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a b s t r a c t

Power peaking factors (PPF) is an important parameter for safe and efficient reactor operation. There are
several methods to calculate the PPF at TRIGA research reactors such as MCNP and TRIGLAV codes.
However, these methods are time-consuming and required high specifications of a computer system. To
overcome these limitations, artificial intelligence was introduced for parameter prediction. Previous
studies applied the neural network method to predict the PPF, but the publications using the ANFIS
method are not well developed yet. In this paper, the prediction of PPF using the ANFIS was conducted.
Two input variables, control rod position, and neutron flux were collected while the PPF was calculated
using TRIGLAV code as the data output. These input-output datasets were used for ANFIS model gen-
eration, training, and testing. In this study, four ANFIS model with two types of input space partitioning
methods shows good predictive performances with R2 values in the range of 96%e97%, reveals the strong
relationship between the predicted and actual PPF values. The RMSE calculated also near zero. From this
statistical analysis, it is proven that the ANFIS could predict the PPF accurately and can be used as an
alternative method to develop a real-time monitoring system at TRIGA research reactors.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A fuel element is one of the core components in a nuclear
reactor. It consists of a tube, called cladding that houses a fuel
pellet. The fission reaction is occurred in the fuel pellets and re-
leases a large amount of energy and fission neutrons. These fission
neutrons will generate another fission reaction when interacting
with other fuel elements in the core. This process is known as chain
fission reactions. The fission neutron born from this reactions is
required to be monitored for safe reactor operation. This can be
done by measuring the neutron flux for determining the number of
fission neutrons born by using external detectors or through the
calculation of power peaking factor (PPF) [1,2]. The PPF calculation
is carried out to identify the power of every fuel element in the
reactor core by using computational code such as MCNP, TRIGLAV
code, SRAC-CITATION code, and COBRA-EN code.

To maintain the reactor integrity, the fuel element with the
highest power is necessary to be known to prevent the fuel pellets

from melting [3]. Besides, the PPF also is important for reactor
safety and efficient operations. However, there are no direct in-
strumentations available to measure this parameter and can only
be calculated using computational methods such as System Anal-
ysis Module (SAM), NODAL3 code, GETERA code, TRIGLAV and
MCNP code. In Ref. [4] work, both TRIGLAV and MCNP codes were
applied to calculate the PPF at the TRIGA research reactor however,
TRIGLAV code calculation assumes the core as a homogeneous core
while MCNP required long simulations time and sophisticated
computer specifications. In Ref. [5], the PPF at the hot rod of Reactor
TRIGA PUSPATI (RTP) core was determined using the MCNP code
through F7 tally card to calculate the power inside the fuel element
which later will be used to determine the PPF using the ratio be-
tween maximum power released by the hot rod and the average
power of the fuel element in the core.

Since the computational method has several limitations such as
required another calculation step to determine the PPF, long
simulation time, and high computational cost, thus, it is important
to develop another alternative method that is fast, reliable, and
efficient so that the PPF can be included in the real-timemonitoring
system. Due to that, the artificial intelligence (AI) methods were* Corresponding author.
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introduced by correlating several reactor variables to estimate the
PPF. AImethods such as fuzzy neural network (FNN), support vector
machine (SVM), adaptive neuro-fuzzy inference system (ANFIS),
and artificial neural network (ANN) have been applied extensively
to predict the PPF. The FNN and SVM were successfully applied to
predict the PPF at the hottest part of the fuel rods with 7 reactor
parameters as the input variables and resulted in good prediction
accuracy [6,7]. The ANFIS method also resulted with accurate PPF
prediction in real-time as demonstrated in Ref. [8] however this
study was the only one that applied this AI method but the training
and testing methodology were not described in detail.

Other than that, most of the previous studies used ANN method
to estimate the PPF. In Ref. [9] work, the application of ANN with
various fuel element positions and enrichment percentages as the
data input resulted in low accuracy of the predicted PPF. While in
Ref. [10], the input variables including the fuel element's location
and the percentage enrichment with gadolinium oxidewere able to
predict the local PPF with small relative error. Besides, the ANN
application also works well and resulted in good predictive per-
formances when using axial and quadrant power from the external
detectors signal and the control rod positions [11e14]. Since, PPF is
classified as safety core parameters, hence the inclusion of PPF in
the monitoring system is desirable during reactor operation. As
stated in Ref. [15], the ANN method has proven its capabilities in
estimating the PPF in real-time at the Chashma Nuclear Power
Plant core monitoring system.

From the literature, the application of the ANFIS for PPF pre-
diction is limited and still not well developed yet. As the ANFIS is
developed based on two types of AI, hence it has more advantages
than the stand-alone AI methods. Several previous studies had
shown the superiority of ANFIS on prediction study than ANN and
SVM. In Ref. [16] work, the ANFIS and ANN were developed to
predict the fluctuation of groundwater level in India and concluded
that the ANFIS methods were better and have a good potential to
model complex and multivariate problems. Comparison researches
on ANFIS and SVM also prove that the ANFIS has the best perfor-
mances in prediction study in Refs. [17e19] works. Hence, this
study chooses to develop the ANFIS methods for PPF prediction
methodology using AI in the TRIGA MARK II research reactor. The
only type of research reactor that is available in Malaysia is Reactor
TRIGA PUSPATI, known as RTP which has been operated since 1982
and reached its first criticality on June 28, 1982. RTP is a pool-type
reactor and uses uranium zirconium hydride as the fuel-moderator
element with 1 MW thermal power. The core configuration of the
RTP is Core-15 as shown in Fig. 1. In this study, the dataset has been
recovered from RTP to develop input-output data to train and
validate the ANFIS for analyzing the prediction capability on PPF.
Besides, the inclusion of grid, subtractive clustering, and fuzzy c-
mean as the input partitioning method to generate the initial ANFIS

model will be discussed in this paper. The developed ANFIS model
will be characterized based on its performances using a statistical
approach and to identify the ability of themodel when dealing with
unseen datasets.

2. Materials and methods

2.1. ANFIS

ANFIS method is form based on the knowledge combination of
fuzzy inference system (FIS) and ANN. The FIS can create the IF-
THEN fuzzy rules from fuzzy sets with an appropriate member-
ship function (MF) to represent the way of human thinking but is
limited to adaptive learning capabilities. While ANN has the
adaptive learning capabilities for decision-making but could not be
able to explain how the decision has been made. Hence, employing
the adaptive learning capabilities from ANN into the IF-THEN fuzzy
rules in FIS structures makes it more powerful and can be used for
various applications to solve complex engineering or non-
engineering problems.

To develop the ANFIS for PPF prediction, the model based on the
ANFIS method is generated by constructing a series of fuzzy IF-
THEN rules based on the MF types and layers to produce the stip-
ulated input-output datasets [20]. These are set by the user to
generate initial fuzzy rules. Then, the hybrid learning from ANN is
applied to modify and update the antecedent and consequent pa-
rameters in the fuzzy rules to minimize the output error between
predicted and actual output. This learning process is repeated and
stops until reached the epoch number or error threshold set by the
user. To explain the relationship between the input-output dataset
of a complex system and the ANFIS method, the ANFIS architecture
is depicted in Fig. 2.

From Fig. 2, the square box in Layer 2 and 5 are adaptive. An
unknown parameters inside this layer are required to be tuned
using the hybrid learning method during a training session. The
ANFIS training session is carried out through forward and backward
pass. In the forward pass, the neuron in Layer 1 will be moved and
complete the calculation up to Layer 5. In this layer, the consequent
parameters are tuned and updated using the least square estima-
tion method (LSE). Then, proceed to calculate the output in Layer 6.
The backward pass is performed to calculate the antecedent
parameter using the gradient descent method (GD). The forward
and backward pass process is repeated until reached the number of
iterations (epoch) or error threshold specified by human expertise
to stop the training session. The node in each layer in Fig. 2 is
connected to other nodes with a neuron signal. This neuron is not
similar to NN. The neuron just works as the connector between
each node function. The detail regarding each layer and their
functions based on Fig. 2 are as followed:

Layer
1:

Defined the input variables.

Oð1Þ
i ¼ x1, Oð1Þ

i ¼ x2 , where i ¼ 1;2
Layer

2:
The output of this layer is the multiplication of output in Layer 1 and the type of MF selected by the user. Ai and Bi are the fuzzy set. This layer is adaptive, usually
known as the ‘fuzzification layer’.

Oð2Þ
i ¼ mAi

ðx1Þ, Oð2Þ
i ¼ mBi

ðx2Þ, where mAi
;mBi

¼ types of MF
Layer

3:
The firing strength,

Qð3Þ
j is calculated in this layer.

Qð3Þ
j ¼ mAi

ðx1Þ � mBi
ðx2Þ, where j ¼ 1;2;3 and 4

Layer
4:

The normalized firing strength is calculated in this layer.

Nð4Þ
j ¼

Qð3Þ
jP4

j¼1
Qð3Þ

j

The consequent parameters are calculated using LSE together with input x1 and x2. This layer is adaptive, known as the ‘defuzzification layer’.

(continued on next page)
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Examples of initial IF-THEN fuzzy rules generated according to
Fig. 2 are depicted in Equations (1)e(4). The x1 and x2 are the input
variables, A1, A2, B1, and B2 are the fuzzy set in Layer 2 while
f1f2f3f4 are the first-order function that consists of the consequent
parameter in Layer 5.

IF x1 is A1 and x2 is B1 THEN f1 ¼ðp1x1þq1x2þ r1Þ (1)

IF x1 is A2 and x2 is B2 THEN f2 ¼ðp2x1þq2x2þ r2Þ (2)

Fig. 1. Core-15 configuration of RTP [5].

Fig. 2. ANFIS architecture with two input variables.

(continued )

Layer
5:

Layer 5ð5Þj ¼ Nj fj ¼ Njðpjx1þqjx2þrjÞ
Layer

6:
ANFIS output is calculated in this layer.

yð6Þ ¼ P4
j¼1

Layer 5ð5Þj
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IF x1 is A2 and x2 is B1 THEN f3 ¼ðp3x1þq3x2þ r3Þ (3)

IF x1 is A1 and x2 is B2 THEN f4 ¼ðp4x1þq4x2þ r4Þ (4)

2.2. Input partitioning method

ANFIS method can solve any non-linear and complex relation-
ship between input and output datasets with high precision per-
formances. Besides having the knowledge between two AI
methods, the ANFIS model with an appropriate input partitioning
method could result in better model performances [21]. The
number of fuzzy rules generated is also influenced by the type of
input space partitioning methods. In general, there are two types of
input partitioning methods which are grid partitioning (GP) and
scattering partitioning (SP) methods. GP works by diving the input
data space into a grid-like structure and the size of the grids are
adjusted and updated during model training as shown in Fig. 3. The
numbers of fuzzy rules generated under the GP method are
depending on the number of input variables and the MF types and
layers. For instance, if the number of the input variable is 4 and the
defined MF layers is 2, then the number of fuzzy rules generated
using the GP method is 2^4 ¼ 16. Hence, if the number of the input
variable is increasing then the number of fuzzy rules generated will
also be increasing exponentially. Due to that, the GP method is
effective when the number of inputs less than 6 to prevent the
drawback known as the ‘curse of dimensionality [22].

The SP method works through the clustering method by
dividing the input data space into clusters where the data in the
cluster have the biggest similarities and generates a fewer number
of fuzzy rules. There are three clustering methods such as sub-
tractive clustering (SC), fuzzy c-mean (FCM), and conditional fuzzy
c-mean (CFCM). The SC method is applied when the user does not
have any idea about the number of clusters center based on the
input data space. According to Long and Binh in Ref. [23], the SC
method considers only the data point in the input data space,
which technically reduces the computational calculation time and
gives better distribution about the cluster centers. The number of
fuzzy rules generated is depending on the number of cluster cen-
ters calculated using SCmethods. The steps to calculate the number
of clusters center are as followed [24]:

While the FCM method works by randomly determine the
number of clusters at first and allowing the data point, xi to belong
to the clusters of the center, cj. Then, the calculation of cost func-
tion, Jm is calculated iteratively to update the MF, mij, and stop when
the cost functions converge to a local minimum point with termi-
nation criteria between 0 and 1. The calculation of cost function and
MF are depicted in Equations (7) and (8) while the termination
criteria can be calculated using Equation (9).

Jm ¼
XX
i¼1

XC
j¼1

mmij xi � cj
2 (7)

mij ¼
1

Xc

k¼1

�
xi � cj
xi � ck

� 2
m�1

cj ¼
XN

i¼1
mmij xiXN

i¼1
mmij

(8)

maxij
n���mkþ1

ij �mkij

���o< ε (9)

2.3. Power peaking factors

From the literature, the PPF can be calculated using various
computational codes and estimation methods using AI. At the RTP
research reactor, the PPF is determined before re-shuffling the fuel
rods to change the core configuration using TRIGLAV and MCNP
codes. The best core configuration is essential to ensure the reactor
operates within the safety limit as mentioned in the RTP Safety
Analysis report [25]. The determination of PPF using MCNP code at
RTP was calculated using the F7 tally to identify the total power
produced by each of the fuel rods. Equations (10) and (11) were
used to calculate the PPF after completed theMCNP simulation. The
ðProdÞmax is the maximum power released by the hot rod, ðProdÞave is
the average rod power in the core, P is the reactor power and N is
the number of fuel elements in the core [26].

Fig. 3. GP method.

Step 1: Defined the data point, xj with
highest density value, Di using
the Equation 5 belowwhere xi is
the potential cluster's center
and ra is an influenced radius
value.

Di ¼ Pn
j¼1

exp

0
BB@� xi � xj2�ra

2

�2

1
CCA

(5)

Step 2: Define the next cluster centers
with density value, Di* using
Equation 6 and the influenced
radius value, rb ¼ 1:5ra where
the Dc1 and xc1 are the potential
density value of the first cluster
center and the selected data
point as the first cluster center
[19].

Di* ¼ Di � Dc1exp

0
BB@� xi � xc12�rb

2

�2

1
CCA

(6)
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PPF@hot rod
ðProdÞmax
ðProdÞave

(10)

ðProdÞave ¼
P
N

(11)

2.4. Data description

In this paper, 6704 of the data input variables were collected at
the RTP core-15 configuration with 7 critical core were adopted to
conduct this prediction study. The data input consists of neutron
flux and control rod positions. These two reactor variables were
chosen to correlate with PPF because, during the reactor opera-
tions, the control rods were moved out from the core to allow the
fission reaction to occur and the neutron flux were changed in both

axial and radial directions. The movement of the control rods is
independent to neutron flux, hence only the radial neutron flux
measurement were conducted and used as the data input. The
neutron flux measurement were done manually since the self-
powered neutron detectors (SPNDs) has not yet been imple-
mented permanently at the RTP core. The details on the experi-
mental procedures were illustrated in Fig. 4.While Fig. 5 depicts the
SPNDs locations during measurement. As for the control rod posi-
tion, these data were obtained directly from the digital instru-
mentation and control system (I&C).

The PPF and the determination of the hot rod were carried out
using the TRIGLAV code. Since there are significant range differ-
ences between neutron flux and control rod positions, thus, the
min-max normalization was applied to normalize these two vari-
ables on a scale of 0e1. Then, the normalized data input-output
were segregated into three different classes of the dataset where
81.4% of the dataset was separated for training data, 15.7% were
reserved as checking data and the rest of the dataset was the testing

Fig. 4. Experimental procedure of SPNDs for measuring the neutron flux.

Fig. 5. SPNDs location during measurement.
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data. Table 1 list the segregation percentages for each of the
datasets.

2.5. ANFIS for PPF prediction

To develop the ANFIS models for PPF prediction at the hot rod of
the RTP core, the training and checking data with the appropriate
input partitioning methods were used to initiate the models. In this
prediction study, GP and two SP methods which are SC and FCM
were applied. Fourteen ANFIS models were generated and the
detail regarding the type of input partitioning methods was tabu-
lated in Table 2. The models were then undergoing the training
session where the tuning and adjusting of the antecedent and
consequent parameters were conducted and stops at 1000 itera-
tions. Then, the status of the trained models was identified by
calculating the error gap between the training and checking errors
obtained during the training session. The model with overfitting
criteria during the training session was eliminated. Only the good
fit models were characterized using a statistical approach. Two
statistical calculations were carried out to evaluate the model
performances which are the correlation coefficient (R2) and the
root means square error (RMSE). The equation of R2 and RMSE are
shown in Equations (12) and (13). The flowchart of ANFIS models
training and testing are shown in Fig. 6.

R2 ¼1�
Pn

i¼1
�
Yacti � YANFISi

�2
Pn

i¼1

�
Yacti � Yact

�2 (12)

RMSE¼1
n

Xn
i�1

��Yacti �YANFISi
�� (13)

3. Results and discussion

Based on the TRIGLAV code calculation, the fuel rod with the
highest power at RTP core-15 configuration was identified at E20
fuel rods and the PPF calculated was 1.87 at 1 MW reactor power.
The trained ANFIS models were evaluated to determine the model
status and the results are tabulated in Table 3. From the table, the
GP partitioning method with gauss2mf as the MF types is experi-
encing overfitting characteristics as the sudden fluctuation were
observed during training session. Whereas the SC method with
0.20e0.35 influenced radius values showing the overfitting criteria.
All models from the FCM partitioning method are classified as
stopped as the training session resulted in undefined numerical
values. Hence, models 2, 3, 4, 5, 6, and 10 to 14 are eliminated and
were not included in model performance evaluation.

The model performance evaluation is carried out through sta-
tistical calculation to determine the model behavior when dealing
with the dataset that is not available during the training session to
identify the generalization capabilities of the model. Table 4 sum-
marizes the result calculation of R2 and RMSE values. Fig. 7 shows
the actual and predicted values based on the testing data. From the
table, the predicted PPF has a strong relationship between pre-
dicted and actual PPF with the R2 values in the range of 96%e97%
and can be observed in Fig. 7. Besides, the generalization capabil-
ities of these four ANFIS models are excellent as the models able to
predict the PPF even the testing data were not included during the
training session. The RMSE calculated were also closed to 0 with
Model 1 is the lowest at 1.5144� 10 �4 andModel 9 is the highest at
2.0459 � 10 �4. This result shows that the ANFIS method has good
predictive performances and can be applied as the alternative
method for the PPF estimation tool at TRIGA research reactors.
Moreover, the ANFIS method also can be used to develop the real-
time monitoring system to monitor the PPF during reactor opera-
tion for education, operator training as well as for efficient reactor
operations.

4. Conclusion

PPF parameter is classified as one of themost crucial parameters
to be known for preventing the fuel rods frommelting and violating
the safety limit values. Various computational codes have been
developed to calculate the PPF however having several limitations
such as long computational time and required high-cost compu-
tational tools. Due to that, the introduction of AI for estimating this
parameter were applied extensively. However, the application of a
hybrid AI such as ANFIS is not well developed in current research
publications. Thus, in this paper, the application of the ANFIS for
PPF prediction at the RTP research reactor has been conducted in
detail. Two variables, neutron flux and CR position from the reactor
core were used to develop the ANFIS model for PPF prediction at
RTP. After the training and testing session, the results from the good
fit ANFIS models showed excellent predictive performances. This
can be reflected with the R2 in the range of 0.96e0.97 which near to

Table 1
Percentages on sorting the input-output data.

Types of data Core �15 Critical Core Percentages (%) Input-Output Datasets

Training data 6 81.4 5459
Checking data 15.7 1050
Testing data 1 2.9 195
Total 7 100.0 6704

Table 2
Details of ANFIS models.

Model Input-partitioning methods MF/Radius value/CC

1 GP gaussmf
2 gauss2mf
3 SP (SC) 0.20
4 0.25
5 0.30
6 0.35
7 0.40
8 0.45
9 0.50
10 SP (FCM) 10
11 7
12 6
13 5
14 4
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1 and reveals the strong relationship between the predicted and
actual PPF values. Besides, the RMSE calculated also near zero in the
range of 1.5144 � 10�4 to 2.0459 � 10�4. This statistical analysis
proves that the ANFIS method has good prediction capabilities and

can be used as an alternative PPF prediction tool. The ANFISmethod
can also be applied to develop the real-time monitoring system at
TRIGA research reactors.

Recommendation

As for future work, this study recommended to increase the
number of input variables with other reactor parameters such as
fuel burnup and thermal-hydraulic feedbacks effects which will
represent the PPF more in detail. Besides, this study also recom-
mends collecting the data for multiple core configurations so that
the ANFIS model developed can be utilized for various configura-
tions without the need to retrained and revalidate the model. In

Fig. 6. Flowchart for PPF prediction using ANFIS method.

Table 3
Training and checking error at E20 fuel rods.

Model Input-partitioning type MF/Radius value/CC RMSE (10�4) Model Status

Training data Checking data Error Gap

1 GP gaussmf 1.0928 1.1787 0.0859 Good fit
2 gauss2mf 1.1454 1.2678 0.1224 Overfitting
3 SP (SC) 0.20 0.9930 0.9813 �0.0117 Overfitting
4 0.25 1.2766 1.2413 �0.0353 Overfitting
5 0.30 1.5375 1.5483 0.0108 Overfitting
6 0.35 1.5964 1.5873 �0.0091 Overfitting
7 0.40 1.5729 1.5632 �0.0097 Good fit
8 0.45 1.6224 1.6262 0.0038 Good fit
9 0.50 1.8721 1.9166 0.0445 Good fit
10 SP (FCM) 8 2.0781 2.0742 �0.0039 Stopped
11 6 3.0693 2.9145 �0.1548 Stopped
12 5 3.3963 3.2772 �0.1191 Stopped
13 4 4.1101 4.0344 �0.0757 Stopped
14 3 3.6606 3.4715 �0.1891 Stopped

Table 4
Trained model performances evaluations.

Models Partitioning types MF/radius/cluster center R2 RMSE (10�4)

1 GP gaussmf 0.9781 1.5144
7 SP (SC) 0.40 0.9653 1.9042
8 0.45 0.9600 2.0445
9 0.50 0.9600 2.0459
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addition, comparison studies between ANFIS and others AI's
method is also recommended to be conducted by using the same
input-output dataset to identify the excellent AI methods on pre-
dicting PPF in nuclear reactors.
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