also is changed. In addition, both UAV1 and UAV4 descended
from a height to a position with a vertical altitude of 50 m, and their altitude rate curves
(Figure 12e) show an extremely rapid decline from 0 m/s to −6 m/s within 0–2 s. However,
the altitude of the UAV1 was relatively lower than the UAV4, and then there was a rapid
rise to the expected speed of 0m/s after 3 s. On the contrary, the UAV4 kept a constant
decline from 2 s to 7 s until it rose rapidly after 7 s, and finally reached the expected altitude
rate converged to 0m/s at 10 s. At the same time, the vertical altitude of UAV2–3 and
UAV5 is lower than the expected vertical altitude. It rose rapidly to a constant speed and
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then changed from a constant speed to a rapid decline, until the altitude rate of all UAVs
converged to the expected level at 10 s in this process









( )

( )  (6,−6) m/s

  

(a) (b) 

 
 

(c) (d) 

 

(e) 

’

– –

−
–

Figure 12. IMOCS optimizes the flight change curves of UAVs. (a) Obstacle avoidance curve of UAVs;

(b) Horizontal airspeed change curves of UAVs; (c) Yaw angle change curves of UAVs; (d) Flight

altitude change curves of UAVs; (e) Altitude rate change curves of UAVs.
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Figures 13–15 display the experimental results of cooperative obstacle avoidance of
multiple UAVs using MPIO, MOCS, and NSGAII.

–

–

  

(a) (b) 

  

(c) (d) 

 

(e) 

Figure 13. MPIO optimizes the flight change curves of UAVs. (a) Obstacle avoidance curve of UAVs;

(b) Horizontal airspeed change curves of UAVs; (c) Yaw angle change curves of UAVs; (d) Flight

altitude change curves of UAVs; (e) Altitude rate change curves of UAVs.
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Figure 14. MOCS optimizes the flight change curves of UAVs. (a) Obstacle avoidance curve of UAVs;

(b) Horizontal airspeed change curves of UAVs; (c) Yaw angle change curves of UAVs; (d) Flight

altitude change curves of UAVs; (e) Altitude rate change curves of UAVs.
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Figure 15. NSGAII optimizes the flight change curves of UAVs. (a) Obstacle avoidance curve of UAVs;

(b) Horizontal airspeed change curves of UAVs; (c) Yaw angle change curves of UAVs; (d) Flight

altitude change curves of UAVs; (e) Altitude rate change curves of UAVs.
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In Figure 13a, the MPIO also obtained the best safe route. It makes multiple deflections
and finally passes through the obstacle area when the UAVs cross obstacles. Due to the
multiple deflections of UAVs, the yaw angle also changes (Figure 13c), which makes the
UAVs unable to converge consistently within 35 s, and the overall yaw angle convergence
efficiency of UAVs is worse than the IMOCS’. Meanwhile, only the horizontal velocity
of the UAV4 is fluctuated after the execution of the maximum running time and is also
regarded as convergence within the allowable range.

It can be seen from Figure 14 that the horizontal velocity convergence curves of the
five UAVs obtained by the MOCS are in a state of fluctuation within 42 s, and the expected
convergence has not been achieved. In addition, the MOCS optimized the yaw angle of
UAVs, but some UAVs still adjusted their flight direction between 25–35 s until they reached
the expected yaw angle at 35 s.

When the NSGAII optimized the multiple UAVs obstacle avoidance process in Figure 15,
the UAV3 was very close to the curve of the outer edge of the seventh obstacle and made a
quick turn to avoid hitting this obstacle in the later iteration stage. It further caused the
yaw angle to change until all UAVs’ yaw angles converged to the same at 35 s. However,
the horizontal velocity of the NSGAII was also consistent with the MOCS, and none of
all UAVs reached the expected speed within the specified time. Finally, all UAVs have
the same initial altitude in the vertical direction and enter the expected altitude in the
obstacle area. Therefore, only IMOCS has the altitude change and altitude rate change in
the vertical direction.

In this section, different simulation results are obtained by using different algorithms
to optimize the problem of multiple UAVs’ cooperative obstacle avoidance with a given
maximum running time. In the horizontal direction, the speed of all UAVs is only the
IMOCS, and MPIO arrives within 42 s. However, when the yaw angle converges to the
expected yaw angle, the time spent by the IMOCS is less than MPIO. This is better than the
MOCS and NSGAII. Meanwhile, the convergence speed of IMOCS is also the fastest.

6. Conclusions

An improved multi-objective cuckoo search algorithm (IMOCS) is discussed in this
manuscript to solve MOO problems. The step size factor of Levy’s flight was used to adjust
the search range adaptively. Secondly, a new local search method was constructed using
dynamic random migration and disturbance factors to develop search space. Two types
of experiments are employed to verify the effectiveness of the IMOCS. On the one hand,
three classic multi-objective algorithms (MOCS, NSGAII, SPEAII) and the IMOCS are used
to test five kinds of ZDT and DTLZ2 multi-objective benchmark issues. Meanwhile, the
diversity and convergence are effectively evaluated based on the GD, IGD, HV, and other
indicators. The results show that the IMOCS can solve different MOPs (such as convexity,
concavity, discontinuity, etc.), and the calculated non-inferior solution sets are all uniformly
covered on the true Pareto front surface. Secondly, to reflect the performance of the IMOCS
algorithm, the Wilcoxon rank-sum test is used to compare and analyze the experimental
data of different indicators, which proves that the IMOCS has significant performance in
terms of convergence and diversity. Next, the analysis of the visualization of obtained data
from the evaluation indicators of GD, IGD, HV, etc. shows that the graph occupancy area
obtained by the IMOCS is relatively small, and the accuracy of obtaining the evaluation
solution is better than other comparison algorithms. On the other hand, the IMOCS is also
applied to solve the real-world problem of multiple UAVs’ cooperative obstacle avoidance.
The IMOCS and the other three algorithms can quickly cross the obstacle area, but while the
horizontal airspeed of the MOCS and NSGAII cannot achieve convergence to the expected
velocity, the MPIO and IMOCS can converge to the expected level within a given time.
However, the MPIO took longer than the IMOCS with more yaw angle deflections. The
IMOCS is better than the comparison algorithms in applying multiple UAVs’ obstacle
avoidance. Hence, the proposed IMOCS could achieve the best performance.
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The proposed IMOCS is mainly aimed at extending the adaptive search mechanism
and obtaining more accurate optimization results of MOCS. There are still has some disad-
vantages which need to be overcome. First, the IMOCS may lack searchability in solving
high-dimensional MOO problems. Secondly, the parameters are difficult to set for vari-
ous MOO problems. Hence, the future work could be executed from two aspects. First,
our uppermost priority is to enhance the adaptive searchability while solving the high-
dimensional MOO problems. Second, studies that design an adaptive adjustment strategy
of the parameters due to the population’s current status are also needed.
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