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Abstract
Nowadays, the importance of green and biodegradable plastics as viable substitutes for non-degradable petroleum-based 
materials is felt more than ever. Regenerated cellulose (RC) as a potential candidate suffers from poor processability and 
inferior properties, limiting its wide applications. In this study, it is demonstrated that citric acid (CA) enhances physical, 
mechanical, and thermal properties of RC films, due to RC-citric acid compatibility. 1-ethyl-3-methylimidazolium chloride 
(EMIMCl) as a green ionic liquid was employed for the processing of RC. The optimum properties in terms of thermal sta-
bility, mechanical strength, contact angle, water uptake, and oxygen permeability were achieved at 10 wt% of CA. However, 
further incorporation of CA adversely affected the film properties. This behaviour was explained by the crosslinking and 
plasticizing effects of CA. Furthermore, in vitro cytotoxicity test demonstrated that RC/CA films are cytocompatible, sug-
gesting the potential advantage of using these biopolymeric films for biomaterial and biological applications.
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Introduction

Regenerated cellulose (RC) as the most abundant renewable 
resource in nature is considered as a viable substitute for 
petroleum materials [1, 2]. RC is a linear polysaccharide 
composed of β-1–4-linked d-glucopyranose repeat units and 
offers several advantages such as low cost, good biocom-
patibility, and biodegradability [3]. Despite these, RC has 
some drawbacks in terms of processability as it can neither 
be melted due to premature degradation nor be dissolved in 
common solvents due to strong intra- and inter-molecular 

hydrogen bonding (H-bonding) alongside its semi-crystal-
line structure [4]. To address this challenge, various solvent 
systems such as N-methyl morpholine N-oxide (NMMO) 
[5], lithium chloride/1,3-dimethyl-2-imidazolidinone (LiCl/
DMI) [6], and phosphoric acid [7] have been employed for 
the preparation of RC-based materials. However, toxic-
ity, difficult solvent recovery, and possible side reactions 
of such solvents still remain to be addressed specifically in 
bio-related areas [8, 9].

Recently, ionic liquids (ILs) as ‘green’ solvents have 
attracted a great deal of attention due to their unique fea-
tures such as negligible vapour pressure, specific solubility, 
chemical and thermal stabilities, low melting point, and ease 
of recycling [10–12]. A brief literature survey reveals that 
room-temperature ionic liquids, especially imidazolium-
based, are one of the most promising ILs for wood disso-
lution [13, 14]. Typically, 1-ethyl-3-methylimidazolium 
chloride (EMIMCl) is regarded as the most frequently used 
IL for the preparation of cellulose solutions due to its low 
toxicity and low reactivity [15, 16].

Despite addressing the processability issue, cellulosic 
materials typically suffer from inferior properties. One 
emerging strategy to tackle this issue is the inclusion of a 
suitable multifunctional compound. Citric acid (CA) can be 
regarded as a promising biocompatible candidate as it has 
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one hydroxyl and three carboxyl groups in the structure and 
widely exists in citrus fruits [17]. The presence of such func-
tional groups can potentially lead to the formation of strong 
H-bonding, thereby crosslinking the polymer, improving the 
properties, and adjusting the hydrophilicity [18]. CA has 
been reported to function as a non-toxic crosslinking agent 
for poly(vinyl alcohol) [19], starch [20], as well as cyclodex-
trin-grafted cellulose [21]. Furthermore, CA is employed for 
the synthesis of cellulose hydrogels through the formation of 
ester bonds between the polymer chains of cellulose deriva-
tives via anhydride formation [22, 23].

With this background, it is hypothesized that the introduc-
tion of CA into RC may ameliorate the properties through 
crosslinking, making it more versatile for a broader range 
of applications. To evaluate this hypothesis, a set of RC/
CA films were successfully prepared using EMIMCl as a 
green solvent. The effect of different concentrations of CA 
was comprehensively assessed on hydrophilicity, oxygen 
 (O2) permeability, biocompatibility, mechanical, thermal, 
and morphological properties of the RC films. The results 
showed that the prepared biopolymeric films may be con-
sidered as useful candidates in food packaging, and drug 
delivery.

Experimental

Preparation of Regenerated Cellulose/Citric Acid 
(RC/CA) Films

The solution-casted RC films consisting of different con-
centrations of CA (0, 5, 10, 20 wt% with respect to RC) 
were produced by adding the CA (Sigma, analytical grade) 
in the EMIMCL (Sigma, analytical grade) ionic liquid for 
20 min after which RC powder (Avicel type, Sigma, powder 
size of 50 μm and DP of 350 ) was added. To dissolve RC 
in EMIMCL ionic liquid, the mixture was heated at 90 ºC 
for 24 h with constant stirring. The ratio of EMIMCL/RC 
was 94/6 (wt%). The solution was degassed in a vacuum 
oven and then cast on a glass plate. The plates were then 
immersed in a distilled water at room temperature for 12 h 
to remove the solvent, and then dried under vacuum at 40 ºC 
for 2 h [24]. The thickness of the films was measured with a 
digital micrometre and found to be ca. 30 ± 2.35 μm. All the 
dried films were stored in a moisture-controlled desiccator 
for further testing. As summarized in Table 1, the films pre-
pared with different CA content (0, 5, 10, 15, and 20 wt%) 
were coded as RC, RC/CA5, RC/CA10, RC/CA15, and RC/
CA20, respectively.

UV–Vis Spectroscopy (UV–Vis)

The optical transmittance  (Tr) of the pure RC and RC/CA 
films were measured with a UV–vis spectroscope (Shimadzu 
UV-3101PC, Japan) at wavelengths ranging from 200 to 800 
nm.

X‑Ray Diffractometry (XRD)

X-ray diffraction (XRD) patterns were obtained using a 
XRD diffractometer (Rigaku Miniflex II). Patterns with Cu 
Kα radiation (λ = 0.15406 nm) at 40 kV and 30 mA were 
recorded in the region of 2θ from 5 to 70.

Fourier Transform Infrared Spectra (FTIR)

FTIR spectra were recorded using a PerkinElmer Spectrum-
GX spectrometer in the range of 400 to 4000  cm− 1 at a reso-
lution of 4  cm− 1 and the speed of 0.2  cm− 1/s.

Field Emission Scanning Electron Microscopy 
(FESEM)

The morphology of RC and RC/CA films was investigated 
by FESEM using a JEOL JSM-6701 F SEM machine oper-
ating at an acceleration voltage of 10 kV [25]. The micro-
graphs were taken from the surface of cryo-fractured sam-
ples coated with gold.

Thermogravimetric Analysis (TGA)

Thermal analysis of the RC and RC/CA films was deter-
mined using a TGA50 (TGA 50 Instruments, USA). The 
temperature ranged from 30 to 800 ºC with a heating rate of 
10 ºC/min under nitrogen.

Water Absorption

Water absorption (WA) test was conducted according to 
ASTM D570-98. Samples with 76.2 mm × 25.4 mm × 0.03 
mm dimensions were dried under vacuum. Then, they were 
immersed in distilled water at room temperature until they 

Table 1  The amount of different component used for preparation of 
the RC/CA films

Samples RC RC/CA5 RC/CA10 RC/CA15 RC/CA20

RC (gr) 6 5.7 5.4 5.1 4.8
CA (gr) 0 0.3 0.6 0.9 1.2
EMIMCL (gr) 94 94 94 94 94
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reach equilibrium. Afterward, the samples were removed 
from water, weighed and the weight gains were recorded. 
Five samples were measured from each formulation and the 
average value was reported. The % weight gain was deter-
mined using Eq. (1):

 where  Wd, and  WW are the weights of dry samples (before 
immersion) and wet (after immersion) respectively.

Contact Angle Measurement

Contact angle values were measured by the pendant drop 
method with a water drop of 2 µL and an optical contact 
angle meter SL 100B from Solon Information Technol-
ogy Co., Ltd. (Shanghai, China) at room temperature and 
ambient humidity. The reported value is the average of five 
measurements.

Oxygen  (O2) Permeability

The  O2 permeability rates were measured using a constant 
pressure system and soap bubble flow meter at 25 ºC with 
feed gas pressure of 5 bar. The measurement was repeated 
three times for each sample. The pure gas permeability was 
calculated using Eq. (2) [26]:

 where P, ∆p, A, Ɩ, t, and V are respectively the permeability, 
pressure difference across films (Pa), effective surface area 
(12.5 ×  10− 4  m2 ), film thickness (m), permeation time (s), 
and volume of the permeated gas  (m3

(STP)).

Mechanical Properties

Tensile properties were measured with a LRX Tensile Test-
ing Machine (Lloyd, USA) according to ASTM D882-10 at 
a crosshead speed of 10 mm/min with the gauge length of 
30 mm. The specimens were cut into strips of 60 mm × 13 
mm × 0.03 mm. The experiment was repeated five times and 
average values were reported.

Cytotoxicity Analysis

The viability of cells attached on the RC and RC/CA sam-
ples was determined by the MTT (3-[4,-dimethylthiazol-
2-yl]-2,5-diphenyltetrazolium bromide) assay. For the 
assay, the samples were fixed in a 96-well tissue culture 
plate (TCP) and were sterilized with UV light and ethanol, 
then 1 mL of cell suspension containing 2 ×  105 cells/well 

(1)WA(%) =
Ww −Wd

Wd

(2)p =
l

AΔP

dv

dt

of human skin fibroblasts (HSF 1184) were seeded evenly 
onto the samples. The culture medium was changed every 
2 days. After seeding for 1, 3, and 5 days, 100 µL of MTT 
(5 mg/mL) solution was added to each well and incubated 
at 37 °C for 4 h, respectively; after removal of superna-
tants, 650 µL of dimethyl sulfoxide (DMSO) was added 
to each well for dissolving the blue formazan crystal, then 
the solution was transferred to 96-well plates. The absorb-
ance of the contents of each well was measured at 570 nm 
using an ELISA microplate reader (Bio-Rad, Model 680, 
USA). A mean value was obtained from the measurement 
of four test runs.

Results and Discussion

Apparent Film Properties

In general, transparency is a useful criterion to evaluate the 
compatibility of the different components in a compound. 
The transmittance spectra of the films were measured in 
the wavelength range of 200–800 nm, shown in Fig. 1. The 
optical transmittance of the pure RC film at 550 nm was 
99.6 %, and there was no significant difference in trans-
mittance between the RC and the RC/CA films (p > 0.05). 
These results suggest that CA, even at the highest conc. 
(20 wt%), is highly compatible with the RC matrix due to 
chemical affinity and strong interaction [27]. Such an affin-
ity prevents CA from phase separation and crystallization 
which are the main reasons for the absorption of light and 
thus film turbidity.

Fig. 1  Light transmittance of RC and RC/CA films, the inset is the 
magnification of the main graph for transmittance values higher than 
90%
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X‑Ray Diffractometry (XRD)

Figure 2 shows the XRD patterns of CA, RC, and RC/CA 
films. The RC films exhibited two characteristic peaks at 
around 2θ = 12.24° and 21.6º which respectively correspond 
to (1

−

10), and (110)/ (020) planes [28]. These peaks are attrib-
uted to cellulose I to cellulose II transformation [29, 30]. 
The diffraction angles of the RC/CA films are almost iden-
tical to those of the pure RC. The diffraction peaks of CA 
which were expected to appear at 2θ = 14.3º, 18.2º, 19.6º, 
and 26.2º were not observed in the diffraction pattern of 
the RC/CA films (Fig. 2). The disappearance of these peaks 
may be attributed to the fact that CA is dispersed into the RC 
matrix in the molecular level, and that RC does not phase 
separate to form CA crystallite phase within the RC matrix.

To evaluate the effect of CA on the film crystallinity, the 
diffraction peak at 2θ = 12.24° was compared. The weaker 
the intensity, the lower the RC crystallinity [31]. As seen, 
upon the CA incorporation, the intensity of this peak slightly 
decreased which could be attributed to RC-CA interactions 
and restricted mobility of RC, leading to a lower chain order-
ing and crystallinity [32–34].

FTIR Spectroscopy of RC/CA Films

FTIR spectroscopy was employed to determine the exist-
ence of any interaction between RC and CA. Characteristic 
absorption bands of RC are at around 3600–3000, 2923, 
1430, 1164 and 894  cm− 1 (Fig. 3). These absorption bands 
are ascribed to -OH bond, C-H stretching vibration,  CH2 
symmetrical bending, C–O stretching vibration of C–O–H 
and C-O-C groups, respectively [14]. The most character-
istic band of CA which is related to C = O groups is seen at 
1740  cm− 1. After the CA incorporation, the intensity of the 

broad peak cantered at around 3300  cm− 1 was weakened. 
Furthermore, the presence of CA is proved by the appear-
ance of the peak at around 1731  cm− 1 (C = O groups of CA) 
which merged by the band at 1625  cm− 1 corresponding to 
C–O stretching vibration of C–O–H of RC. It should also 
be mentioned that peaks at 1164 and 894  cm− 1, which are 
related to oxygenated groups of RC were slightly shifted 
to a lower wavelength. The appearance of a new band at 
1731  cm− 1 in the RC/CA10 spectrum could be attributed to 
free COOH of CA as well as C = O groups of the ester bonds 
formed as a result of RC-CA crosslinking, as suggested by 
other researchers as well [35, 36]. Also, the band shifts and 
broadening of the peak cantered at 1625  cm− 1, along with 
a weaker absorption band at 3303  cm− 1 could also be due 
to crosslinking or the formation of H-bonding in the films 
[37, 38].

Morphology of the RC/CA Films

Figure 4 shows the cross-sectional FESEM images of pure 
RC and RC/CA20 films. The RC/CA film images displayed 
a mesh structure, indicating the CA dispersion in the RC 
matrix at the molecular level. As seen, even at high conc. 
(20 wt% CA), there is no sign of poor compatibility such as 
phase separation, drop-matrix morphology, or void forma-
tion. Hence, these observations which are also consistent 
with the XRD results further verify CA-RC compatibility. 
It can also be seen that the cross-section of RC/CA films 
is more compact, compared to that of pure RC film, which 
could be attributed to the physical networks formed as a 
result of H-bonding [39]. The compact structure of the films 
as a result of CA bonding with the matrix is responsible for 
the lower water uptake, lower  O2 permeability, and other 
improved properties which will be discussed below. Simi-
lar observations have been reported for biodegradable citric 

Fig. 2  XRD patterns of CA, RC and RC/CA films

Fig. 3  FTIR spectra citric acid, pure RC, and RC/CA10
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acid-modified granular starch/thermoplastic pea starch com-
posites [40].

Thermal Stability Analysis

Figure 5 shows the TGA curves of RC and the RC/CA 
films while Table 2 summarizes the characteristic tem-
peratures.  T15,  T50, and  T80 are the temperatures at which 
15 %, 50 % and, 80 % of weight loss occurred, respectively 
[34]. The thermal stability of the films was significantly 
enhanced by the incorporation of CA especially at high 
temperatures (> 300 ºC). The  T80 of the RC/CA10 films 
increased by 161 ºC compared to pure RC films. Addition-
ally, the char yields for the RC/CA films improved with 
CA incorporation up to 10 wt% of CA. The char yield 
of RC was 12.2 % at 800 ºC, whereas at the same tem-
perature it increased to 17.19 % for the films with 10 wt% 
CA content. This demonstrates that the increase in CA up 
to 10 wt% improves the crosslinking, while at the higher 
contents, its contribution is decreased. Furthermore, the 
CA decomposition starts from 175 ºC by decarboxylation. 
Such decomposition is not noticed in the RC/CA films 
which further verify the interaction of CA with RC. Cit-
ric acid due to good compatibility is able to go between 

the RC chains and disrupt the intermolecular interactions, 
thereby forming bonds with the polymer chains. At high 
concentrations (above 10 wt%), a more open network of 
H-bonding might be created and results in lower stability 
(plasticizing effect of CA) [39].

Fig. 4  The cross sectional FESEM images of (a–c) RC and (d–f) RC/CA20 films

Fig. 5  The TGA curves of RC and RC/CA films
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Hydrophilicity of RC/CA Films

The equilibrium water uptake (WA) values of RC and RC/
CA films are summarized in Table 3. The highest water 
uptake was achieved for pure RC films. When CA was 
added up to 10 wt%, the uptake decreased gradually. The 
RC/CA film containing 10 wt% CA showed the lowest 
uptake (WA = 96.8 %). Higher amounts of CA (> 10 wt%) 
reversed the trend and increased the uptake. This behaviour 
at low conc. could be attributed to the RC-CA H-bonding 
and crosslinking effect, restricting the hydrophilic functional 
groups of RC, while at high conc., the plasticizing effect is 
the dominant factor, increasing the uptake [39].

Wettability of the films was obtained through the meas-
urement of the contact angle (θ) of a water drop on the films. 
Images of the liquid drops (distilled water) on the pure RC 
and RC/CA films are shown in Fig. 6, and the obtained 
angles are summarized in Table 3. The contact angle of pure 
RC film was found to be ca. 51.3º, confirming its hydrophilic 
nature due to the presence of abundant hydroxyl groups [41]. 
The contact angles increased with increasing CA content. 
When 10 wt% CA was incorporated, the contact angle value 
increased to ca. 91.8 º (Fig. 6). The increase in the contact 

angle was followed by a decrease when the CA concentra-
tion exceeded 10 wt%. The RC/CA10 film exhibited the most 
hydrophobic characteristic and strongest structure.

As noticed, both water uptake and contact angle values 
followed a similar trend as they both represent hydrophilic-
ity characteristics of the films. The former and the latter 
values are considered as bulk and surface hydrophilicity, 
respectively. The reduction in hydrophilicity of the films at 
low CA contents (< 10 wt%) is attributed to the reduction of 
soluble RC content due to RC-CA crosslinking [42]. Involv-
ing in such an interaction reduces the accessible number 
of functional groups for interacting with water both in the 
bulk and on the surface [43]. Increasing hydrophilicity at a 
higher amount of CA (> 10 wt%) could be attributed to the 
CA plasticization effect and presence of excessive amounts 
of highly polar COOH and OH groups in CA itself [44].

Mechanical Strength

The mechanical properties of films are summarized in 
Table 3. As seen, the tensile strength and Young’s modulus 
of RC/CA films significantly increased by the incorporation 
of CA. The tensile strength for the pure RC and RC/CA10 
were respectively 35.3, and 66.2 MPa. Young’s modulus was 
also notably increased from 1.8 GPa for pure RC to 3.7 GPa 
for RC/CA10. Above 10 wt% of CA, however, the mechani-
cal properties decreased slightly. This phenomenon can be 
explained by the two opposite roles of CA; crosslinking vs. 
plasticization. The former strengthens the structural integrity 
through the film and reduces the molecular movements of 
RC chains, thereby improving the film strength [45]. On the 
other hand, the latter adversely affects mechanical properties 
by increasing free volume, lowering chain entanglement, and 

Table 2  TGA results of RC and RC/CA films

Samples RC RC/CA5 RC/CA10 RC/CA15 RC/CA20

T15 (ºC ) 262 262 269 262 262
T50 (ºC ) 303 303 310 304 303
T80 (ºC ) 361 427 522 464 423
Residual (%) 

at 800 (ºC )
12.2 15.1 17.19 16.1 14.5

Fig. 6  The contact angle pictures of a RC, b RC/CA5, c RC/CA10. d RC/CA15 and e RC/CA20

Table 3  Mechanical properties, equilibrium water uptake, contact angle and  O2 permeability of RC and RC/CA films

Samples Young’s modulus 
(GPa)

Tensile strength
(MPa)

Elongation at
break (%)

WA (%) Contact angle ( º ) O2 ×  10− 18

(m3 m/m2 s Pa)

RC 1.8 ± 0.3 35.3 ± 1.2 5.26 ± 0.5 147.7 ± 1.8 51.3 ± 1.8 1.10 ± 0.04
RC/CA5 3.3 ± 0.1 57.4 ± 1.3 6.10 ± 0.3 103.4 ± 1.0 80.5 ± 1.5 0.68 ± 0.04
RC/CA10 3.7 ± 0.3 66.2 ± 1.0 6.28 ± 0.2 96.8 ± 1.4 91.8 ± 1.8 0.55 ± 0.03
RC/CA15 2.8 ± 0.4 48.1 ± 1.5 7.71 ± 0.3 110.3 ± 1.3 76.1 ± 1.1 0.73 ± 0.05
RC/CA20 2.2 ± 0.2 40.4 ± 1.1 8.26 ± 0.4 114.6 ± 1.1 75.7 ± 1.3 0.78 ± 0.03
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facilitating the chain motions [39]. Based on the obtained 
results, It can be concluded that the former is predominant 
at low CA loading (< 10 wt%), while the latter one prevails 
at high loadings (> 10 wt%).

Interestingly, the elongation at break of the films 
improved continuously with CA incorporation and did not 
follow the trend of modulus and tensile strength (Table 3). 
It was increased from 5.26 % for pure RC film to 8.26 % for 
RC/CA20 film. It should be noted that in contrast to covalent 
attachments, H-bonding interactions are not strong enough 
to reduce extensibility since they are breakable under stress 
[46]. Hence, it would be logical to assume that under exten-
sion, H-bonds eventually break and RC chains become ori-
ented, thereby improving extensibility [39].

O2 Permeability

As seen in Table  3, the  O2 permeability of the films 
decreased dramatically by the addition of up to 10 wt% CA 
while higher CA content (> 10wt%) reversed the trend. In 
general, gas permeation through a polymer film is explained 
by solution diffusion mechanism in which gas permeability 
(P) is directly proportional to the solubility (S) and diffusiv-
ity (D) of the gas in the film (P = S ×D) [47]. The former is 
determined by the polymer/gas molecule chemical affinity, 
while the latter is determined by the segmental chain motion, 
free volume, as well as the size and shape of the penetrant 
molecule. In light of the above results, the permeation reduc-
tion at CA < 10 wt% can be attributed to the diffusivity con-
tribution. As a result of RC-CA crosslinking, the molecular 
motions are hindered, lowering the formation rate of tran-
sient gaps (directly related to the extent of free volume). 
Higher permeation at CA > 10 wt% is however attributed 
to high free volume arising from the plasticizing effect. It 
is well understood that the plasticizers improve segmental 
motions of polymer chains as well as free volume, facilitat-
ing the diffusion of gas molecules [39]. It is interesting to 
note that the trend of mechanical properties is reasonably 
consistent with that of  O2 permeation.

In Vitro Cytotoxicity Test

The cytotoxicity of RC and RC/CA films was evaluated on 
human skin fibroblasts (HSF 1184). As shown in Fig. 7, 
both RC and RC/CA films were cytocompatible. No sig-
nificant toxicity was observed compared to the control 
sample. However, a slight improvement was noticed in 
RC/CA15, and RC/CA20, suggesting that the presence of 
CA in the films facilitates cell attachment and stimulates 
cell proliferation. The carboxylic acid and hydroxyl groups 
CA could contribute to cell binding on films. Furthermore, 
the CA addition has changed the surface topography and 
hydrophilicity of the samples which are shown by SEM 

and contact angle results. Therefore, the rougher surface 
of RC/CA samples, as well as more hydrophobic charac-
ters of RC/CA samples, compared to the RC and control 
sample has improved the cell adhesion of composites [48]. 
Cytotoxicity tests using cell cultures have been accepted 
as the first step in identifying active compounds and for 
bio-safety testing [49, 50]. Consequently, it can be inferred 
from the MTT results that all the RC/CA films produced 
in the present research have the potential to be tested in 
biomaterials applications.

Conclusions

Citric acid was successfully incorporated into RC matrix 
using EMIMCl solvent as a simple and the low cost 
method. The multi-carboxyl structure of the CA resulted 
in the interaction between RC and CA. The tensile strength 
of RC films was remarkably improved by the addition of 
up to 10 % CA. Citric acid addition also improved the 
thermal resistance and increased the char residue of RC/
CA films. The multi-carboxyl structure of CA could also 
induce cross-linking which in turn improved the barrier 
properties and moisture absorption of films. The cytotox-
icity results on human skin fibroblast (HSF 1184) cells 
revealed that the RC/CA films were not toxic and bio-
compatible. Due to the biocompatibility of RC/CA films 
with improved oxygen barrier and mechanical properties 
as well as water resistance properties, these biopolymeric 
films can be employed as effective replacement for the 
non-biomaterial derived products with potential in food 
packaging, membrane, and biomaterials applications.

Fig. 7  Cytotoxicity test of RC and RC/CA films on human skin fibro-
blasts (HSF1184) cell (mean values ± s.e.; n = 3)
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