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Developing accurate soft computing methods for groundwater level (GWL) forecasting is essential for
enhancing the planning and management of water resources. Over the past two decades, significant pro-
gress has been made in GWL prediction using machine learning (ML) models. Several review articles have
been published, reporting the advances in this field up to 2018. However, the existing review articles do
not cover several aspects of GWL simulations using ML, which are significant for scientists and practition-
ers working in hydrology and water resource management. The current review article aims to provide a
clear understanding of the state-of-the-art ML models implemented for GWL modeling and the mile-
stones achieved in this domain. The review includes all of the types of ML models employed for GWL
Southern
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Fig. 1. Map representation of sampling location of GW
specified area with no related research on GWL mode
modeling from 2008 to 2020 (138 articles) and summarizes the details of the reviewed papers, including
the types of models, data span, time scale, input and output parameters, performance criteria used, and
the best models identified. Furthermore, recommendations for possible future research directions to
improve the accuracy of GWL prediction models and enhance the related knowledge are outlined.
� 2022 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Research background

Groundwater resources, as one of the most valuable and impor-
tant sources of water in the world, play a direct and crucial role in
various aspects of human lives, such as agriculture, industrial
development, and potable water supply [1,2]. In addition, the indi-
rect effects of groundwater resources on the environment and
communities are undeniable. The groundwater level (GWL) is a
direct and simple measure of groundwater availability and accessi-
bility. Having a proper understanding of the past, current, and
future situations of GWL can provide policy-makers and practition-
ers in water sectors with better insight and perception to develop
strategies for the planning and management of water resources, to
ensure sustainable socioeconomic development [2]. However,
GWL consists of an integrated response to several climatic, topo-
graphic, and hydrogeological factors and their interactions, which
makes the simulation of GWL a challenging task [3,4].

Numerous studies using different simulation approaches have
been conducted for the quantitative and qualitative prediction of
GWL. These methods cover a wide range of physically based con-
ceptual models, experimental models [5–7], and numerical mod-
els. Modeling groundwater using numerical models consists of
several approaches, such as finite difference [8], finite volume
[9], finite element [10], and element-free [11] methods. Even
though these classical models are robust and reliable, the precision
and accuracy of numerical models are confined by several factors,
such as their high dependency on large volumes of data related to
aquifer properties, the geology of the porous media, and basement
topography [12]. Moreover, properly demarcating domain bound-
aries, defining an efficient grid size for solving the associated dif-
ferential equations, and calibrating/validating the executed
model have made numerical modeling a complex and sophisti-
cated task.

In last two decades, artificial intelligence (AI) models have been
widely used to overcome the drawbacks of conventional numerical
models for GWL simulation. Fig. 1 presents the goal map, depicting
the two major pieces of information, one being the most studied
geographical locations and other those which have not yet been
L data all over the globe with
ling using AI models.
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studied. Furthermore, Fig. 1 highlights the four major countries
which have done extensive GWL modeling-related studies,
whereas the black color zone reveals the areas where the applica-
tion of AI has not yet gained in popularity. Around 70% of areas
have not yet used GWL, as many do not need GW-related studies,
due to a sufficient amount of surface water or less habitants, such
as in polar areas, Russia, and so on. Moreover, some underdevel-
oped countries, such as Africa, and some parts of Asia and North
America, may not have explored AI techniques yet. As per Fig. 2,
there has been a significant increase in studies in this field in the
last few years; however, more studies should be done, based on
different geographical locations, to test the efficiency of the pro-
posed models. The usability and reliability of AI models in dealing
with complex and high-dimensional engineering problems have
been proven in the last few decades [13–15]. AI consists of multi-
dimensional systems combining various mathematical and statisti-
cal components and arithmetic and heuristic algorithms. AI has
been extensively employed in different fields of science, engineer-
ing design, energy, robotics, and economics [16–18]. It has also
been intensively used for solving various civil and environmental
engineering problems [19,15]. Some examples include soft com-
puting techniques [20], Machine Learning (ML) methods [21–23],
probabilistic analysis [24], and Fuzzy-based systems [25]. In recent
years, more attention has been paid to the successful use of AI in
different hydrological fields, including water resources [26], sur-
face and groundwater hydrology [27], sediment contamination
[28], and hydraulics [29].
1.2. Research significance

Proper measurement, nowcasting, and forecasting of GWL in
aquifers are highly important for the sensible management of
groundwater resources [30]. Monitoring GWL can provide hydrol-
ogists and hydrogeologists valuable information to understand the
short- and long-term variations in groundwater availability. The
ability of AI models to simulate and predict GWL without requiring
deep and comprehensive knowledge of the underlying topograph-
ical and hydro-geophysical parameters makes them appealing
methods compared to physically based and numerical methods
Fig. 2. Arithmetical conceptualization of growth observed in GWL research using AI
based model during 2008–2020.
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[31]. A large volume of studies have already investigated and
reported the applicability of AI in modeling GWL over the last
two decades [32]. Most of the early works included simple and
standard AI methods, such as perceptron Artificial Neural Net-
works (ANNs) [33]. However, in the last decade, the application
of a variety of ML models for GWL simulation has been witnessed;
examples include different types of ANNs [34], fuzzy-based models
[35], Support Vector Machines (SVMs) [36], tree-based models
[37], Genetic Programming (GP) [38], and Gene Expression Pro-
gramming (GEP) models [39].

Most recently, along with the application of novel AI models,
including Deep Learning (DL) [40], Extreme Learning Machine
(ELM) [41], and Long Short-Term Memory (LSTM) [42], novel
strategies, such as integrated and hybrid AI models [43], ensemble
learning [44], and AI-GIS (Artificial Intelligence-Geographic Infor-
mation System)-based models [45], have been implemented for
modeling GWL. Rajaee et al. [46], for instance, studied 67 journal
papers and provided a bibliographic review of the applications of
AI in GWL simulation and forecasting. Considering the outcomes
of different classic AI methods, such as ANNs, Adaptive Neuro-
fuzzy Inference System (ANFIS), SVM, GP, and hybrid AI methods,
the study concluded that AI methods can be successfully used to
model and forecast GWL in aquifers located in regions with differ-
ent geology and climate. Some studies have attempted to combine
the advantages of AI and numerical methods to develop hybrid
models. For example, Nourani and Mousavi [47] introduced a
hybrid AI-meshless model for modeling GWL. They used AI meth-
ods, such as ANN and ANFIS, for temporal modeling of GWL, while
the meshless method was used for solving the governing differen-
tial equations to estimate the GWL in places with no observations
[48]. Chen et al. [49] carried out a comparative study using a finite
difference numerical model versus three ML models, including
ANNs and SVM, for simulating GWL. Comparing the general perfor-
mance of the two distinct approaches revealed that the ML models
acted better than the numerical model. Nevertheless, they also
mentioned the superiority of the finite difference method, due to
its generalization ability in including the physical mechanism of
the aquifer.
1.3. Research objectives

As complete descriptions and detailed analyses on the applica-
tion of ML models for GWL prediction are provided in the following
sections, giving more information on this matter herein-that is, as
the literature review-would be repetitive and unnecessary. It is
quite understandable that many hydrologists and hydrogeologists
have recognized the potential capability of ML models, in particu-
lar, for their use in GWL simulation. Even though there have been a
few comprehensive review studies published on the subject of
GWL modeling using ML models, such as the recent one conducted
by Rajaee et al. [46], this review article tries to fill in the literature
gap regarding the emergence and application of novel AI models in
groundwater simulation. Furthermore, the focus of the present
article is the recent developments, progresses, restrictions, and
shortcomings of advanced AI methods in dealing with GWL. Thus,
this article is aimed at researchers, groundwater engineers, envi-
ronmentalists, and hydrogeologists who find the prospects of AI
in the groundwater domain attractive.
Fig. 3. The structure of the classical ANN model [64].
2. Artificial intelligence models for GWL simulation

2.1. Application of artificial neural network models

An ANN is a computer system designed to mimic the manner in
which information is processed and analyzed by the human brain.
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It is a major sort of AI applications, which is capable of handling
complex issues which are difficult, according to statistical and
human standards [19]. Furthermore, ANNs have efficient abilities
to approximate functions that are commonly unknown or to pre-
dict future values based on potentially noisy time-series data
[50–52]. The structure of an ANN is comprised of several simple
elements working in parallel. The determination of the function
of an ANN mainly depends on the connections between elements,
as in natural processing [53]. In general, an ANN is comprised of
three layers, including the input layer (which is used to input the
variables) and the output layer (which is used to compute the
desired target) [54]. The hidden layer is an important component
of an ANN, due to its location between the input layer and output
layer, where the neurons receive a set of weighted inputs and,
hence, generate an output by applying a certain activation function
[15]. The information transfers from one layer to another through
neurons (processing elements). An activation function is always
used, regardless of using an ANN with a single or several hidden
layers. Feed-forward neural networks (FFNNs), which are often
called multilayer perceptrons (MLPs) are one of the most famous
and powerful types of ANN and have been widely used for solving
hydrological issues [55–58]. An FFNN has three layers, as shown in
Fig. 3. In a classical FFNN, the initial weight and bias values are
assigned randomly and, then, the algorithm starts to correct the
values, in order to minimize the loss function. Gradient descent
back-propagation and Levenberg–Marquardt back-propagation
algorithms have increasingly been employed in training FFNNs,
in order to optimize the magnitudes of the weights and biases
[59–62]. In a traditional FFNN, three parameters need to be consid-
ered, in order to accomplish more accurate predictions: (1) The
number of hidden nodes and transfer functions; (2) the initial
weight and bias values; and (3) choosing a sufficient number of
epochs [63].

A large volume of literature is available on the application of
ANN models to forecast GWL in different regions. Nair and Sindhu
[65] conducted a study for estimating the GWL in the Mamom river
basin in Trivandrum region, India. They used an ANN model based
on hydrological parameters to estimate the GWL in three wells
during monsoon and non-monsoon seasons. The predictive models
were constructed using only four meteorological factors as predic-
tors: Rainfall (Raf), potential Evapotranspiration (EVP), Tempera-
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ture (T), and Humidity (H%). Moreover, the Levenberg–Marquardt
(LM) algorithm was applied to train several ANN model sturctures,
in order to optimally choose the weight and bais values. Another
study in India used an ANN approach to estimate the monthly
GWL at four sites located in south-east Punjab for the period of
2006 to 2013 [66], where Raf and preceding GWL were used as
inputs. The results showed that the use of an ANN using the LM
back-propagation algorithm provides more accurate predictions,
compared to other algorithms.

In the African continent, Nouiri and Malek [67] developed an
ANN model to estimate monthly GWL in four aquifers of the Neb-
hana watershed, located in Tunisia. Only three input parameters
(Raf, antecedent GWL, and EVP) were used to develop the forecast-
ing models. The ANN model gave higher prediction accuracy and
was also able to capture the dynamic fluctuations in piezometric
levels. The study revealed that the monthly GWL depended mainly
on monthly precipitation, EVP, and antecedent values of GWL.

Iqbal et al. [68] developed an ANN model for forecasting daily
GWL from three meteorological variables in a study area located
between the Ravi and Sutlej Rivers in Pakistan. The input parame-
ters were Raf, Tmax; Tmin, solar radiation, relative H%, wind speed
(WS), area elevation, and polygon area. In order to select the most
accurate GWL prediction model, the authors applied different
types of ANN architectures with different transfer functions, hid-
den layers, and different percentages of data in the training, valida-
tion, and testing phases. LM back-propagation was used as a
learning algorithm. The study revealed that the proposed model
was able to estimate GWL more accurately, in terms of different
statistical criteria. Furthermore, the results revealed that the tan-
gent sigmoid transfer function was most efficient and the data
division with 80% for training, 10% for validation, and 10% for test-
ing was more effective and optimistic, compared to other data
divisions.

Guzman et al. [69] employed two predictive models based on
two approaches-support vector regression (SVR) and Recurrent
Neural Network (RNN)-for the estimation of GWL for a well located
in Sunflower county, Mississippi, USA. Daily GWL was the only
variable used for developing both models. The authors concluded
that both models produced preferable predictions, but the RNN
gave higher accuracy.

Hong [70] presented a study to estimate hourly GWL using a
feed-forward back-propagation neural network (FFBPNN) to
achieve two main aims: (1) prediction of next hour GWL and (2)
forecasting the fluctuations and changes in GWL between the cur-
rent and one-lag-ahead GWL. The outcomes of the study illustrated
that the proposed model managed to simulate the fluctuations in
GWL between a lag much more accurately than one-lag-ahead pre-
diction of GWL.

Kouziokas et al. [71] used an FFANNmodel to estimate the daily
GWL from meteorological variables in the district of Montgomery
country in Pennsylvania, USA. Different ANN model structures
were investigated, with different transfer functions and learning
algorithms, such as Resilient Back-propagation, Scaled Conjugate
Gradient, LM, and BFGS Quasi-Newton. The simulated GWL values
were found to be higher than those of comparable models found in
the literature.

An FFANN was employed by [72] to forecast hourly GWL at
eight wells in South Korea. The study considered the surface water
level and groundwater abstraction parameters as input. The esti-
mated GWL values were very accurate, in accordance with the
actual magnitudes of GWL and, therefore, the proposed model
was considered to be efficient in capturing the non-linear relation-
ship between the targets and predictors.

In Longyan city, Fujian Province of southeast China, a study has
been conducted [73] to forecast the monthly GWL using two
robust approaches: GM(1, 1) and radial basis function neural net-
274
work (RBFNN). Quantitative assessments revealed that both mod-
els can provide accurate GWL estimates; however, the RBFNN
model was more competent in forecasting GWL, compared to the
GM(1, 1) model. The comparable model, GM(1, 1), demonstrated
an inability to generate highly accurate estimations, especially in
short-term forecasting, compared to the adopted model (RBFNN).
The study concluded that, despite the efficiency of the RBFNN
model, it might still need to be improved to overcome the over-
fitting issue.

The process of understanding and predicting the fluctuations of
GWL is usually very complex, as several parameters play signifi-
cant roles in determining the storage capacity of water in a certain
aquifer. Shamsuddin et al. [74] carried out an attempt to forecast
daily GWL using the MLP technique in a tropical region, Jenderam
Hilir in Selangor state of Malaysia. To achieve better estimation
performance, different ANN structures were chosen, based on dif-
ferent input parameters including meteorological and hydrological
factors. It is important to mention that the LM algorithm was uti-
lized to train the predictive models. The outcomes of the study
exhibited the robustness of Multiple linear regression (MLR) in
forecasting the GWL, based on several statistical criteria. Addition-
ally, the study presented a good relationship between the hydro-
logical parameters and GWL.

The extreme learning machine, an advanced version of an ANN,
was invented in 2006 and has gained good popularity, in recent
years, in solving water resource issues and groundwater estima-
tion tasks. The main structure of the classical ELM model is about
the same as a single-layer FFANN model. However, the input
weights and biases in the ELM algorithm are always assigned ran-
domly and the output weights are calculated using the singular
value decomposition (SVD) method. ELM models have many
advanced aspects, which make them superior to traditional ANN
models in solving complex engineering problems. ELM models
are easier to train and have the characteristics of faster conver-
gence, better generalization, and a lower chance of becoming stuck
in a local minimum, compared to other types of ANN models.
Moreover, the ELM algorithm can be trained quickly with minimal
data [75]; hence, it has shown promising successes in several sec-
tors of engineering, especially hydrological areas.

Alizamir et al. [41] published a paper on modeling GWL using
hydrological and climatic data. The study developed an ELM model
and three other ML models (i.e., RBFNN, MLR, and autoregressive-
moving-average; ARMA) to predict monthly GWL in the Shamil-
Ashekara Plain, Iran. The study found that the ELM model obtained
much higher estimation accuracy than the other models. More-
over, the proposed model showed better performance in predicting
multi-month GWL than the other employed models.

A study has been carried out [76] for the prediction of GWL in
Canada using two different approaches: ELM and SVR models.
Meteorological and hydrological data were used as inputs to
develop both forecasting models. The obtained results showed
the superiority of ELM over SVR in forecasting monthly GWL. A list
of articles on the prediction of GWL using the ANN models are tab-
ulated in Table 1.

2.2. Fuzzy logic and neuro-fuzzy models applications

Neuro-Fuzzy models belong to the category of hybrid models,
which combine two paradigms-ANNs and fuzzy logic (FL)-to utilize
the relative advantages of each algorithm. FL is mainly used to
transform linguistic labels into mathematical expressions using
if-then rule formulations [77]. The combination of ANN and FL
has helped to form the famous ANFIS model [78]. The ANFIS model
uses an ensemble of if-then rules and membership functions (MFs)
to map a set of input variables (xi) to an output variable (y). It con-
sists of five layers; namely, a fuzzification layer, a multiplication



Table 1
The established research on the GWL prediction using the applications of ANN models.

Research Applied AI Models Case study Data Span Input parameters Output parameters Performance metrics

[65] MLP India 2002–2016 Raf, P, T, H GWL R2

[66] MLP India 2006–2013 Raf, GWL Monthly GWL R2, RMSE
[67] ANN Tunisia 2000–2018 Raf, GW, P Monthly GWL RE, RMSE R2, NASH
[68] MLP Pakistan 2003–2014 Raf, SR,Tmax , Tmin , polygon area,

area elevation, RH Daily GWL MAE,MSE,R
[69] RNN, SVR USA 1987–1994 GWL Daily GWL MSE
[70] FFBPNN Taiwan 2008 GWL Hourly GWL, GWF R2, RMSE
[71] FFBPNN USA 2014 RH, T, Raf Daily GWL RMSE
[72] FFBPNN South Korea 2014 SWL, GWA-WCC, GWA- GWHP Hourly GWL ME, RMSE, R, NASH
[73] RBFN, GM(1,1) China 2003–2011 GWL Monthly GWL R2,RMSE, MAE
[74] MLP Malyasia 2015–2016 GWL, Raf, RS, WL, SFR, T Daily GWL R, R2, MSE RMSE
[41] ELM, RBFN, MLP, ARMA Iran Not mentioned GWL, Raf, eV Monthly GWL MSE, MAE, NASH, R2

[76] ELM Canada 2006–2014 GWL, Raf, T, EVP, Monthly GWL R2, RMSE, NASH
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layer (i.e., firing strength layer), a normalization layer, a defuzzifi-
cation layer and, finally, the output layer (i.e., summation) [79].
Like any other machine learning model, ANFIS possesses a set of
parameters to be optimized during the learning process [19]. The
structure of an ANFIS model is very close to that of an ANN, except
that it contains two kinds of parameters-linear and non-linear-
making its training very difficult, especially for large numbers of
input variables. The linear parameters (i.e., consequent parame-
ters) are those of the fuzzy rules, while the non-linear parameters
are those of the MFs. During the training process, the two kinds of
parameters are optimized simultaneously. An example of the
ANFIS model architecture is presented in Fig. 4. Fuzzy logic and
Neuro-Fuzzy are among the most common models used in the area
of hydrological sciences [80]. However, the majority of the
reported studies have used the famous ANFIS model; for example,
for precipitation forecasting [81], soil moisture simulation [82],
modeling of reference EVP [83], sediment load modeling [14],
and for modeling total dissolved solids [84].

The number of studies focused on modeling GWL using neuro-
fuzzy models has constantly increased over the last two decades
(as shown in Table 2); however, the ANFIS model remains the
most-used model, with or without the inclusion of meteorological
variables as predictors. On the other hand, our literature review
revealed that only a few studies have investigated the application
of ANFIS in predicting GWL using only antecedent GWL data.
Fig. 4. The structure
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Moravej et al. [85] applied ANFIS and GP models to predict
monthly GWL from evaporation (EP) and precipitation (P). In addi-
tion, they exploited the abilities of metaheuristics optimization
algorithms, interior search algorithm (ISA), and genetic algorithm
(GA) to improve the performance of the least-squares support vec-
tor machine (LSSVM). A relative performance analysis of ANFIS, GP,
GA-LSSVM, and ISA-LSSVM models showed that the highest accu-
racy was achieved using the ISA-LSSVM algorithm. The study also
reported that the inclusion of P and EP did not contribute to the
improvement of model performance. Bak and Bae [86] used the
ANFIS model to predict GWL using P and Tmean and reported accept-
able results, with RMSE and MAPE of 0.1381 and 37.869%, respec-
tively. The feasibility of fuzzy logic (FL) for GWL prediction has
been demonstrated in a recent study [35]. They proposed FL mod-
els, including Sugeno (SFL), Mamdani (MFL), and Larsen (LFL). In
addition, multiple models were proposed, according to three prin-
cipal forms: Simple averaging, weighted averaging, and committee
machine techniques. The results showed the superiority of the sim-
ple committee fuzzy logic (SCFL) model, with an R2 value ranging
from 0.690 to 0.940 and RMSE ranging from 0.252 to 0.103. see
Table 3.

An alternative model was developed, by Jahanara and Kho-
dashenas [87], by combining three paradigms: Neuro-fuzzy (NF),
group method of data handling (GMDH) and metaheuristics opti-
mization algorithms; that is, particle swarm optimization (PSO)
of ANFIS model.



Table 2
List of reviewed papers related to modeling groundwater level using ANFIS models.

Research Applied AI models Case study
Location

Data
span

Time
scale

Input
parameters

Output
parameter

Performance
metrics

Commentary
(Best model)

Moravej et al.
[85]

ANFIS, GA-LSSVR, ISA-LSSVR Iran 2002–
2008

Monthly P, EP GWL R2, NSE, RMSE ISA-LSSVR*

Nourani and
Mousavi [47]

ANFIS, FFNN, WANFIS WFFNN Iran 2001–
2011

Monthly P, Q GWL R2, RMSE ANFIS-RBF*

Zhang et al. [88] ANFIS, RBFNN, GSM China 2000–
2009

Monthly GWL GWL R, NSE, MARE,
RMSE

ANFIS*

Wen et al. [105] ANFIS, WANFIS, FFNN China 2007–
2009

Weekly GWL GWL R, MARE,
RMSE

WANFIS*

Khaki et al. [91] ANFIS, FFNN, CFN Malaysia 2007–
2013

Monthly GWL, P, EP, H
%, Tmax , Tmin

GWL R, MSE ANFIS*

Bak and Bae [86] ANFIS Korea 2015–
2017

- P, Tmean GWL MAPE, RMSE Unknown

Nadiri et al. [35] SFL, MFL, LFL, CFL-SA, CFL-WA, SCFL Iran 2007–
2016

Monthly GWL, Q, P,
Tmean

GWL R2, RMSE SCFL

Shiri et al. [100] ANFIS, FFNN, GEP, SVM, ARMA Korea 2001–
2008

Daily ET, P GWL R, NSE, RMSE,
CO

GEP*

Sridharam et al.
[106]

ANFIS, WANFIS India 1990–
2017

Daily ET, P, Tmean , IL,
GWL

GWL R2, MAE,
RMSE

WANFIS*

Kisi and Shiri [99] ANFIS, WANFIS USA 2001–
2008

Daily GWL GWL R2, RMSE WANFIS*

Sreekanth et al.
[102]

ANFIS, FFNN India 2000–
2006

Monthly P, EP, H%, Tmax ,
Tmin

GWL R2, RMSE, EV FFNN*

Emamgholizadeh
et al. [95]

ANFIS, FFNN Iran 2002–
2011

Monthly GWL GWL R2, MAE,
RMSE

ANFIS*

Fallah-Mehdipour
et al.[104]

ANFIS, GP Iran Not
reported

Monthly GWL, P, EP GWL R2, NSE, RMSE GP*

Gong et al.[89] ANFIS, FFNN, SVM USA 1998–
2009

Monthly GWL, P, LL,
Tmean

GWL R, NSE, RMSE,
NMSE, AIC

ANFIS*

Shirmohammadi
et al.[103]

ANFIS, ARMA, ARIMA, SARIMA, Fuzzy-
ARX, Fuzzy-ARMAX, ARX, ARMAX,

Iran 1992–
2007

Monthly GWL, P GWL R2, RMSE, AIC ANFIS*

Jahanara and
Khodashenas

[87]

NF-GMDH-PSO, RBFNN-NF-GMDH-PSO USA 2001–
2008

Daily GWL GWL R, RMSE, NF-GMDH -
PSO

Jeihouni et al.
[107]

ANFIS, WANFIS, W-LSSVM, LSSVM,
NARX, W-NARX

Iran 2002–
2016

Monthly P, Tmean GWL R2, RMSE W-NARX*

Djurovic et al.[92] ANFIS, FFNN Serbia 1990–
2010

Daily P, EP, Tmax ,
Tmin

GWL R, NSE, RMSE ANFIS*

Kholghi and
Hosseini [101]

ANFIS, OKR Iran Unknown Unknown LNG, LAT GWL NSE, MAE,
MSE

ANFIS*

Samantaray et al.
[106]

CANFIS, RNN India 1988–
2017

Monthly P, H%, Tmean , IL GWL R2, MSE,
RMSE

CANFIS

Maiti and Tiwari
[94]

ANFIS, FFNN, BNN India 1972–
2001

Monthly P, Tmax , Tmin ,
Tmean

GWL R, IA, RE,
RMSE

ANFIS*

Zare and Koch
[98]

ANFIS-FCM, WANFIS-FCM Iran 1991–
2013

Monthly P, GWL GWL R2, RMSE WANFIS -FCM

Moosavi et al.[97] ANFIS, WANFIS, FFNN, WFFNN Iran 1992–
2007

Monthly GWL, P, EP, Q GWL R2, NSE, RMSE WANFIS*

Moosavi et al.
[96]

ANFIS, WANFIS, FFNN, WFFNN Iran 1992–
2007

Monthly GWL, P, Tmax ,
Tmin , Tmean

GWL RMSE, IA WANFIS*

Raghavendra and
Deka [90]

ANFIS, GPR India 2000–
2013

Monthly GWL GWL R, NSE, RMSE GPR*
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and gravitational search algorithm (GSA). Consequently, two
hybrid models were obtained; namely, NF-GMDH-PSO and NF-
GMDH-GSA. The accuracies of the two hybrid models were evalu-
ated against RBFNN and it was found that the NF-GMDH-PSO per-
formed significantly better than the NF-GMDH-GSA and RBFNN,
showing higher R2 and RMSE values (0.969 and 0.618, respec-
tively). Zhang et al. [88] analysed the differences in GWL prediction
by three AI models: ANFIS, RBFNN, and the grey self-memory
model (GSM). They found that all models could be successfully
applied to model the GWL. They also reported that the ANFIS
model was generally more accurate than the GSM and RBFNN
models, as it obtained the highest performance metrics (i.e., R2,
NSE, MARE, and RMSE). Gong et al. [89] modeled GWL using previ-
ous GWL, P, lake level (LL), and Tmean as predictors. The authors
compared the results obtained using ANFIS, FFNN, and SVM with
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a monthly time step, and reported that the ANFIS model was more
accurate.

Raghavendra and Deka [90] proposed the multi-step-ahead
forecasting of monthly GWL in the river basin near Sullia Taluk,
India, using ANFIS and Gaussian process regression (GPR)
approaches. Four input variables, including the GWL measured in
the previous four months, were used to forecast GWL up to six
months in advance. The results showed that GPR had significantly
higher accuracy in prediction than the ANFIS model. In addition, it
was demonstrated that the performances of the two models (i.e.,
ANFIS and GPR) decreased from one to three months ahead. Simi-
larly, Khaki et al. [91] quantified monthly GWL measured at Langat
Basin, in the southeastern part of Selangor state, Malaysia. A large
number of regressors were used; namely, previous GWL, P, EP, H %,
Tmax; Tmin. Three models were used: ANFIS, FFNN, and the cascade



Table 3
List of reviewed papers related to modeling groundwater level using kernel function embedded models.

Research Applied Models Case Study
Location

Data
Span

Time
Scale

Input Parameters Output
Parameter

Performance
metrics

Used Kernal Function

Fang et al.
[124]

SOM-SVM, MOGA-
SVM

Taiwan 1998–
2007

Monthly GWL, P, TAmean , WS,
SD, RH

GWL RMSE, bias, MAE,
NS

Polynomial

Gong et al.
[89]

ANN, SVM, ANFIS Florida, USA 1998–
2009

Monthly GWL, P, TAmean ,
TAmax , TAmin , LL

GWL R, NMSE, RMSE,
NS, AIC

–

Guzman et al.
[125]

NARX-ANN, RBF-
SVR

Mississippi,
USA

1985–
1994

Daily GWL, P, ET GWL MSE Polynomial Radial Basis
Function Sigmoid

Nie et al.
[126]

RBF-NN Jilin, China 2003–
2014

Monthly P, TAmean , E GWL CC, RMSE, MAE, NS Radial Basis Function

RBF-SVM
Sahoo et al.

[127]
RBF-SVR, RF, GB Indo-

Gangetic,
India

2002–
2011

Monthly P, SM GWL MAE, RMSE, bias,
CV(RMSE)

Radial Basis Function

Sattari et al.
[129]

SVR, M5Tree Ardebil, Iran 1997–
2013

Monthly GWL, PV, WD GWL CC, RMSE Polynomial

Tang et al.
[130]

LS-SVM, SVM,
ANN, RF, kNN

United
Kingdom

2016 Hourly GWL* GWL MAE, MAPE, MSE,
RMSE

Radial Basis Function

Yoon et al.
[131]

ANN, SVM South Korea 2003–
2008

Daily GWL, P GWL CC, MAPE, ME,
RMSE

Radial Basis Function
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forward network (CFN). Their performances were evaluated using
R and MSE. The results showed that the ANFIS model had a signif-
icantly higher accuracy (R2 = 0.94, MSE = 0.005) than that of the
FFNN and CFN. Moreover, Djurovic et al. [92] applied ANFIS and
FFNN models to predict daily GWL in the riparian lands of the
Danube basin in Serbia. Four input variables were selected, includ-
ing, P, EP, Tmax, and Tmin, for GWL prediction. The obtained results
revealed that both models could be applied successfully with a
high level of accuracy. Samantaray et al. [93] demonstrated that
co-adaptive neuro-fuzzy inference systems (CANFISs) are more
accurate than RNNs in predicting monthly GWL using P, H %,
Tmean, and infiltration loss (IL) measured in the region of Odisha,
India, with R2, RMSE, and MSE equal to 0.953, 0.0393, and
0.00378, respectively. Maiti and Tiwari [94] and Emamgholizadeh
et al. [95] have conducted extensive studies and compared the per-
formance of ANFIS and FFNN models in different regions of the
worlds in simulating GWL. They reported ANFIS as more suitable
for GWL prediction, compared to the FFNN model, with either only
antecedent GWL or meteorological variables with antecedent GWL
as inputs.

Data transformations, such as wavelet transforms, provide
methods for data decomposition allowing us to obtain highly
improved data signals and, thus, leading to a significant improve-
ment of model accuracy. Such a data pre-processing approach
has been employed, by Moosavi et al. [96,97], to simulate monthly
GWL using ANFIS, WANFIS, FFNN, and WFFNN in Iran from P,
Tmax; Tmin; Tmean, EP, and the GWL measured at the previous lag.
They found that wavelet data transformation is an effective
method for capturing the non-linearity in the time-series by
removing noise from data. However, they highlighted that the
wavelet transform may become more suitable and further con-
tribute to the performance of ANFIS, compared to FFNN. In order
to ensure a robust prediction strategy of GWL, Zare and Koch
[98] have recently proposed a prior wavelet transform with several
decomposition levels to provide inputs to the ANFIS with fuzzy c-
mean clustering model (ANFIS-FCM). Although this strategy of
decomposition, accompanied with a good choice of the number
of clusters, worked very well, the authors highlighted the impor-
tance of adequate selection of the mother wavelets, which plays
a fundamental role in obtaining excellent accuracy. They showed
that the best performance (with R2 and RMSE values of 0.983
and 0.18, respectively) was obtained during the testing phase using
the sym4 mother wavelet. In light of this, many researchers have
simplified the daily GWL using the discrete wavelet transform
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(DWT) and introduced the decomposed signal as an input variable
to the ANFIS and FFNN models. For example, Kisi and Shiri [99]
have demonstrated that the DWT helps in improving the perfor-
mance of the ANFIS model, allowing R2 values close to 0.99 during
the testing phase.

Despite the increased use of machine learning, several authors
have tried to apply several kinds of models with the overall objec-
tive of acquiring high-level prediction accuracy and exploiting the
advantages of the available information from input variables. For
instance, Shiri et al. [100] used P and ET for predicting daily GWL
using ANFIS, FFNN, SVM, and GEP models. Although the first three
models have been documented in the literature, the GEP was con-
sidered as one of the novelties of the investigation. They reported
that the GEP model was more accurate in terms of prediction.
Some investigations must be discussed here due to their uncon-
ventional and novel approaches. Kholghi and Hosseini [101] pub-
lished an article related to modeling GWL using an
unconventional approach: Ordinary Kriging (OK). In fact, [101] pio-
neered the use of OK for modeling GWL using only the Latitude and
Longitude as predictors. The performance of OK was compared
with ANFIS in predicting GWL in the Qazvin plain, located in the
west of Tehran, Iran. The results showed that the ANFIS model
had higher accuracy than the OK model. Another group of
researchers-Sreekanth et al. [102], Shirmohammadi et al. [103],
and Fallah-Mehdipour et al. [104], have explored the significance
of GWL prediction using GP, the seasonal autoregressive integrated
moving average (SARIMA) model, and hybrid fuzzy-SARIMA. For
instance, Fallah-Mehdipour et al. [104] highlighted the superiority
of GP, compared to ANFIS, in predicting monthly GWL in Iran.

The aim of the study was to develop a new modeling strategy
using GP based on two readily available meteorological variables:
P and EP. Interestingly, another study conducted by Shirmoham-
madi et al. [103] in the same year proposed different models for
GWL prediction from precipitation and antecedent GWL data. They
tested a suite of models (i.e., ANFIS, ARMA, ARIMA, SARIMA, Fuzzy-
ARX, Fuzzy-ARMAX, ARX, and ARMAX) and reported the superior-
ity of the ANFIS model.
2.3. Kernel models applications

Due to their simplicity and generality, kernel functions play
progressively outstanding roles in machine learning and its appli-
cation. This was inaugurated with the launching of support vector
machines and extended with the improvement of other kernel
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function-embedded models [108,109]. As a kernel function can be
described on any input space, diverse kernel functions have been
successfully applied to describe the non-linear relationships defin-
ing complicated data architectures. The support vector machine is
a well-established Kernel model, which has been implemented
widely in several fields, such as regression, bioinformatics, pattern
recognition, and environmental engineering [110]. It is a novel
kind of categorizer, stimulated by two approaches: First, convert-
ing data into a high-dimensional area can reconstruct complicated
problems into simple ones. Second, it is inspired by the theory of
training and uses only relevant inputs [111–113]. The resolution
of a traditional ANN may fall into a regional optimized solution,
while an overall optimized solution is guaranteed by the SVM
model [114]. Kernel function embedded models have been utilized
for the solution of hydrological processes, such as Raf-runoff
[115,116], EP [117,118], EVP [119,120], water stage [121,122],
and so on. A detailed list of reviewed papers related to modeling
groundwater level using kernel function embedded models is given
in Table 3. The non-linear SVM Vapnik’s �-insensitivity loss func-
tion is presented in Fig. 5.

Numerous researchers have recently developed SVM models to
estimate, predict, and forecast GWL fluctuations. Fang et al. [124]
employed a two-stage approach for the development of self-
organizing maps (SOM) and multi-objective genetic algorithm
(MOGA)-based SVM (i.e., SOM-SVM and MOGA-SVM) models to
forecast spatial–temporal GWL in the Choushui River Alluvial
Fan, Taiwan. A polynomial kernel function was implemented in
the construction of the SVM model. In the first stage, the SOM-
SVMmodel applied a clustering method to segregate the geograph-
ical and hydrological components into spatial groundwater zones.
In the second stage, the MOGA-SVM model decided the optimal
input combinations. The results showed that the MOGA-SVM
model was appropriate for forecasting the fluctuation of GWL with
short and long lead-times, while the MOGA-SVM model was more
efficient and accurate.

The accurate prediction of GWL fluctutations is a very compli-
cated and non-linear phenomenon in the natural environment, as
it depends on many diverse components such as P, EP, T, and so
on. Gong et al. [89] developed three machine learning models
(i.e., ANN, SVM, and ANFIS) to predict the fluctuation of monthly
GWL in Florida, USA. The kernel function was used to form the
SVM model architecture. They reported that the models were
effective and accurate for predicting the fluctuation of GWL with
three month lead-times (i.e., one, two, and three months). The pre-
Fig. 5. Non-linear SVR vapnik’s �-in
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dictive results using P, T, previous GWL, and lake level accom-
plished better performance than those using P, T, and previous
groundwater level only. This demonstrates that the interaction
between groundwater and surface water is required for predicting
GWL fluctuation. Besides, the ANFIS and SVM models accom-
plished better predictions than the ANN model.

Guzman et al. [125] developed the non-linear autoregressive
with exogenous inputs-based ANN (NARX-ANN) and RBF-based
support vector regression (RBF-SVR) models, in order to evaluate
GWL in irrigation wells in Mississippi, USA. Three kernel functions
(i.e., polynomial, radial basis function, and sigmoid) were
employed to determine the optimal SVR model with the lowest
training error. Among them, the RBF kernel function furnished
the best accuracy. They classified the total historical time-series
into withdrawn (i.e., summer) and recharge (i.e., winter) seasons.
The RBF-SVR model accomplished better prediction than the
NARX-ANN model for individual (summer or winter) seasons.
Therefore, the prediction of GWL by individual season was more
accurate than that using the total time-series. Furthermore, the
results indicated that the winter season presented as a linear prob-
lem, which decreased the computational requirements of the RBF-
SVR model.

Nie et al. [126] employed the RBF-NN and RBF-SVM models to
predict the fluctuation of monthly GWL in Jilin, China. The RBF ker-
nel function was implemented to set the SVMmodel structure. The
uncertainties generated from the measured errors of input and
output variables were computed based on 95 % confidence inter-
vals. Their research reported that the RBF-SVM model achieved
more accurate and less uncertain results to predict the fluctuation
of monthly GWL, compared to the RBF-NN model.

The Gravity Recovery and Climate Experiment (GRACE), an arti-
ficial satellite, can follow the variation of groundwater level. Grid-
ded rainfall (GR) and soil moisture (SM) data can also support the
development of hydrological models. Unique research using
GRACE, GR, and SM data to predict the variation of GWL in the
Indo-Gangetic basin, India, has been accomplished by Sahoo et al.
[127]. The RBF-SVR, random forest (RF), and gradient boosting
(GB) models computed the ground assignment of satellite data.
The RBF kernel function was used to construct the SVR model
architecture. The addressed research explained that nine pixels of
the GRACE satellite data were applied to identify the relationship
between well-measured and satellite-acquired data. The nine pix-
els were categorized based on the presence or absence of hydrolog-
ical features. The pixels identifying perennial streams provided
sensitivity loss function [123].
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reasonable prediction, while the pixels displaying wells near the
streams supplied poor prediction for the variation of groundwater
level. Additionally, the RBF-SVR model supported better prediction
than the RF and GB models. Another investigation was conducted
on GWL using the feasibility of GB model within the Karnataka
state, India and the research approved the proposed model signif-
icant on the prediction accuracy [128].

Sattari et al. [129] resolved the SVR and M5 Model Tree
(M5Tree) models, in order to predict the variation of monthly
GWL in the Ardebil plain, Iran. The polynomial kernel function
was built in the networks of the SVR model. The variables of the
input combination involved the previous groundwater level, P vol-
ume, and well discharge, while GWL was considered as the output
variable. Both models (i.e., SVR and M5Tree) predicted the varia-
tion of monthly GWL accurately. However, the addressed research
explained that the prediction processes applying the M5Tree
model were simpler and easier than those when employing the
SVR model.

A novel two-phase scheme to predict the variation of hourly
GWL utilizing temporal-spatial analysis and the LSSVM model in
the United Kingdom has eben proposed by Tang et al. [130]. In
the first phase, the temporal analysis utilizing the autocorrelation
function (ACF) and partial autocorrelation function (PACF) is car-
ried out to analyze the temporal behaviors of GWL. The LS-SVM
model is also constructed to predict the variation of hourly GWL,
based on the results of the temporal analysis. The RBF kernel func-
tion was embedded in the architectures of the LS-SVM and SVM
models. The results of the LS-SVM model were compared with four
machine learning models: SVM, ANN, RF, and k-nearest neighbors
(kNN). In the second phase, the spatial analysis, employing the
cross-correlation technique, was carried out to compute the
cross-correlation of mean sea level between the attractive and
neighbor-measured locations. The results revealed that the LS-
SVM model was superior to the other machine learning models
for predicting the variation of hourly GWL.

Yoon et al. [131] investigated ANN and SVM models to predict
the variation of daily GWL in South Korea using the weighted error
function (WEF) approach. The ANNmodel was trained by the back-
propagation (BP) algorithm, while the SVM model was calibrated
by the sequential minimal optimization (SMO) algorithm. The pre-
diction scheme consisted of a direct and recursive strategy. The
RBF kernel function was utilized in the SVM model design. The
WEF approach clearly enhanced the predictive accuracy of two
models (i.e., ANN and SVM). A comparison of the models demon-
strated that the SVM model with the recursive strategy was better
than the ANNmodel with the recursive strategy to predict the vari-
ation of hourly GWL.

Our review of previous articles concerning kernel function
embedded models (e.g., SVM, SVR, and LS-SVM) for predicting
the fluctuation of GWL revealed the following: First, the RFB kernel
function has frequently been employed to construct the model
architectures, as it has few adjusting parameters, compared with
other kernel functions (e.g., polynomial and sigmoid) and can
well-capture non-linear behavior to accomplish the accurate pre-
diction of GWL fluctuations. Second, the kernel function embedded
models can predict the fluctuation of GWL effectively, based on
hourly, daily, and monthly lead-times. Finally, considering the ker-
nel function embedded models, using few input data can provide
more effective prediction than other models for predicting the fluc-
tuation of GWL.

2.4. Deep learning models applications

Deep learning, a subset of machine learning which specializes in
generating outputs from unstructured input data through unsuper-
vised learning approaches, has become popular in groundwater
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level simulation [132]. One of the major advantages of deep learn-
ing is the capability of analyzing complex and high-dimensional
data in a relatively short period with minimal manpower, com-
pared to conventional data collection [133]. Deep learning models
are comprised of an input layer, hidden layers, and an output layer,
where a neural network is used to map features into the output
layer [134]. CNN and LSTM are the most widely applied deep learn-
ing algorithms in hydrology studies [134]. As this review focuses
solely on the application of deep learning to groundwater quantity,
studies on groundwater contamination were excluded. In general,
the application of deep learning in groundwater, as reported in
the literature, can be divided into three major groups: (1) Compar-
ison of the performance of different deep learning algorithms; (2)
filling missing data values; and (3) improvement of the simulation
framework.

A total of 10 articles on deep learning and groundwater level
were identified, as listed in Table 4. Identification of the best deep
learning algorithm is one of the most popular research topics in
this field. Kumar et al. [135] compared deep learning, ELM, and
GPR in predicting groundwater level in the Konan basin, Japan,
with P, river stage, T, recharge, and groundwater level in the input
data layer. Similar studies have been conducted by Supreetha et al.
[136] in the Udipi district in Karnataka state of India, who found
that the Long Short-term Memory-Lion Algorithm (LSTM-LA) out-
performed the LSTM and Feedforward Neural Network (FNN) in
groundwater level prediction. The proposed predictive model is
demonstrated in Fig. 6, as an example for the readers. Park and
Chung [137] and Shin et al. [138] both reported the reliable perfor-
mance of the LSTM model in groundwater level simulations in
Southeast Korea. Interestingly, Shin et al. [138] found that the
duration of the training period did not have a significant impact
on the simulation performance, where the NSE value only differed
by 0.02 between the 6-year and 19-year study periods. The model-
ing scheme proposed by Shin et al. [138] is reported in Fig. 7.

Missing GWL records is a common issue, particularly in devel-
oping and underdeveloped countries. Human factors, equipment
failure, and fluctuations of water level are among the factors that
contribute to such missing records [139]. Therefore, reconstructing
missing GWL values can help us to better understand aquifer sys-
tems. Vu et al. [140] evaluated the capability of an LSTM for filling
in the 50-year GWL data at 31 piezometers to predict future GWL
fluctuations in northwestern Normandy, Italy. They concluded that
the use of deep learning is viable to reconstruct GWL fluctuations,
with correlation coefficient and RMSE values of 0.64–0.99 and
0.07–1.08 m, respectively. The integration of deep learning and
hydrological models for fusing GRACE satellite data with NOAH-a
land surface model developed by NASA-has been conducted by
Sun et al. (2019) [141] to improve groundwater storage prediction
in India. The deep convolution neural network (CNN) model was
applied to learn the Spatio-temporal mismatch in groundwater
patterns between GRACE and NOAH. Their findings indicated that
CNN improved the GRACE-NOAH match and successfully filled in
the data gaps between GRACE missions.

Several studies have proposed strategies to improve deep
learning-based GWL simulation frameworks; for instance, Bowes
et al. [42] explored the effects of algorithm selection, training data
type, and integration of forecast data on GWL predictive model
accuracy in Norfolk, Virginia, USA. The proposed model consisted
of data pre-processing, a learning process, and result post-
processing, as reported in Fig. 8. The results showed that the LSTM
had better performance, as compared to the Recurrent Neural Net-
work (RNN), in this region. The architectures of the RNN and LSTM
models are displayed in Fig. 9. The authors also found that the
model trained with a data set of only storm events outperformed
the models trained with continuous and forecast data using a thou-
sand bootstrapped data set (see Fig. 10).



Table 4
The surveyed literature on the implementation of deep learning models for GWL modeling.

Applied AI models Case study Data
span

Input parameters Output
parameter

Performance
metrics

Features

[135] DL, ELM, GPR Konan, Basin, Japan Not
reported

P, River Stage, T,
Groundwater depth

Groundwater
level

RMSE, R and
NSE

DL is more reliable and robust than
ELM and GPR

[136] LSTM, FFNN,
LSTM-LA

Udupi district, Karnataka
state, India

2000–
2018

Raf, Groundwater level Groundwater
level

RMSE, MAE LSTM-LA outperformed LSTM and
FFNN

[137] LSTM Hankyung-myeon, Jeju
Island, South Korea

2001–
2013

Raf, Groundwater level Groundwater
level

R2 Accuracy R2 - 0.98

[138] LSTM Pyoseon watershed, Jeju
Island, South Korea

2001–
2019

Raf, Groundwater
withdrawal

data,groundwater level

Groundwater
level

NSE, RMSE Short and long training periods both
gave similar model performance.

[42] LSTM, Recurrent
Neural Network

(RNN)

Norfolk, Virginia USA 2010–
2018

Raf, groundwater level,
sea level

Groundwater
level

RMSE - LSTM outperformed RNN

- Model trained with only storm
events performed better than

continuous data
[142] Two-layer LSTM Hetao Irrigation District,

Northwestern China
2000–
2013

Water diversion, EP, P, T,
time

Groundwater
level

R2 LSTM much better than FFNN

[140] LSTM Upper Normandy, Italy 1970–
2005

Groundwater level Groundwater
level

RMSE, R -Good performance in filling missing
values

-Unreliable input could lead to poor
prediction

[143] LSTM Gangjin-Seongjeon and
Pohang-Gibu, South

Korea

2005–
2016

Groundwater level Groundwater
level

MSE -development of a cost function for
robust training.

[144] LSTM, gated
recurrent unit

(GRU)

Jindo Uisin and Pohang
Gibuk, Jeju Island, South

Korea

2005–
2014

Groundwater level Groundwater
level

RMSE, R Pre-processing data before applying
DL to estimate groundwater level

[141] CNN India 2002–
2016

Total Groundwater
Storage (TGWS)

Total
Groundwater

Storage

NSE CNN was trained to learn the TGWS
spatial mismatch between GRACE

and NOAH

Fig. 6. The proposed predictive model based on the hybridization of the LSTM-LA
for modeling GWL [136].
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Zhang et al. [142] developed a two-layer LSTM model to predict
groundwater level in the Hetao Irrigation District of Northwestern
China. Their findings showed that the proposed model could
achieve considerably higher R2 values (0.79–0.95), when compared
to the FNN (0.0–0.50). Another two improvement studies have
been conducted in South Korea, where Jeong et al. [143] developed
a cost function for robust data training purposes and Jeong and
Park [144] proposed a massive pre-processing data scheme before
the training step. Both studies showed that the removal of data
noises before implementing the deep learning simulations could
improve the model accuracy.
2.5. Hybrid ML models applications

Despite significant advancement in recent years, in terms of
handling non-stationary, dynamic, and non-linear time-series data
using ML models-particularly applied in hydro-environmental and
water resource management-there are still some weakness associ-
ated to such approaches. A variety of problems in hydrological sim-
ulation reserach related to a single AI-/machine learning-based
modeling has been addressed, regardless of their promising perfor-
mances demonstrated in various studies [145–154]. According to
[155–159], hybrid models have proved not only their merit and
superiority to the use of a single model, but can also address a vari-
ety of different problems associated with the use of single
techniques.

The concept of Hybrid methods implies the combination of one
or more AI-based models, computing machine learning models,
and/or classical regression models for improving the performance
accuracy or to obtain optimal outcomes. Hybrid methods could
be utilized in the prediction or optimization stages, based on their
specific purposes. Hence, it can be justified that hybrid methods
comprise several combined single techniques and/or optimization



Fig. 7. The proposed LSTM predictive model for GWL modeling by Shin et al. [138].

Fig. 8. The proposed modeling procedure consisting the data preprocessing, predictive model process and post-processing [42].
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Fig. 9. The models’ architectures of the RNN and LSTM developed by Bowes et al. [42].

Fig. 10. The proposed Model training and evaluation with bootstrapped datasets by Bowes et al. [42].
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algorithms, which have been proved to be more reliable and cap-
able of outperforming single models, with regards to modeling
accuracy [160].

Among the different categories of hybrid methods reported by
the various researchers in the field of water resource management
and hydro-environmental engineering, ANNs have generally
shown outstanding improvement in GWL prediction [161,162].
Nourani et al. [47] integrated a wavelet hybrid neural network
(WT-FFNN) for GWL simulation using SOM clustering techniques
at different piezometer positions in the Ardabil plain. The results
were compared with the traditional FFNN and ARIMA models,
where the output reported that the hybrid WT-FFNN increased
the average performance by up to 15.3% over FFNN. Mathur
[163] proposed single and hybrid SVM with POS (SVM-PSO), in
order to investigate the feasibility of GWL modeling at Andhra Pra-
desh, India. The comparison was made using ANFIS and ARIMA
models, which indicated that SVM-PSO is far more reliable and
has higher accuracy than other single models. Chang et al. [164]
developed a new hybrid soft-computing approach using SOM-
NARX techniques. The study used monthly regional data recorded
from 203 stations during 2000–2013 in Zhuoshui River basin, Tai-
wan. The results, based on statistical indicators, demonstrated the
suitability and reliability of the hybrid SOM-NARXmethod in mod-
eling GWL. The outcomes also depicted that the proposed tech-
niques could provide an environmental solution toward water
resource management. Huang et al. [165] determined the daily
GWL using standalone and hybrid models (PSO-SVM and PSO-
BPNN) in the Three Gorges Reservoir Area in China. Chaos theory
was applied to obtain the best input combination for the non-
linear models. The results indicated that non-linear PSO-SVM had
better prediction skill than the simple linear PSO-SVM and
chaos-BPNN. Zare and Koch [98] employed AI and regression mod-
els for the simulation of GWL using different input combinations;
after that, a new hybrid wavelet technique, WA-ANFIS, was pro-
posed. Observational data were obtained from a case study in the
Miandarband plain, Iran. The overall results confirmed the accu-
racy of the hybrid model. Rakhshandehroo et al. [166] estimated
GWL through a new hybrid model using wavelet neural networks
(WNNs) calibrated with an improved harmony search (IHS) algo-
rithm. The efficiency of the model was compared with classical dif-
ferential evolution (DE), PSO, RBFNN, MLP, and harmony search
(HS) models. The outcomes established for GWL modeling indi-
cated the dominance of the proposed hybrid model over other sin-
gle models. Balavalikar et al. [167] used monthly GWL variation
data from 2000–2013 in Brahmavar, Kundapur, and Hebri in Udupi
district, India, in order to predict the GWL using the combinations
of ANN and hybrid POS-ANN. For this purpose, the models were
calibrated using different input combinations. The performance
results demonstrated the capability of PSO-ANN over ANN in mod-
eling GWL. POS and GA are popularly known hybrid learning tech-
niques, due to their effectiveness in determining the RBFNN
optimization parameters. The insensitive nature of GA in optimiz-
ing the initial guess parameters is the main merit of employing GA
over other hybrid approaches [168,169]. The advantage of the
Whale algorithm (WA) has been attributed to its high convergence,
suitability with other optimization algorithms, and its capability to
handle a huge amount of decision variables [170,171]. Further lit-
erature regarding the merits and supremacy of other hybrid opti-
mization algorithms are enclosed in this review. However,
investigating the aforementioned studies coupling popular AI-
based hybrid models (e.g., ANN), it is worth mentioning that hybrid
techniques have achieved considerable attention over the last few
decades; for instance, Dash et al. [172] made an attempt to develop
a hybrid NN with GA (ANN-GA) using several learning algorithms
for GWL modeling in the Mahanadi river basin, India. The predic-
tion outcomes using different performance criteria revealed that
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the hybrid ANN-GA produced the best GWL simulation. Jalalkamali
and Jalalkamali [173] studied the potential of a hybrid ANN-GA
model for the prediction of GWL. The classical FFNN and RNN were
compared, in order to demonstrate the performance accuracy of
the models when using several input variables. The obtained
results indicated that ANN-GA can serve as a reliable model for
GWL simulation. Adamowski and Chan [174] coupled a hybrid
WA-ANN for GWL prediction using different hydro-climatology
variables. Recorded monthly GWL data were obtained from the
Chateauguay watershed in Quebec, Canada during 2002–2009.
The GWL simulation results, based on evaluation and comparison,
indicated that the hybrid WA-ANN performed better than ANN and
ARIMA models. Yadav and Mathur [76] applied the new hybrid
Quantum behaved Particle Swarm Optimization function (SVM-
QPSO), in order to estimate the GWL in Rentachintala region,
Andhra Pradesh, India. The results showed that SVM-QPSO per-
formed better, with regards to performance evaluation, than the
ANN model. Moosavi et al. [96] presented several soft-computing
models, including ANN and ANFIS, which were coupled with opti-
mization algorithms to develop hybrid models (i.e., WA-ANN and
WA-ANFIS) to estimate monthly GWL. The forecasting skill of the
models indicated that the hybrid ANFIS (WA-ANFIS) outperformed
the other models, in term of performance criteria. Tapoglou et al.
[175] introduced hybrid ANN-Kriging techniques for spatial–tem-
poral modeling of GWL at different places in Bavaria, Germany.
The results showed that hybrid model can fully achieve the
expected GWL prediction outcomes.

More recently, Yaseen et al. [26] developed an evolutionary
hybrid algorithm based on the comparison of the bat algorithm
(BA) and PSO algorithm, called the hybrid bat-swarm algorithm
(HB-SA), for dam and reservoir optimization. The obtained out-
comes showed the suitability and generalizability of the proposed
HB-SA method. Malekzadeh et al. [176] presented a study using a
hybridized wavelet of Self-Adaptive Extreme Learning Machine
(SAELM) and Wavelet-SAELM (WA-SAELM) in Kabodarahang
region, Iran. The results of the proposed methods were compared
to standalone hybrid AI-based models (i.e., WA-ANN and WA-
SVM). The predictive results proved that hybrid WA-SAELM pro-
duced the best outcomes and, hence, served as the most reliabile
approach. Supreetha et al. [177] investigated hybrid ANNs, includ-
ing hybrid ABC and PSO algorithms, for the forecasting of GWL
using the observational GWL at Manipal from Udupi, Karnataka,
India. The models were evaluated using RMSE, MAE, and R, and
the results indicated the superiority of the hybrid ABD-PSO tech-
niques. Roshni et al. [178] developed a traditional FFNN with a
hybrid WANNmodel for the prediction of complex GWL in an allu-
vial aquifer. The results integrated the Gamma and M-tests (GT)
approach for the same purposes, while a different evaluation
matrix was used to assess the model’s performance. The examined
calibrated results justified the robustness of GTWANN for the esti-
mation of GWL. Kombo et al. [147] presented a long-term multi-
step GWL estimation using a hybrid K-Nearest Neighbors-
Random Forest (KNN-RF) technique in eastern Rwanda using cli-
mate variables (T, P, max. solar radiation, and GWL). The modeling
results, based on NSE, RMSE, MAE, and R2, confirmed that the
hybrid model provided a reliable approach. Moravej et al. [85]
developed a novel hybrid model based on ISA and GA for the sim-
ulation of GWL, using Raf, EP, and GWL data obtained from an
unconfirmed aquifer in the northwest of the Karaj plain, Iran. Com-
parison of ANFIS and GP models in GWL prediction justified the
superiority of the novel hybrid ISA-LSSVR methods. Roshni el al.
[161] presented a comparison of novel hybrid Emotional ANN cou-
pled with a genetic algorithm (EANN-GA), generalized regression
neural network (GRNN), and FFNN for the estimation of GWL at
three different sites in a coastal aquifer. The performance evalua-
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tion of the models was carried out using several indicators. The
prediction results indicated that EANN-GA outperformed EANN,
GRNN, and FFNN for the simulation of spatial–temporal GWL.
Banadkooki et al. [179] explored a hybrid RBF with whale algo-
rithm (WA) model (RBF-WA), GP, and MLP-WA for modeling
GWL under different scenarios based on temporal P data. The per-
formance of the predictive models showed that MLP-WA emerged
as the best hybrid model for the prediction of GWL in Yazd pro-
vince, Iran. Natarajan and Sudheer (2020) [154] explored the capa-
bility of different data-driven models (ANN, SVM, ELM, and GP) for
modeling GWL at six different locations in Vizianagaram, Andhra
Pradesh, India. The results confirmed the superiority of the ELM
model over other single models; on the other hand, the hybrid
SVM-QPSO was found to be the best predictive model on some
occasions. Seifi et al. [180] explored the performance of different
optimization algorithms-GA, grasshopper optimization algorithm
(GOA), cat swarm optimization (CSO), PSO, weed algorithm (WA),
GA, and krill algorithm (KA)-integrated with AI-based models
(ANN, ANFIS, SVM). Observed monthly data for 144 months
recorded in the Ardebil plain (Iran) were used. The modeling
results were evaluated based on a number of evaluation criteria,
which proved the superiority of ANFIS-GOA over standalone mod-
els. The reported research in the literature on hybrid ML models for
GWL modeling are collected in Table 5.

2.6. Decision tree and data mining and Evolutionary computing
models applications

Evolutionary computing is a subfield of AI, in which biological
evolution (based on Darwin’s principle) is used to solve stochastic
problems. Despite the variety of existing EC techniques, such as GA,
evolutionary algorithm, particle swarm optimization, ant colony
algorithm, GP, and so on, they use the same automated problem-
solving procedure, starting with an initial set of candidate solu-
tions and iteratively improving solutions through mutation,
cross-over, and natural selection. Current reviews of the applica-
tion of AI methods in hydrology (see, e.g., [46,196]) have shown
that GP is one of the most popular EC techniques for GWL simula-
tion. Various types of GP algorithms have been used for GWL pre-
diction, including classic GP (e.g., [104]), GEP [197], and multigene
GP (MGGP) [198]. All of these GP variants have been well-
described in [199]. To avoid duplication, we briefly describe the
main concept of classic GP herein, in order to secure the integrity
of the current review paper.

Like other EC techniques, GP uses an automatic problem-solving
technique to attain the best solution among randomly generated
potential solutions called genes. In the classic GP method [200],
each gene is represented by a tree structure having a root node,
inner nodes, and terminal nodes (called leaves); see Fig. 11.

Fig. 11 illustrates a genome, including a root node (multiplica-
tion), inner nodes of subtraction, and terminal nodes of X1;X2,
and a random number (5.25). Each terminal node in a GP tree
can adopt an independent variable or any random floating point
number.

To solve any time-series or regression problem using GP, the
algorithm begins with the formation of an initial population of
genes. Then, the evolutionary operators of natural selection-
cross-over and mutation-are used to modify the existing genes
[201]. The modified genes, or offspring, that show the highest fit-
ness survive to the next generation of the population (potential
solutions). This is the evolutionary process, which must be iterated
until an individual meets the desired accuracy. Fig. 12 demon-
strates the cross-over operator between two parents creating two
offspring. Each offspring has the same materials as their parents,
but a different combination of them. Indeed, the parents exchange
some of their branches (the red and blue parts in Fig. 12)) to pro-
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duce offspring. Various studies have shown that the offspring
may solve a problem better than their parents [202–204].

Mutation is an operator in which a parent’s node or branch is
replaced with a randomly created node/branch using the materials
existing in functional or terminal sets. As illustrated in Fig. 13, the
sub-tree 1þ x2 in the parent gave its place to the branch tanðx1Þ in
the offspring.

In order for the best individual to survive in each iteration, it
directly moves to the new population without any change. This
is a natural selection process, which allows the modeler to keep
improvement continuing in each generation. All of the above-
mentioned operations are carried out in any GP variant; however,
the process may not necessarily be done using a tree shape. Like
other AI techniques, a set of training data is used to train the GP
and the evolved solution must be generalized for unseen testing
data sets. To minimize computational costs, a set of suitable func-
tions, input variables, evolutionary operation rates, and a maxi-
mum depth of the GP trees must also be considered in the
modeling process (Mehr and Noyrani 2018 [196]; Tur 2020
[204]). To avoid over-fitting, a lower number of functions and short
trees are recommended [201,205].

Comparison of GEP with ANFIS for short-term GWL prediction
in Illinois State has been conducted by Shiri and Kisi [197], perhaps
one of the earliest applications of EC-based regression models
using GEP. The authors used daily P and antecedent GWL data as
the predictors of GWL in two wells: Bondville and Perry. The
results showed that GEP and ANFIS can be applied to predict
GWL. An explicit expression of GEP was highlighted as the advan-
tage of GEP over ANFIS. In a similar study, Fallah-Mehdipour et al.
[104] compared the classic GP algorithm with ANFIS, in order to
predict and simulate GWLs in three observation wells in the Karaj
plain, Iran. The study focused on the monthly variation of GWLs
and suggested the use of P and EP from a surface water body to fill
possible gaps in the GWL data sets. The results showed the effec-
tive and promising role of GP in solving the problem, as it was
superior to ANFIS by up to 11 percent in the testing period. Kasivis-
wanatha et al. [38] implemented the classic GP method to model
and forecast GWL variations and emphasized the quantification
of uncertainties due to input selection. To this end, observations
from three wells (K. Paramathy, Keeranur, and Kuthiraiyar) in India
were used. The authors demonstrated that the quantification of
uncertainty may help to improve the confidence of GP-based
GWL models. The authors discovered that the EP is not an effective
input. By contrast, river stage data near the wells was introduced
as the input, which may improve the model accuracy. More
recently, Sadat-Noori et al. (2020) [206] showed that GP can pro-
vide more accurate GWL predictions for wells close to meteorolog-
ical stations when P data are used as input. A list of the articles on
the developed evolutionary computing predictive models for GWL
modeling is given in Table 6.

Data mining techniques are relatively new methods for discov-
ering patterns and finding anomalies and connections relating to
complex processes in large data sets, which can be exploited to
forecast future trends [207]. As hydrological criteria follow a com-
plicated process, particularly in the long-term scale, finding novel
models with high accuracy seems to be essential and indispensable
[208]. Therefore, these techniques are uniquely able to leverage the
large amounts of real-time, multivariate data now being collected
for hydrological systems. Karthik and Vijayarekha [209] believe
that data mining techniques can be employed for quicker classifi-
cation of water portability. A broad range of algorithms is used,
in these methods, for classification and prediction. The application
of each model has been evaluated in several investigations in the
hydrology field. Further details of some models with the highest
level of application are discussed in the following:



Table 5
The list of the reported research over the literature on the hybrid ML mdoels for GWL modeling

No. Author (year) Location of study Hybrid AI models Input
Combination

Frequency Data Span Performance metrics

1 Kholghi and Hosseini,
(2009) [101]

Qazvin plain, Iran ANFIS-Kriging GWL Monthly Not mention R2, MAE, MSE, RSS, CE

2 Dash et al. (2010) [172] Mahanadi river basin, India ANN-GA GWL Monthly 1993–2002 R, E, MAE, IOA, RMSE
3 Nourani et al. (2011)

[181]
Shabestar plain, Iran ANN-GS LL, GWL, R Monthly 1995–2007 R2, RMSE

4 Jalalkamali and
Jalalkamali, (2011) [173]

Kerman plain (Kerman, Iran) GA-ANN, FFNN, RNN Piezometers,
T, R

Monthly 1988–2009 R2, RMSE, MAPE

5 Adamowski and Chan,
(2011) [174]

Quebec, Canada WA-ANN, ANN,
ARIMA

P, E, GWL Monthly Nov2002-
Oct2009

R2, RMSE, E

6 Kisi and Shiri, (2012) [99] USA WA-ANFIS GWL Daily Jan 2001-
Dec2008

R, RMSE, CO, NSE

7 Sudhee et al. (2012) Andhra Pradesh, India SVM-QPSO, ANN GWL Monthly Nov 1984-
Dec 2001

EFF, R, RMSE

8 Moosavi et al. (2012)
[182]

Mashhad plain, Iran WA-ANN, WA-
ANFIS

GWL, P, E,
average Q

Monthly
average

1992 to
2007

R2, RMSE

9 Shiri et al. (2013) [100] South Korea GP (ANN, SVM,
ANFIS)

GWL, R, ET Daily
average

Not mention AARE, MSE, MAE

10 Fallah-Mehdipour et al.
(2013) [104]

Karaj plain, Iran GP, ANFIS GWL, P, E Monthly 84-month R2, RMSE, E

11 Maheswaran and Khosa,
(2013) [183]

Northern Saanich Peninsula,
Canada

WA-ANN, ANN GWL Monthly
average

May 1975-
Apr 2002

NSE, RMSE, MAE, MRE

12 Moosavi et al. (2013) [97] Mashhad plain, Iran WA-ANN, WA-
ANFIS

GWL, P, E,
average Q

Monthly
average

1992 to
2007

R2, RMSE, E

13 Emamgholizadeh et al.
(2014) [184]

Bastam plain, Iran ANFIS, ANN R recharge,
IRF, PR

Monthly 2002–2011 C, MAE

14 Suryanarayana et al.
(2014) [185]

Visakhapatnam, India ANN, SVR, WA-SVR GWL, P, Tmax ,
Tmean

Monthly 12 Month R2, RMSE, EC, NMSE,
MAPE

15 Tapoglou et al. (2014)
[186]

Bavaria, Germany ANN-ANFIS- GS GWL, SWL, T,
R

Daily 2008–2012 RMSE, RMSEE, MAE, Bias

16 He et al. (2014) [187] Ganzhou region, China WA-ANN, ANN GWL Monthly 1994–2004 RMSE
17 Mathur, (2015) [163] Andhra Pradesh, India SVM-PSO, ANFIS,

ARIMA
GWL, R, H,T Monthly 1985 to

2004
RMSE, EFF, CORR

18 Jha and Sahoo, (2015)
[188]

Konan basin, Kochi, India ANN-GA GWL, R, T, Monthly 1999 to
2004

R2, RMSE, IOA, NSE, Bias,
CV

19 Yang et al. (2015) [189] Fujian, China WA-ANN, ANN GWL Monthly
average

1985–2004 RMSE, R, EFF

20 Khalil et al. (2014) [190] Quebec, Canada WA-ANN, ANN P, T Daily 1991–2012 R2, RMSE, E, MAPE, MAE
21 Nourani et al. (2015)

[191]
Ardabil plain, Iran WA-ANN, ANN GWL, R,

runo?
Monthly 1998–2012 R2, RMSE

22 Chang et al. (2016) [164] Zhuoshui River basin, Taiwan ANN (SOM-NARX) GWL, Q, R Monthly
average

1985–2004 RMSE, CORR, EFF

23 Han et al. (2016) [192] Northwest China ANN-SOM GWL, Q,
climatic

Monthly 1998 to
2010

NSE, R, RMSE

24 Hosseini et al. (2016)
[193]

Shabestar plain, Iran ANN-Ant colony GWL, R, E, Q,
T

Monthly 1996–2006 R, RMSE, RAE

25 Nourani and Mousavi,
(2016) [47]

Miandoab plain, Iran WA-ANFIS, WA-
ANN

GWL, P, Q Monthly 2000–2009 R2, RMSE

26 Ebrahimi and Rajaee,
(2017) [194]

Qom plain, Iran WA-ANN, WA-SVR,
ANN, SVR

GWL Monthly 2002–2013 RMSE, E

27 Huang et al. (2017) [165] Gorges Reservoir Area, China PSO-SVM, PSO-
BPNN

GWL Daily 2013–2014 R2, RMSE, NSE

28 Barzegar et al. (2017)
[195]

Azarbaijan, Iran WA-ANN GWL Monthly 2001–2018 REVIEW

29 Zare and Koch, (2018)
[98]

Miandarband plain, Iran WA-ANFIS, AI GWL, P Yearly 1991–2013 RMSE, R2

30 Balavalikar et al. (2018)
[167]

Brahmavar, Kundapur and Hebri In
Udupi district, India

POS-ANN, ANN GWL Monthly 2000–2015 R2, RMSE, R, MAE, MAPE

31 Rakhshandehroo et al.
(2018) [166]

USA WA, DE, PSO,
RBFNN, MLP

GWL Daily 2000–2005 RMSE, MAE,PCC,NSE

32 Malekzadeh et al. (2019)
[176]

Kabodarahang region, Iran WA-SAELM, WA-
ANN, WA-SVM.

GWL Monthly 1990–2015 RMSE, R, MAE, MAPE,
RSMRE, BIAS, NSC

33 Supreetha et al. (2019)
[177]

Karnataka, India PSO-ANN, ABC-ANN GWL, P Monthly 2000–2013 RMSE, MAE, MAPE

34 Roshni et al. (2019) [162] Shikoku Island of Japan GT-WANN GWL, P Monthly 1998–2004 BIAS, RMSE, R, NSE
35 Tang et al. (2019) [130] Northern United Kingdom SVM, ANN, random

forest, k-NN
GWL Hourly 2016–2017 MAE, MAPE, MSE, RMSE

36 Kombo et al. (2020) [147] Rwanda KNN-RF T, P, GWL,
Max. RH

Daily 2016–2018 R2, RMSE, MSE, MAE

37 Moravej et al. (2020) [85] Karaj plain, Iran GA-ISA, GP, ISA-
LSSVR

GWL Monthly 2002–2008 R2, RMSE, NS

38 Roshni, (2020) [178] Konan groundwater basin, Japan EANN-GA, EANN,
GRNN, FFNN

P, GWL Monthly 1998–2004 NSE, RMSE,Bias

(continued on next page)
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Table 5 (continued)

No. Author (year) Location of study Hybrid AI models Input
Combination

Frequency Data Span Performance metrics

39 Banadkooki et al. (2020)
[179]

Yazd, Iran RBF-WOA, MLP-
WOA

R, T, GWL Monthly 2000–2012 NSE, MAE, RSR

40 Natarajan and Sudheer,
(2020) [154]

Andhra Pradesh, India SVM-QPSO, ANN,
SVM, GP, ELM

GWL Monthly 1997–2013 RMSE, PCC, MAE, R2

41 Seifi et al. (2020) [180] Ardebil plain, Iran CSO, PSO, WDA, GA,
KA, AI

GWL Monthly 2000–2012 RMSE, MAE, NSE, PBIAS
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2.6.1. Gaussian process regression (GPR)
A Gaussian Process is a collection of random variables, where

limited numbers of them are compatible with Gaussian distribu-
tions. A Gaussian process is determined completely by an average
function, ðmðxÞÞ, and a covariance function, ðkðx; x0ÞÞ. This process is
a natural generalization from the Gaussian distribution with mean
vector and covariance matrix, as shown in Eq. (1):

f � GPðm; kÞ ð1Þ
regression models of the Gaussian process are based on this hypoth-
esis that adjustment observations must include information about
each other. This process clarifies priorities on function space, which
is called a natural extension of Gaussian function with mean vector
and covariance matrix. It should be noted that Gaussian distribution
is on vector; however, the Gaussian process goes on functions. As a
result, Gaussian processes models owing to prior knowledge con-
cerning data and functional dependencies, do not require any vali-
dation technique for generalizing. Moreover, Gaussian process
regression models can predict distribution corresponding to inputs
[210]. In Gaussian processes, X and Y denote inputs and outputs
ranges, there are n pair of (xi; yi) independently and similarly. In
regression, if y 2 Re then a Gaussian process on x with mean func-
tion l : Y ! Re and Covariance function k : X � X ! Re would be
defined. The main assumption of GPR is based on this equation:

Regression models of the Gaussian process are based on the
hypothesis that adjustment observations must include information
Fig. 11. An example of a gene (genome) expressing a function 5:25ðX1 � X2Þ.

Fig. 12. An example of crossover operation acting
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about each other. This process directly clarifies priorities on the
function space, which is called a natural extension of the Gaussian
function with mean vector and covariance matrix. It should be
noted that the Gaussian distribution applies to vectors, while the
Gaussian process applies to functions. As a result, Gaussian process
models, due to prior knowledge concerning data and functional
dependencies, do not require any validation technique for general-
izing. Moreover, Gaussian process regression models can predict
the distributions corresponding to inputs [210]. In Gaussian pro-
cesses, X and Y denote inputs and outputs ranges, and there are n
(xi; yi) pairs, which independently and identically distributed. In
the regression, if y 2 Re then a Gaussian process on x with mean
function l : Y ! Re and Covariance function k : X � X ! Re is
defined. The main assumption of GPR is based on Eq. (2):

y ¼ f ðxÞ þ �; � � Nð0;r2Þ ð2Þ
2.6.2. GPR implementation in the hydrology
Koo et al. [211] stated that the primary benefit of using GPR

models is that the model provides not only future predictions,
but also the associated uncertainty. This distinguishes GPR models
from other statistical models, yielding original high-fidelity results
and a probabilistic estimate of the approximate uncertainties
[212], as well as its simple structure [213], flexibility [214], and
the ability to incorporate prior knowledge of the outputs in the
meta-model construction process [211]. The application of GPR
has been reported in several investigations associated with hydrol-
ogy, such as the proficiency of GPR in forecasting Monthly stream-
flow [215], construction of data-driven hydrological models [216],
prediction of short-term soil moisture [217], Modeling Pan EP
[218], estimating chlorophyll concentrations in sub-surface waters
[219], Assessment of infiltration models [220], modeling of infiltra-
tion of sandy soil [221], forecasting of reference EVP [222,223],
prediction of water temperature of rivers [224], forecasting
short-term WS [225] and seepage through earth dams [226], mon-
itoring and fault detection of wastewater treatment processes
(Samuelsson et al., 2017 [227]), Predictive Control of Drinking
on two parents and producing two offspring.



Fig. 13. Mutation operation acts on genetic programming (GP) chromosome.

Table 6
List of the researches on the developed evolutionary computing predictive models for GWL modeling.

Research Applied AI
models

Case study Data span Input
parameters

Output
parameter

Performance
metrics

Time
scale

Fallah-Mehdipour et al. (2013)
[104]

GP, ANFIS Karaj aquifers, Iran 7-year (84-month) GWL, P, EP GWL RMSE, NSE, R2 monthly

Kasiviswanathan et al. (2016)
[38]

GP Amarawathi basin,
India

30 years (1980–
2009)

Raf GWL GWL, CC,NE, RMSE,MBE monthly

Sadat-Noori et al. 2020 [206] GP Tabriz plain, Iran 8-year (96-
months)

GWL, P GWL, R2 and RMSE monthly

H. Tao, Mohammed Majeed Hameed, Haydar Abdulameer Marhoon et al. Neurocomputing 489 (2022) 271–308
Water Networks [228], prediction of sulfate content in lakes of
China [229], water demand forecasting [230], seawater intrusion
prediction [231], modeling adsorption equilibrium of water on
zeolite Li-LSX [232], and oceanic chlorophyll prediction [233].

2.6.3. Applications in GWT
The application of linear regression in the prediction of GWL has

been assessed by Maatta [234]. In this survey, the importance of
the combination of statistical models in predicting GWL was
reported. Aburub and Hadi [235] applied several data mining tech-
niques to predict GWL. Their findings indicated that the SVM algo-
rithm outperformed other algorithms in terms of classification
accuracy.

The high proficiency of GPR in forming reasonable predictions
of groundwater quality data for the majority of linear trend cases,
with a few exceptions of severely non-Gaussian data, has been
reported by Koo et al. [211]. The efficiency of GPR in producing
maps of GWL variability and identifying GWL patterns for the
island of Crete has been investigated by Varouchakis and P Karat-
zas [236]. Kolli and Seshadri [237] relayed the ability of data min-
ing techniques for the assessment of groundwater quality.

In some studies, the accuracies of other statistical models have
been found to be better than that of GPR. For instance, Colchester
et al. [238] compared three methods for representing accelerome-
try data (wavelets, splines, and Gaussian processes) with two sys-
tems for estimating GWL (SVR and GPR). Their results showed that
the method using splines and a SVR model provided the lowest
overall errors. Dolat Kordestani et al. [239] applied evidential belief
function and boosted regression tree (EBF-BRT) algorithms for
groundwater potential mapping. Their findings demonstrated that
the combination of the two techniques could increase the efficacy
of these methods in groundwater potential mapping. Similarly,
Pourghasemi and Beheshtirad [240] combined EBF and GIS for
groundwater potential mapping. Azimi et al. [241] exploited Gaus-
sian process classification (GPC) to address the association analysis
of climate-related drought and a decline in groundwater level. Kim
et al. [242] utilized the capacity of the GPR model for long-term
predictions of GWL. Comparing the GPR and ANFIS models in
multi-step lead time forecasting of GWL revealed that the GPR
model provided reasonably accurate predictions compared to
those of ANFIS [90]. Zhang et al. [243] integrated Gaussian process
(GP) and Markov Chain Monte Carlo (MCMC) to adaptively con-
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struct locally accurate surrogates for Bayesian experimental design
in groundwater contaminant source identification problems. In
this survey, without sacrificing estimation accuracy, the new
approach achieved about 200 times of speed-up compared to
MCMC. Bozorg-Haddad et al. [244] utilized a GA-SVR hybrid algo-
rithm for the simulation and prediction of GWL. Rajabi and Ketab-
chi [245] applied GP emulation as a valuable tool for solving the
computational challenges of uncertainty- based simulation–opti-
mization schemes in coastal groundwater management. Their
results indicated that GP emulation can provide an acceptable level
of accuracy with no bias and low statistical dispersion. Lal and
Datta [246] compared the capacity of GP and GPR models for
groundwater salinity prediction. The GPR model outperformed
the GP model. A list of articles using Gaussian Process Regression
Models for GWL modeling are tabulated in Table 7.

2.7. Complementary AI models applications

The GWL is particularly non-stationary, and noisy GWL time-
series may not be properly simulated by AI-based models
[39,248]. The hybridization of ML techniques, developed based
on wavelet-decomposed data, has become a very active research
area to address this issue. It has shown better performance in sim-
ulating the raw GWL data sets than their simple model counter-
parts [249]. A representation of the local time-series data using
scaling and wavelet coefficients at various resolutions attained
through the Mallats pyramidal algorithm has been shown to pro-
vide the discrete wavelet decomposition [249] Generally,
wavelet-based ML models are more precise, as the discrete wavelet
transform (DWT) can improve discrimination against the non-
stationary and non-linear trends that occur at different time-
series scales of input variables [249].

Wavelets are a type of mathematical function (waveform) that,
with an average of about zero, may oscillate and decay within a
short time [249]. In order to denoise non-linear and non-
stationary time-series and extract information that is hidden in
the signal, WTs provide efficient optical signal processing tech-
niques [195,248]. They were conceived as the continuous wavelet
transform (CWT) [250]. The discrete wavelet transform (DWT) has
been proposed for practical applications, as hydrologists and mod-
elers generally only have access to discrete-time signals [39]. In the
DWT, a signal is decomposed to an approximation at the first



Table 7
The conducted researches using Gaussian Process Regression Model for GWL modeling.Abbreviations: Gaussian process (GP), Genetic Algorithm (GA), Support Vector Regression (SVR), Naïve Bayes (NB), K-Nearest Neighbor (kNN),
Classification Based on Association Rule (CBA), evidential belief function and boosted regression tree (EBF-BRT), receiver operating characteristics (ROC), Gaussian process classification (GPC), artificial neural network (ANN), Groundwater
Resources Index (GRI), Standardized Precipitation Index (SPI), Adaptive Neuro Fuzzy Inference System (ANFIS), Correlation Coefficient (CC) Root Mean Squared Error (RMSE), Nash–Sutcliffe Efficiency (NSE)

Research Applied AI models Case study Data span Input parameters Output parameter Performance
metrics

M. M. Rajabi and
Ketabchi [245]

Gaussia GP emulation Kish Island
(Persian Gulf)

the period of the
simulated dataset

KL, aL and RNet quantities of

interest (QoI). Time saving ratio (TSR)
OmidBozorg Haddad

et al. [244]
GA-SVR hybrid algorithm Karaj plain

aquifer (Iran)
2002–2008 EP, prediction, groundwater and surface data groundwater level R2 and RMSE

KamakKolli and
Seshadri [237]

Data mining technique on Arc/
View software

Tadepalle,
Guntur district

– physico-chemical

parameters like TDS,
TH, Cl

and NO3 Water Quality Index –
[211] GPR Pyeongchang

Yuchyeon
2007–2012 groundwater level (GWL), pH, Total dissolved solid (TDS),

T, CL- SO4, NO3-N, and NH4
Groundwater Quality confidence

intervals
Farah Colchester et al.

[238]
SVR, GPR Kenya April and November,

2014
S,V groundwater depth median error

Aburub and Hadi
[247]

SVM, NB, KNN, CBA. Jordan – elevation, faults, Raf, slope, T, wadis and outcrop groundwater areas Accuracy,
Precision and F1

Emman Varouchakis
et al. [236]

GPR island of Crete,
Greece

groundwater level spatio- temporal
variability

Dolat Kordestani
et al. [239]

EBF-BRT algorithms Lordegan aquifer
(Iran)

2014 EBF values of the groundwater- conditioning factors (GCFs) groundwater potential mapping. ROC test

Azimi et al. [241] GPC, ANN 609 study plains
in Iran

2017 to 2019 pair of a statistical average of the value of each SPI and GRI
for each

plain. groundwater drought
Kim et al. [211] GPR Han River Basin 2004 to 2015 monthly averaged groundwater level Groundwater Level Trend confidence

intervals
Raghav and Deka [90] GPR, ANFIS Sullia Taluk,

India
2000 to 2013 Monthly ground water level time series up to previous

Four time steps
multistep lead time forecasting of

groundwater levels
CC, RMSE, NSE
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decomposition level, which is then iteratively applied to subse-
quent decompositions [250].

The DWT is considered to be a sampled version of the CWT. In
association with a specific dyadic scale and time, any time-series
can be commonly re-expressed in terms of the DWT coefficient
[249]. It divides a given function into different scale components,
where a frequency range can also be allocated to each scale compo-
nent, allowing the time-series to be viewed at multiple resolutions,
thus enabling hydrologists to analyze each component with a res-
olution suited to its scale [39,195,248,249]. The scale here refers to
the time interval of that specified time series, while the number of
recurring oscillations over a unit of time is denoted as the fre-
quency [249]. A signal (time-series) is decomposed by the DWT
into non-sinusoidal components that provide adequate informa-
tion for both synthesis and analysis of the raw signal (i.e., the
time-series). It is possible to select or build the wavelet form to
fit the time-series signal outline [249]. To improve the accuracy
of AI-based models, the WT is usually suggested as a method to
pre-process the time-series [39]. Barzegar et al. [195], on the other
hand, used the maximal overlap discrete wavelet transform
(MODWT) for time-series decomposition without a dyadic dura-
tion. The MODWT is comparable to the DWT, in that the input sig-
nal at each step is added to low- and high-pass filters. Here, the
coefficients are not decimated by the MODWT, and the number
of wavelets and scaling coefficients are similar to the number of
Table 8
The literature review researches on the complementary ML models for GWL modeling

AI models Case study Data span Inp
param

[249] W-MARS, W-MT Karnataka, India August 1996 - July
2006

GWL,

[39] WGEP, WM5 Lorestan Province,
Iran.

2002–2012 GWL

[252] EEMD-GEP, EEMD-
M5, CEEMD-GEP,

CEEMD-M5

Delfan plain, Iran 2002 to 2012 GWL

[195] WA-GMDH, WA-
ELM

Maragheh- Bonab,
Iran

Sep 1985- Mar 2016 GW

[248] WP-SVR Mangalore, India 1996–2006 GWL,
Tidal

[194] wavelet-ANN,
wavelet-MLR,
wavelet-SVR

Qom plain, Iran April 2002 - March
2013

GW

[107] LSSVM, ANFIS,
NARX

Shabestar Plain,
Iran

Climate Data (1951–
2016) GWL (April
2002- March 2016)

P,

[254] EMD, PSR, PSO, ELM,
PSO-ELM, EMD-PSR-

PSO-ELM

Heilongjiang
Province, China

1998 to 2014 ground
dep

[176] SAELM, WA-SAELM Kabodarahang
region, Iran

August 1990 to
September 2015

GW

[255] ANN, ANFIS,
Wavelet-ANN,
Wavelet-ANFIS

Mashhad,
Khorasan Razavi
province, Iran

1992 to 2007 total
disch

GW
[191] FFNN, WT-FFNN,

ARIMAX
Ardabil, north-
western Iran

GW

[256] XGBT, XGBL, WT-
XGBT, WT-XGBL,

WT-RF

Kumamoto City,
Kyushu Island,

Japan

1980–2017 GW

[185] WA-SVR Visakhapatnam,
India

May 2001- February
2012

ground
dept
Tmax ,

[257] EEMD-ANN, EEMD-
SVM, EEMD-ANFIS

Lake Okeechobee,
Florida

1997 to 2012 GW

[258] WA-ANN Zhangye basin,
China

June 2003- December
2010

GWL,
Tm

[259] wavelet- SAELM Kermanshah, Iran
(Sarab Qanbar),

2002–2015 GW

[98] Wavelet-ANFIS Miandarband
plain, Kermanshah

province, Iran

October 1991- June
2013

P
piezom
head
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sample observations at each transformation step. Although an
accurate orthogonal decomposition of the time-series is not given
by MODWT, it is more effective than the simple DWT, as it can be
performed for any sample size [195].

WT relies on a fully adaptable window function (named the
mother wavelet), which can be adjusted over time, depending on
the compactness and shape of the signal [195]. In the literature,
many mother wavelets exist and their choice depends on the data
set(s) to be examined [19]. The type of time-series is the key crite-
rion for choosing a mother wavelet [39]. The key elements of a
mother wavelet comprise the support area, the association with
the length of the wavelet period, and the number of missing
moments, which regulate the wavelet’s ability to display informa-
tion in a time-series [39].

Numerous researchers have employed the WT for GWL model-
ing, as shown in the literature provided in Table 8. In predicting
multi-step lead time GWLs across two neighboring micro-
watersheds-namely, Pavanje and Gurpura-along the coastline of
Karnataka, Rezaie-balf et al. [249] employed the WT to develop
hybrid Wavelet-M5 Model Trees (W-MT) and Wavelet-
Multivariate Adaptive Regression Splines (W-MARS) models. To
decompose the input time-series, they utilized Haar, Daubechies,
Dmey, and Coiflets as mother wavelets. The W-MARS and W-MT
models were found to provide accurate forecasting, as opposed
to the standard MARS and MT models. In improving the forecasting
ut
eters

Output
parameter

Performance metrics

Raf, T GWL R2, RMSE, NNSE

, T, P GWL R2, RMSE, rRMSE, BIAS, rBIAS, AIC

, P, T GWL R2, RMSE, rRMSE, BIAS, rBIAS

L GWL R2, RMSE, NSC

Raf, T,
Level

GWL NRMSE, Normalized Mean Bias, Absolute Relative Error,

NSC, Threshold Statistics, R2

L GWL E, RMSE

T Future
ground-

water level

R2, RMSE

water
th

ground-
water depth
prediction

posterior error ratio (C), small error frequency (p),
relative mean square error (E1), fitting accuracy ratio

(E2), test forecast effect index (E3).
L GWL R, RMSE, NSC

P, EP,
arge,
L

GWL R2, RMSE, NSC

L GWL RMSE, R2

L GWL MSE, MAE, RMSE, RSR, R2, NSE, KGE

water
h, P,
Tmean

GWL R2, NSC, NMSE, RMSE, MAPE

L GWL R, NMSE, RMSE, NSC, AIC

P, EP,
ean

GWL R, MAE, RMSE, NSC, RSR

L GWL R, RMSE, MAE, MAPE, NSC

,
etric
data

GWL R2, RMSE
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efficacy, the W-MARS models outperformed the W-MT and their
respective simple corresponding models. Furthermore, compared
with the other models, the W-MARS models provided relatively
good six-month lead-time forecasts for GWL. Two hybrid models
have been developed by Bahmani et al. [39]-wavelet gene expres-
sion programming (WGEP) and WMT-in order to simulate monthly
GWL at three groundwater wells in Iran. To decompose the time
signals, Haar, Coif1, Sym3, Db4, and Db2 wavelets, which have
been widely used in hydrological studies, were adopted. The study
revealed that the hybrid models-WGEP and WM5-showed an
improved performance over their simple models-GEP and M5-
while the performance was comparable between the hybrid mod-
els. It was also reported that the choice of an appropriate level of
decomposition significantly affects the hybrid model’s accuracy.
The use of WGEP to pre-process a time-series and simulate GWL,
compared to the hybridization of GEP with Ensemble Empirical
Mode Decomposition (EEMD) [251] and Complementary Ensemble
Empirical Mode Decomposition (CEEMD), was also supported in
another study by Bahmani and Ouarda [252]. The study by Barze-
gar et al. [195] demonstrated the effectiveness of the hybrid
wavelet-group data handling (WA-GMDH) and WA-EL models,
with high-level wavelet filters, which delivered more reliable fore-
casts than those obtained using low-level wavelet filters. They also
observed that, when using the least-squares boosting (LSBoost)
algorithm, ensemble multi-wavelet models can improve the per-
formance of the single wavelet-based model and lessen the fore-
cast uncertainty. Sujay Raghavendra and Deka [248]
demonstrated that the Wavelet packet-SVR (WP-SVR) model per-
forms better than the classic SVR model for forecasting monthly
GWL fluctuations. They also found that better results were pro-
duced by the wavelet packet coefficients of the Daubechies 4
wavelet with level 4 decomposition. Use of the hybrid wavelet-
neural network (WNN), wavelet-linear regression (WLR), and
wavelet-SVR (WSVR) models for monthly GWL simulation was
tested by Ebrahimi and Rajaee [194] for two wells in the Qom
plain, Iran. They reported that, by analyzing information at two
decomposition levels, the wavelet- transformed data enhanced
the training of the TDNN, MLR, and SVR models. They also found
that wavelet types, such as Meyer’s mother wavelet, showed a sim-
ilar behavior at different well locations. The results of Jeihouni
et al. [107] revealed that the hybrid technique of the wavelet
Non-linear Autoregressive Network with Exogenous inputs
(wavelet-NARX) gave the best results, in most cases, in comparison
with wavelet-ANFIS (WA-ANFIS) and other models. For daily water
level prediction in reservoirs, Seo et al. [253] researched the effi-
ciency of the combination of WTwith ANN and ANFIS. They discov-
ered that the efficiency of the hybrid models was higher than that
of their corresponding simple models. The details of other studies
that have demonstrated the capability of hybridization of WT with
other models are given in Table 8.

Several other researchers used this approach of transforming
input signal using wavelet decomposition [47,107,105]. These
examples highlight how wavelet transform has the potential to
be used for improving the ANFIS performances used for GWL pre-
diction. Nourani and Mousavi [47] compared all possible combina-
tions of P; Q and GWL decomposed using wavelet transform
coherence and combined for predicting monthly GWL data
acquired over the period ranging between 2001 and 2011 in the
Miandoab plain, northwest of Iran. The decomposed signal was
used as input for the ANFIS and FFNNmodels and the best accuracy
was obtained using hybrid WANFIS with R2 and RMSE of 0.940 and
0.084, respectively, compared with the 0.93 and 0.095 obtained
using the hybrid WFFNN. Jeihouni et al. [107] tested the impor-
tance of the wavelet decomposition in improving the prediction
accuracy of AI models by comparingANFIS, LSSVM, and NARX mod-
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els, and the same architecture coupled with the wavelet decompo-
sition, i.e., WANFIS, W-LSSVM, and W-NARX. The six models were
developed using P and Tmean. Tt was reported that both models
were able to predict GWL accurately; however, the W-NARX was
more accurate and exhibited high R2(�0.99) and low RMSE
(�0.03) values. Wen et al. [105] analyzed the importance of the
wavelet transform in improving the accuracy of the ANFIS model
used for predicting weakly GWL in the Laizhou bay, China, and
found that both ANFIS and WANFIS can provide good prediction
accuracy. They also reported the superiority of the WANFIS com-
pared the FFNN and ANFIS having a R2, RMSE and MARE of 0.983,
0.062, and 2.48, respectively. More recently, some interesting
research has been conducted by combining ANFIS with wavelet
transform. Sridharam et al. [106] used several input variables
namely, IL, P, Tmean, GWL, and EVP for modelling GWL at daily times
step. They compared he performance of two AI models: the ANFIS
and a hybrid WANFIS combining wavelet transform and ANFIS. The
two models were evaluated and compared using several perfor-
mances metrics, i.e., RMSE, MAE and R2, and it was found that
hybridizing the ANFIS using a wavelet decomposition method con-
tributed significantly to the improvement of the models perfor-
mances for which the RMSE and MAE were significantly
decreased and the R2 was increased from 0.924 to 0.962 during
the testing phase.

Based on a recent review on the employment of WT to develop a
hybrid model to simulate GWL, we found that the WT hybrid mod-
els, in all cases, performed better than their corresponding simple
counterparts. This is due to the capability of the WT to act as a pre-
processing tool in discriminating the non-linear and non-
stationary trends in the time-series which usually persist in hydro-
logical and climatological input variables. The WT hybrid models
are also able to take in any sample size, with the ability to view
the scaled component of the time-series at multiple resolutions.
As a wide selection of mother wavelets exists, a further compara-
tive study is needed to improve the wavelet selection in the devel-
opment of WT hybrid models. Previous findings have also stressed
the importance of selecting a suitable decomposition level, as it
may affect the model’s accuracy.
2.8. Statistical models applications

Statistical models have been widely used in various aspects of
hydrological modeling [260,261]. In this type of modeling, the rela-
tionships between one or more variables are mathematically
embodied, in order to mimic the behavior of the real system. These
relationships are mainly set using function minimization proce-
dures, which minimizes the sum of squared residuals between
the observed and modeled target variables. As such, in statistical
modeling, regression analysis and time-series analysis are two
methods that employ such a minimization process. The bivariate
analysis of time-series differs from that of regression analysis, in
which the time is used as the independent or predictor variable.
Meanwhile, in regression, the bivariate analysis is represented
between two or more statistically associated variables. Further,
independence among the individual measurements are assumed
in the bivariate form of regression. In other words, the order of
the predictor-predictand data pairs is not important in bivariate
regression; whereas, in time-series analysis, the time dependence
is recognized and used to improve the understanding of the under-
lying physical processes and/or the prediction accuracy [262].

A time-series model is stochastically handled without consider-
ing the inherited physical nature of the time-series [263,264]; that
is to say, it conceptualizes the physical process of any time-series
into a mathematical model. Thus, it requires adequate knowledge
of the mathematical approaches for identifying time-series pat-
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terns. Autoregressive (AR), moving average (MA), ARMA, ARIMA,
and SARIMA are commonly used methods for time-series model-
ing. In the following, the individual description of each model is
presented:

2.8.1. Autoregressive process ARðpÞ
The serial dependence of data points in time series is repre-

sented by AutoRegressive process ARðpÞ. ARðpÞ (Eq. 3) describes
the linear combination of the highest autoregression order (p) coef-
ficients of consecutive data points of the time series [265]:

xt ¼ �xþ /1xðt�1Þ þ /2xðt�2Þ þ � � � þ /pxðt�pÞ þ �t ð3Þ
where, xt is the variable value of x at time t; �x is the sample variable
means; /1;/2;/p are the autoregressive model parameters; �t is the
white noise error; p refers to the order of the autoregression. The AR
model is used when the time series is stationary. Therefore, it is
worth to assess stationary where the AR model parameters should
be within �1, hence the influence of antecedent values is hindered.
Otherwise, the accumulated error from the previous values shifts
the time series into a non-stationary one.

2.8.2. Moving average process MAðqÞ
Besides the serial dependence of data points considered in the

autoregressive process, the time series might be influenced by
the antecedent random error (white noise error) involved in prior
data points. This could be accounted for through the moving aver-
age (MA)(q) process (4) which is made of the random error compo-
nent and a linear combination of random shocks of the antecedent
values [266].

xt ¼ �xþ �t � h1�ðt�1Þ � h2�ðt�2Þ � � � � � hq�ðt�qÞ ð4Þ
where, h1; h2; hq are the moving average parameters; �t; �ðt�1Þ; �ðt�qÞ
are the random error components at ðt � 1Þ; ðt � 2Þ; ðt � qÞ, respec-
tively; q is the order highest moving average process. The MAmodel
parameters require to invert to overcome the duality of the moving
average process and the autoregressive process [267]. The
inevitability condition of a moving average process is analogous
to the stationarity condition of an autoregressive process.

2.8.3. Autoregressive moving average ARMAðp; qÞ
The real stochastic process of a random variable xt is repre-

sented by the ARMA process. The ARMA model is a combination
of AR and MA of order p and q, respectively [268]. The general form
of ARMA is as follows (5):

xt ¼ �xþ /1xðt�1Þ þ /2xðt�2Þ þ � � � þ /pxðt�pÞ þ �t � h1�ðt�1Þ

� h2�ðt�2Þ � � � � � �hq�ðt�qÞ ð5Þ
An ARMA model with ðp;0Þ is an autoregressive process only.

While an ARMA of ð0; qÞ is a purely moving average process.

2.8.4. Autoregressive integrated moving average ARIMAðp; q; dÞ
An ARIMA model is presented as combined process of AR and

MA. In contrast to ARMA, the differencing step is applied in the
ARIMA model once or more to eliminate the non-stationarity in
the time-series points. Differencing, in statistics, is a transforma-
tion applied to a non-stationary time-series to make it stationary
and to remove the non-constant trend. Therefore, the ARIMA
model has three specific parameters, p; q, and d, where d represents
the number of differencing passes [269].

2.8.5. Seasonal Autoregressive integrated moving average
SARIMAðp; q; dÞðps; qs; dsÞ

SARIMA is the generalized form of the ordinary ARIMAmodel. It
is used when there is a seasonal pattern in the time-series. The sea-
sonal parameters in SARIMA are estimated once they are identified
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through the model identification phase, along with non-seasonal
ones. The seasonal differencing is applied to a seasonal time-
series to remove the seasonal component. Therefore, the SARIMA
model is typically denoted as ARIMAðp; d; qÞðps; qs; dsÞ, where
ps; qs, and ds are the seasonal AR, MA, and differencing parameters,
respectively [103].

The Box–Jenkins method, developed by Box and Jenkins [264],
is used to identify the best fit of the time-series model on past
observation values for the five stochastic models (AR, MA, ARMA,
ARIMA, and SARIMA). The methodology of time-series modeling
can be summarized as follows [264].

� Model identification: in this step, the ACF and PACF functions
are employed to determine the order of AR and MA parameters.

� Parameter estimation: in this step, the computation algorithms
are employed to find the model parameters coefficients that
best fit the model. Generally, the minimization function of the
sum of squares of the residuals is employed using either the
approximate maximum likelihood method [270], the approxi-
mate maximum likelihood method with backcasting, or the
exact maximum likelihood method [271].

� Model-checking: when the model structure and estimation
parameters values are completed, it is of critical importance
to check whether the built model conforms to the stationary
univariate process. In other words, the reliable model should
produce statistically independent residuals that contain only
white noise error and no systematic error. Besides, the model
should provide accurate forecasts sufficiently. The portmanteau
lack-of-fit test-statistic [272] is typically used for the diagnostic
purposes of the built model where the behavior of the esti-
mated residual is checked to confirm that the realizations are
approximately from a white noise process. A comparison of
the forecasts with the measured data points can be further used
to check the accuracy of generated forecasts.

� Forecasting: In the last step, the model is employed to compute
new data points, which beyond those included in the input time
series.

2.8.6. Literature review
In the literature, many successful applications of statistical

models, including logistic regression [273], k-NN [274], linear dis-
criminant analysis [274], quadratic discriminate analysis [275],
multivariate adaptive regression spline (MARS) [276], and regres-
sion trees [275], in hydrology have been reported. However,
time-series models such as autoregressive, Moving average,
autoregressive moving average, autoregressive integrated moving
average, and seasonal autoregressive integrated moving averages
have been extensively applied to predict the present and to fore-
cast future values in GWL series.

Mirza and Ghazavi [277] applied the five time-series models of
AR, MA, ARMA, ARIMA, and SARIMA to predict the monthly GWL of
36 wells located in Isfahan province, Iran. The monthly GWL from
1990 to 2004 were first clustered using the Vard algorithm of the
hierarchy method to classify the true groups of piezometric wells
into five groups, according to their similarities to each other. The
performance of the five models was investigated through 11 differ-
ent structures, according to the lag time and differencing pro-
cesses. They concluded that time-series models are one of the
appropriate methods which could be of use to forecast the GWL.
The AR with 2-lag showed the best forecasting of GWL for
60 months ahead for the five clusters.

Choubin and Malekian [278] compared the results of ANN and
ARIMA models for GWL forecasting 4 months ahead in the Shiraz
basin, southwestern Iran. The monthly time-series of GWL over
the period 1993 to 2010, in addition to that of total P, monthly
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average streamflow, T, and EP, were employed to set up the mod-
els. Gamma and M tests were used to identify the optimal input
parameters and the length of the training data, respectively. They
reported the superior performance of ARIMA with p; q, and d values
of 2, 1, and 2, respectively, in predicting GWL one month ahead.
Gibrilla et al. [279] applied the ARIMA model to measure GWLt
every six hours in seven monitoring wells from 2005 to 2014 in
the Upper East Region of Ghana. The results revealed that the cur-
rent demand in the region could be sustained under the current
and predicted GWL trends. Sakizadeh et al. [280] investigated the
performance of SARIMA and Holt-Winters Exponential Smoothing
(HWES) methods using GWL records from 28 representative
piezometers between 1984 and 2012 in the Malayer Aquifer. They
concluded that the SARIMA technique provides further improve-
ments over HWES. Therefore, the optimized SARIMA model was
used to predict the time-series for the next 4 years (i.e., from
2012 to 2016). Takafuji et al. [281] compared the performance of
ARIMA and a geostatistical method using sequential Gaussian sim-
ulation (SGS) for predicting GWL at 49 wells in the Bauru Aquifer
System domain in Sao Paulo State, Brazil. They found that, for mon-
itoring the aquifer, the ARIMA models performed more favorably
than SGS, as they achieved the same accuracy level as SGS and a
higher precision for all periods. Furthermore, they reported that
time-series models can be optimized automatically by using the
Akaike information criterion, which provides a precise and accu-
rate trade-off to choose among the models. Goodarzi [282] evalu-
ated the prediction of monthly GWL data at 58 piezometric wells
for the period of 1995 to 2010 using ANN, HARTT, and SARIMA
models in the Najafabad plain, Iran. They concluded that, though
the three models were capable of predicting the GWL, the SARIMA
models were more appropriate than the other evaluated methods,
as they showed lower error. Therefore, it can be summarized that
time-series models are capable of estimating the GWL with rela-
tively good accuracy. A list of articles proposing applied statistical
models for groundwater level modeling is given in Table 9.

2.9. Non-linear auto-regressive network with exogenous input (NARX)
model for GWL modeling

FFN is one of the most common types of ANN model. An FFN
consists of one input layer, several hidden layers, and one output
layer. A distinctive feature of an FFN model is that the connections
between layers permit forward information flow only [283,284].
The NARX model is a special type of RNN model, and is an impor-
Table 9
The applied statistical models for groundwater level modeling.

Research Applied AI models Case study

Mirzavand and
Ghazavi
[277]

AR, MA, ARMA, ARIMA, SARIMA Isfahan province, Iran

Choubin and
Malekian
[278]

ANN, ARIMA Shiraz basin, southwestern
Iran

Gibrilla et al.
[279]

ARIMA Upper East Region of Ghana

Sakizadeh
et al. [280]

SARIMA, HWES Malayer Aquifer

Takafuji et al.
[281]

ARIMA, a geostatistical method
using sequential Gaussian

simulation

Bauru Aquifer System
domain in Sao Paulo State,

Brazil
Goodarzi [282] the artificial neural networks,

HARTT model, SARIMA
Najafabad plain, Iran
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tant class within the discrete-time non-linear group models. NARX
networks have several advantages; for example, they are computa-
tionally powerful and are useful for modeling an extensive variety
of dynamic systems [285]. NARX networks are recurrent dynamic
neural networks which have feedback connections. Based on previ-
ous studies, it was noted that the gradient descent learning algo-
rithm may be more efficient within NARX, compared to other
networks [286]. NARX networks can be modeled using two differ-
ent types of architectures: Parallel and series–parallel [287,288].
The latter type of architecture is purely feed-forward and, thus, it
can utilize static back-propagation during the training phase. The
series–parallel architecture is generally expected to provide more
accurate results with the use of accurate inputs. Meanwhile, in
the parallel architecture, the past predicted output is utilized as
part of the input combination to predict the output value at the
next step [289]. As part of the current research, we report previous
studies that have employed the NARX model for GWL prediction.

The groundwater information is an important issue for
decision-makers in the agricultural area of Mississippi. Therefore,
[288] applied a new model, called NARX, for simulating daily
GWL in the Mississippi River Valley Alluvial (MRVA) aquifer in
the southeastern United States. Two different algorithms-namely,
LM and Bayesian Regularization (BR)-were employed to train the
NARX network. Several modeling architectures were created, uti-
lizing different hidden node combinations and delays (5, 25, 50,
75, and 100). A comparison between the obtained results was car-
ried out to find the optimal network. Daily historical time series for
P and GWL over eight years were considered for GWL forecasting,
up to three months ahead. The results showed that NARX-BR learn-
ing was better than the NARX-LM network for daily GWL forecast-
ing, according to several statistical indicators. The most accurate
forecasting results were attained by BR with two hidden nodes
and 100 time delays.

The performance of the NARX model has been investigated to
forecast GWL by [290]. The proposed model was applied to forecast
GWLs at several wells located in southwest Germany. Two differ-
ent parameters, P and T, were considered as predictors. Several sta-
tistical indicators, such as RMSE, Nash, and R2, were utilized to
evaluate the performance of proposed models. The results indi-
cated the outstanding efficiency of the NARX model for GWL fore-
casting under a small set of input parameters.

In 2019, [287] employed an autoregressive neural network
(NNARx) for GWL forecasting in an aquifer system. The accuracy
of the proposed model was compared with the autoregressive with
Data span Input
parameters

Output
parameter

Performance metrics

1990–2004 Antecedent
values of
GWL

Present
value of
GWL

R2, AIC

1993–2010 Antecedent
values of
GWL

Present
value of
GWL

RMSE, MAE, R

2005–2014 Antecedent
values of
GWL

Present
value of
GWL

R2, RMSE, MAPE, MAE, MaxPE,
MaxAE, Ljung-Box Q statistics

1984–2012 Antecedent
values of
GWL

Present
value of
GWL

ME, RMSE, MAE, MPE, MAPE,
MASE, ACF1

September 2014
until 30, 2015).

Antecedent
values of
GWL

Present
value of
GWL

RMSE

1995–2010 Antecedent
values of
GWL

Present
value of
GWL

RMSE, R2



Table 10
The established research on the implementation of NARX model for GWL prediction.

Models Case Study
Location

Data Span Time
Scale

Input Parameters Output
Parameter

Perform- ance
Metrics

Best
Model

Guzman et al. (2017) [288] NARX-LM,
NARX-BR

USA 1987–
1994

Daily P, GWL GWL MSE, R2, NSE NARX-
BR

Wunsch et al. (2018) [290] NARX, ANN Germany 1948–
2008

Weekly P, T GWL RMSE, R2, NSE,
RMSEr

NARX

Zanotti et al. (2019) [287] NNARx, ARx Italy Not
reported

Daily P, T GWL MSE, RMSE, NSE,
KGE, AIC

NNARx

Di Nunno and Granata (2020)
[291]

NARX, NARX-
BR

Italy 2008–
2012

Daily Raf, Evapotran-
spiration

GWL RMSE, R2, MAE, RAE NARX-
BR

Al Jami et al. (2020) [292] NARX, ANN Bangladesh 1980–
2013

Monthly P, T, H% GWL MSE, NSE, R2 NARX
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exogenous input (ARx) model. Early stopping and Bayesian regu-
larization methods, as well as a combination of both, were utilized
for training the forecasting models to avoid over-fitting. The results
showed that, for short-term forecasting, the performances of
NNARx and ARx models were comparable, with a slightly better
performance of ARx model. However, For the long-term, the
NNARx model which was trained by the Bayesian regularization
method was superior to ARx and other NNARx models. The authors
concluded that the linear model needs less time and does not
require high computational power. They found that suitable and
reliable models for short- and long-term GWL forecasting are lin-
ear and neural network methods, respectively.

Daily GWL prediction was carried out, using the NARX method
[291], at 76 wells located in the Apulian territory. Several input
parameters, including Raf, EVP, and input time delay, were consid-
ered for modeling. A comprehensive analysis of the results was car-
ried out to discern the optimal predictive model. The results
supported the reliability of the NARX-BR model to predict GWL.
The performance of NARX model, in terms of monthly GWL predic-
tion, was examined in [292]. Three different algorithms were used
to train NARX and a comparison between their results was con-
ducted by utilizing several statistical indicators. The results
revealed that combining Bayesian Regularization as a training
algorithm with NARX could provide good prediction ability. Such
a model can provide important information for GWL prediction.
The established research on the implementation of NARX models
for GWL prediction are tabulated in Table 10.
2.10. Other ML models applied for GWL prediction

Naghibi et al. (2015) [293] developed three different machine
learning models-BRT, classification and regression tree (CART),
and RF models-for mapping groundwater spring potential in the
Kohrang Watershed, Iran. To perform this study, a large set of fac-
tors, including hydrological, geological, and physiographical fac-
tors, were selected as critical factors affecting spring occurrence.
A GIS-based spring location map was prepared, using the topo-
graphic maps obtained from the National Cartographic Center of
Iran (NCCI), which included 864 spring locations in the study area.
The data was divided with a ratio of 70% and 30% for the training
and model validation sets, respectively. The model performance
was evaluated using the receiver operating characteristic (ROC)
curve. The results showed that the BRT model had higher accuracy
than the CART and RF models, considering the model performance
evaluation results. Based on the discussion of the authors, the RF
model was not superior to the others, although the RF has shown
superior performance in the previous literature. It was also
reported that factors such as altitude, drainage density, and slope
degree were the most effective factors for predicting spring
occurrence.
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Nalarajan and Mohandas (2015) [294] presented an M5-MT
model to predict monthly GWL in Jones Island, New Jersey, USA.
A historical data series of GWL values were collected from moni-
toring wells between 1970 and 2010. The data from 1995–2009
was used to train the developed model, whereas the remaining
were used to validate the model. Previous values of monthly
GWL (up to 12 months) were selected as the appropriate input
combinations. Observed and predicted results were compared
using R2 and RMSE. The results showed that the developed M5-
MT model has strong accuracy in predicting the GWL. However,
the authors indicated that the effects of some other parameters,
such as P, the permeability of the soil, soil moisture, and soil tem-
perature, are important for GWL prediction.

Zhao et al. (2016) [295] presented a methodology to predict
GWL, in which a CART model was developed with the lagged value
of Raf, reservoir level, and change of GWL as input variables. The
required data were collected between 2005–2007 for the Three
Gorges Dam Reservoir area. An SVM model was also developed
for the same purpose, in order to compare the performance of
the proposed CART model. Absolute error (AE) and relative error
(RE) metrics were used to evaluate the model performance. Based
on the comparison of observed and predicted values of the two
models, it was concluded that the proposed CART model could pre-
dict GWL better than the SVM model.

Kaya et al. (2018) [296] proposed an M5-MT model and a feed-
forward back-propagation ANN model to predict GWL in the Rey-
hanlí region, Turkey. Historical GWL data were collected from a
well located in the study area between 2000 and 2015. Monthly
P and T data were taken from Antakya Meteorological Station,
which is governed by the DSI (General State of Hydraulic Work).
Evaluation of the proposed model’s performance was carried out
using R, MSE, and MAE. The results showed that the proposed
ANN method had a similar accuracy as the M5-tree model.

Wang et al. (2018) [297] proposed a hybrid model to predict
GWL, which combines the canonical correlation forest algorithm
with random features, referred to as the CCA-CRF model. The per-
formance of the proposed model was compared with the random
forest regression (RFR) and LS-SVR models. Historical daily G and
T measurements collected for the Daguhe River in Qingdao, China
were used as predictors of GWL. Several input combinations were
examined, in order to find the best time lags to predict 1-, 3-, 5-, 7-,
and 10-day-ahead GWL. The results of the models were evaluated
using the R, RMSE, and MAE metrics. It was observed that the LS-
SVR model had higher performance for 1-day ahead prediction,
while the proposed CCA-CRF model was superior in predicting
GWL in the longer-term. Furthermore, the authors indicated that
the proposed CCA-CRF model was faster than the others.

Sharafati et al. (2020) [298] predicted GWL over the Rafsanjan
aquifer, Iran, using a gradient boosted regression (GBR) model.
Satellite-based products, including hydro-geological and climatic
factors, were derived as predictors and several input combinations



Table 11
The applied other ML models for GWL modeling

Research Applied AI
models

Case study Data span Input parameters Output
parameter

Performance
metrics

Data mode

Naghibi et al.
(2015) [293]

BRT,
CART, RF

Koohrang Watershed,
Chaharmahal-e- Bakhtiari

Province, Iran

NONE A huge set of hydrological,
geological, and physiographical

factors.

Potential
Ground water

spring

ROC NONE

Nalarajan and
Mohandas

(2015) [294]

M5 - MT Jones Island, New Jersey, USA. 15 years
(1995–
2010)

GWL GWL R2, RMSE monthly

Zhao et al. (2016)
[295]

CART,
SVM

Three Gorges Dam Reservoir,
China.

2005–
2007

Raf, Reservoir Level, GWL
change

Landslide
GWL

AE, RE Both daily
and

monthly
Kaya et al. (2018)

[296]
M5 - MT Reyhanli region, Turkey 15-years

(2000–
2015)

Raf, T, GWL GWL R, RMSE,
MAE

monthly

Wang et al. (2018)
[297]

CCA-CRF,
LS-SVR,
RFR

Daguhe River, Qingdao, China 1 year
(2013
�2014)

Raf, T, GWL GWL R, RMSE,
MAE

daily

Sharafati et al.
(2020) [298]

GBR Rafsanjan aquifer, Iran 9 years
(2007
�2016)

Satellite-based products of
hydro-geological, climatic

factors.

GWL R2, NRMSE monthly

Javadinejad et al.
(2020) [299]

MLPNN,
M5-MT

Micro-watershed, Gurpura
River Basin, Ganjimatta Region,

India

10-year
(1996–
2006)

Raf, T, GWL GWL R, RMSE, RAE monthly
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were selected using the gamma test (GT) method. The developed
GBR model was used to predict 1-, 3-, and 6-month-ahead GWL
in the study area. Thus, both short- and long-term values were pre-
dicted. The R2 and normalized RMSE (NRMSE) metrics were used
to evaluate model performance, by comparing observed and pre-
dicted GWL values. It was observed that the developed model
can be accurately used for GWL studies.

Javadinejad et al. (2020) [299] developed two different machine
learning techniques-MLP-NN and M5-MT models-to predict the
monthly GWL fluctuations for a micro-watershed of the Gurpura
river basin, India. For this purpose, first, monthly GWL values dur-
ing the period of 1996–2006 were collected from a well in the Gan-
jimatta region. Then, two different scenarios were applied, in order
to determine appropriate input combinations of the MLP-NN
model. Based on these scenarios, the one lagged time and present
values of monthly GWL, T, and Raf were found to be the appropri-
ate predictors of the MLPNN model. Similarly, an investigation was
performed to determine the best input combinations, using linear
rules to develop the M5-MT model. The observed and predicted
values were compared in terms of R2, RMSE, NSE, and RE. The
results showed that the developed M5-MT model was superior to
the MLP-NN model to predict GWL fluctuations. A list of articles
discussing other applied ML models for GWL modeling is given
in Table 11.

3. Literature review assessment

It is important for survey research to assess and evaluate the
established literature and provide a comprehensive debate that
can benefit the interested readers. In this section, several essential
points are abstracted and discussed, in light of the reported review
on machine learning-based models for GWL modeling.

� All tables (Tables 1–11) summarize the details of the reviewed
papers, including author names, type of model, case study loca-
tion, data span, time scale, input and output parameters, perfor-
mance criteria, and best model. It can be noted that the
researchers were often concerned with selecting the proper
input combination for GWL prediction. It can be observed that
most of the previous studies have used GWL, P, and T as input
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variables to predict GWL. It was also found that the majority
of the authors considered the monthly and daily time scale for
GWL modeling.

� ANN models can easily be extended from univariate to multi-
variate cases, compared to other conceptual models. Moreover,
the complexity of ANN models can be varied simply, through
changing the learning algorithms, transfer functions, and model
structure. Similar to regression models, the input variables
might be assigned by using correlation analyses or empirical
proof. In accordance with the reviewed papers, the results
showed that ANN models can efficiently predict the GWL and
capture the non-linear behaviors of the GWL in different regions
and case studies, compared to other models such as ARMA and
GM(1, 1).

� Based on the reviewed papers collected from 2008 to 2020, MLP
has been much more popular than other modeling approaches,
such as RBFNN and ELM, in GWLmodeling. The most interesting
observation from these studies is that the LM algorithm is more
popular than other algorithms in training ANNs for forecasting
GWL. The LM algorithm is one of the most efficient learning
algorithms, as it can interpolate between the Gauss–Newton
algorithm and the gradient descent method. The robustness of
the LM algorithm, in many cases, comes from its capability to
reach an optimal solution, even if starts very far off the final
minimum. The LM algorithm has many other advantages, such
as faster convergence and lower probability to become stuck
in local minima than other learning algorithms used to train
MLP.

� In modeling GWL using MLP with a single hidden layer,
researchers most frequently used the sigmoid transfer function
in the output layer. It is important to mention that other
researchers have also used the hyperbolic tangent sigmoid
transfer function in the hidden layer; however, it is not as fre-
quently used as the sigmoid transfer function. Moreover, during
the development phase of ANN models, scholars generally use
trial-and-error methods to select the number of hidden nodes
in the hidden layer(s). The assessment process of ANN models
for assessing the qualification of the suggested models was car-
ried out by using statistical measures. Moreover, very limited
published papers have used parameters that had a significant
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effect on the fluctuation of GWL, such as groundwater abstrac-
tion quantity. Researchers usually used error metrics such as
RMSE, MAE, R2, R and NASH.

� ELM was presented, in the last decade, as an alternative algo-
rithm to train a single feedforward neural network or MLP.
Few studies have been conducted to forecast GWL using ELM.
The main advantages of the ELM are its ability to train faster,
its capability to obtain more accurate results even when a larger
number of hidden nodes is used, and its good generalizability.

� The input data used is very important in developing GWL pre-
dictive models over a certain period. Some researchers have
used only the lags of GWL to establish their models for predict-
ing GWL. However, other researchers combined past GWL val-
ues and hydrological variables, such as Raf, EP, EVP, T, relative
H%, flow discharge of a river, and so on. Based on the present
review, only a few researchers have used only meteorological
or hydrological parameters for GWL forecasting.

� The cited literature reported that GWL predicted using statisti-
cal ARIMA models are more accurate, in comparison to other
applied AI models. Despite requiring a great deal of experience,
due to their complexity, time-series models have been inher-
ently identified as very powerful techniques with great flexibil-
ity, as they are more likely to deal with non-stationary time-
series more effectively. Besides, these models can be used for
short-term GWL prediction without the need for other input
data. This might be an advantageous feature in an area where
the availability of hydrological data is lacking. The monthly
time step of collected GWL was used in most of the cited
papers; this might be attributed to the high availability of
monthly GWL records, in comparison to other time scales.

� According to the reviewed papers, the input parameters that
have been used in GWL modeling are mostly antecedent values
(auto-correlated input variables) without any other exogenous
hydrological variables. However, in some other models (e.g.,
ANNs), data such as T, river discharge (surface runoff), EVP, sur-
face water (lake) level, pumping rates (extraction from wells),
and H% have been used as input variables and the results were
compared with those of time-series models. However, the out-
comes of time-series models were superior, compared with
multi-input variables models.

� A review of the previous studies utilizing NARX networks for
GWL forecasting was also conducted, in order to enrich the
review process. The main points highlighted from the related
studies can be summarized in three points: (i) NARX networks
suffer from several limitations, such as over-fitting problems
and local minima; (iii) The Bayesian algorithm can be consid-
ered as a reliable training method to avoid over-fitting problem,
but its performance may be reduced when coupling it with
early stopping; and (iii) the literature has reported that linear
models (ARX) could be a useful and easily applicable tool for
short-term GWL forecasting.

� With the advances in computational power and internet tech-
nology, deep learning applications in hydrology are expected
to grow significantly in the long-term. Indeed, the application
of deep learning in groundwater prediction is still relatively
low, as compared to other hydrological variables such as water
level and discharge [134]. It is no surprise that more deep learn-
ing groundwater-related articles will become available in the
near future. As stated in the United Nation’s Sustainable Devel-
opment Goal 6 of CleanWater and Sanitation, more than 1.7 bil-
lion people live in river basins where the water usage exceeds
water supply. In many parts of the world, groundwater is still
unexplored and can provide an alternative solution to reduce
water stress issues, if used wisely. Reliable groundwater infor-
mation and forecasting are essential for groundwater resource
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management. In the future, collaborations among researchers
and local stakeholders need to be strengthened, in order to
develop a more practical framework, such that deep learning-
extracted GWL information can be fully utilized by local gov-
ernments; for instance, the development of tools with user-
friendly graphical user interfaces may encourage the usage of
deep learning in GWL simulation and forecasting by local stake-
holders and users with little programming background.

� The Internet of Things (IoT) paradigm allows groundwater
information to be gathered and analyzed more smartly with
broader user communities. Advances in computational power,
internet speed, and coverage, together with rapid development
in software technologies, such as cloud storage systems and
service-oriented architecture (SOA), have stimulated the devel-
opment of smart water quantity and quality monitoring sys-
tems [300,301]. Approximately 1.6 million monitoring wells
are available worldwide to measure GWL; however, most of
them are not recorded automatically [302,303]. Therefore, the
implementation of IoT is expected to reduce the difficulty in
obtaining GWL data. The integration of IoT and deep learning
can provide more accurate real-time GWL data collection, trans-
fer, and analysis at low-cost. For instance, Su et al. [303] devel-
oped deep learning algorithms that combine both IoT and
groundwater model using a groundwater-related web GIS plat-
form, in order to enhance groundwater data management.

� The literature review presented and discussed above highlights
the great capabilities of the ANFIS model as a robust tool for
GWL prediction. ANFIS can provide high accuracy and precision
for nearly all cases (i.e., monthly, daily, or weekly time steps).
However, an important conclusion that can be drawn, based
the above analysis, is that the selection of the variables used
as inputs for the ANFIS model is an important factor controlling
the accuracy of the model. It has been demonstrated that, in
some cases, the inclusion of a large number of climate variables
is required for an accurate GWL estimation. As shown above,
most research regarding the application of the ANFIS model
has been conducted without metaheuristic optimization algo-
rithms, such as PSO, firefly optimization algorithm (FFA), or
Grey wolf optimizer (GWO), among others. These algorithms
remain relatively underexplored and they can certainly con-
tribute to the advancement of methods for GWL prediction,
helping to overcome some specific difficulties encountered dur-
ing the training of the ANFIS model, especially rapid conver-
gence and local minima.

� The employment of the wavelet technique to develop comple-
mentary models can enhance the predictability efficiency and,
in all cases, hybrid methods involving wavelets performed bet-
ter than their regular counterparts. In general, wavelet-based
machine learning models are more accurate, as the DWT pro-
vides better discrimination of the non-linear and non-
stationary trends that exist at various scales in the time-series
of the input variables [249]. It has also been found to be useful
for other aquifers and basins with different characteristics
[194]. The generated wavelet models are simpler and more
interpretable, making it possible to understand which indepen-
dent variables have a greater effect in simulating the dependent
variable [39].

� An optimal number of lag times for the input values must be
identified, as it plays an important role in GWL simulation
[39]. Furthermore, selecting a suitable decomposition level
affects the accuracy of hybrid models [39]. This is because a
high level of decomposition is not always helpful in increasing
the model’s accuracy. Further research needs to be conducted,
in order to improve higher lead-time forecasting. The selection
of significant hydrological variables as inputs for the models
must also be considered, which is very specific to the region



Fig. 14. Applied AI models for GWL modelling: Pie-chart demonstration of the various AI models with extended view of the three most widely preferred AI model types
including Hybrid-type models, Wavelet assimilated models and others.
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of study and the climate in question, as it significantly affects
the performance of the models [39,194]. Therefore, it is recom-
mended to carry out exhaustive studies in the future to evaluate
the effects of other hydrological variables on groundwater sim-
ulation and to understand the dynamics involved to find suit-
able variables for groundwater modeling in different climates
and conditions. The employed model can be used for monitor-
ing seasonal GWL fluctuations by dividing the data, according
to monsoon and non-monsoon periods. More comparative stud-
ies to investigate the performance of the models at different
stages of modeling, as well as comparisons with other time-
series pre-processing tools, need to be explored. In future
works, the hybrid models should able to explain the physical
phenomena involved, which are currently lacking in the previ-
Fig. 15. Time scale analysis: Pie-chart demonstration of the usage of the dataset
time scale for GWL modelling and bar chart presenting the application of the
specified time scale in total number of studies.
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ous and current literature. The effects of the various inherent
parameters in the various employed models also need further
investigation.

� In our review of the numerous studies carried out in the field of
GWL, it was observed that there has been a significant increase
in the number of published works over the years. It is evident
that increases in groundwater contamination, the dependence
of groundwater utilization, changes in water level, and advance-
ment in machine learning and AI tools have led to more promi-
nent research using AI-based models in this field, as shown in
Fig. 2. As per Fig.2 a slow growth was observed during 2008–
2011; however, the number of publications doubled during
2011–2013, while steady progress was detected in the subse-
quent years. Furthermore, an exponential growth can be
observed from 2017–2020 due to an increase in the popularity
of AI models. Even though 2020 was a difficult year for every-
one, 28 papers were still published in the field, thus demon-
strating that such computational tools are the need of the
hour, allowing for the progress of such important research.
Fig. 16. Depiction of the preferred input selection for GWL modeling.



Fig. 17. Statistical analysis of applied performance metrics (PMs): A. Combination of PMs utilized in total studies. B. Individual PMs examined. C. presenting the other PMs
examined except the prevalent PMs.
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� Over the period of the survey, AI models have advanced, leading
to more complex and integrated type of models, which have
given researchers the means to develop more accurate and
robust models. A similar conclusion was drawn after visualiza-
tion of the various models applied to GWL modeling in the past
decade. Fig. 14 presents an in-depth description of the most
applied model types in GWL simulation, in pie-chart form. It
can be seen, from the chart, that the most implemented were
hybrid-type (36%) models, mostly consisting of the base models
such as ANN, SVM, fuzzy-based models, and tree-based models
(presented in the blue box). Their popularity can be explained
based on their higher accuracy, efficiency, and ability to deal
with non-linear data sets. The second extended pie-chart from
the main chart denotes the wavelet-type models, which consist
of the integration of wavelet tools with the base models (sec-
ondary pie-chart). The ability of wavelets to reduce data noise
has played an important role in their widespread application
(8%). The third most applied model was distinguished as others,
as it covered various other types of models which, apparently,
are difficult to place in other groups (presented in the orange
box). This also indicates that there is a lot more to be explored
in this area.

� AI models has been proven to be effective tools when provided
with systematic and consistent data over a continuous time
period. Moreover, the time scale also plays a vital role in the
model performance; thus, a visual representation of the time
scales used in the published papers is presented in Fig. 15.
The pie chart depicts that the most applied data collection
was monthly data (69%), followed by daily data (24%). Studies
that applied yearly data (1%) can be utilized for GWL capacity
change studies but may be rendered insignificant when study-
ing seasonal changes. Similarly, depending on the type of study,
hourly data (4%) can also be used. However, hourly data collec-
tion can be expensive and may not be a preferable choice for
low-budget research projects. When considering the duration
of the data utilized for the study, 1 year (8 studies) seemed to
be the smallest duration which allowed the model to work effi-
ciently. Following that, 7- (8 studies), 9- (9 studies), 11- (8 stud-
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ies), and 15-year data sets (8 studies) have also been majorly
applied. It should be considered that larger data sets can reveal
the time-series pattern trend changes, whereas smaller data
sets cannot. A total of 10 research papers used larger data sets
(between 20–60 years), which are important in understanding
long-term trend changes; however, such data may be ineffec-
tive for near-future prediction, as recent data are more useful
for prediction analyses.

� The selection of input was mostly based on the influence of
those variables on the selected output. Fig. 16 presents such
preferred input variables for GWL modeling. As per this figure
(Fig. 16), GWL (34%), precipitation, and temperature were the
most preferable input variables. Most studies utilized a combi-
nation of these input variables, as mentioned in the figure;
however, most researchers chose GWL in those combinations.
In addition, 1% also included sea level, in order to consider pos-
sible seawater intrusion into a permeable aquifer. Such consid-
erations depend on the geographical location, which may affect
(either directly or indirectly) the GWL.

� Performance metrics (PMs) help to understand the performance
of models, where each PM can reveal different information of
the model, leading to a wide range of PMs being applied, as
shown in Fig. 17. Fig. 17a shows the combination of PMs applied
in the studies, which indicates that most preferred combination
was 3 and least preferred was 6. However, it is always beneficial
to utilize various PMs to overcome the limitations of individual
PMs. Fig. 17b shows the most applied PM; among all, the RMSE
(77) was the most-used error type PM, while R2 (46) was the
most-used accuracy assessment PM. Fig. 17c is an extension
of Fig. 17b, showing the other PMs applied.

� The literature review also emphasised on the integration cli-
mate change on watershed GWL and more research shall be
adopted for this kind of modeling interaction between climate
and geo-science water behaviour [304]. Climate change has
been remarkably observed especially in tropical region and
has substantial influence on ground temperature in which lead
for the GWL fluctuation [305].
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4. Future research direction

Based on the presented literature review and the gaps identified
in the previous section, recommendations of possible future
research directions to improve the accuracy of GWL prediction
models and to enhance the related knowledge are outlined in this
section.

� Exogenous parameters, such as sea level and groundwater
abstraction, have vital influences on the GWL in different
regions around the world. Increased attention should be paid
to the rapid changes in sea level rise when simulating GWL in
coastal aquifers. Global warming has undeniably major effects
on sea level by melting large quantities of ice, thus leading to
a rise in sea and ocean water levels in some areas over the
world. Consequently, the amount of seawater that will seep into
the aquifer increases, which has a great impact on the sharp
fluctuations in changing GWL, especially in coastal areas. On
the other hand, the rise in global temperatures leads to evapo-
ration of large quantities of water, which may lead to a decrease
in the GWL in wells. The other important parameter is ground-
water abstraction quantity, which should also be taken into
account in future studies. In arid and semi-arid areas, which
depend largely on groundwater for irrigation, agriculture, and
other purposes, the groundwater that is extracted may not be
replaced until after long periods of groundwater recharge, due
to natural factors such as less rainfall. Therefore, abstraction
has a great impact on GWL fluctuations.

� The selection of GWL lags should be given more attention in the
development of the AI modeling approaches. Among different
mathematical and statistical approaches, ACF and PACF have
been considered efficient methods to select the best GWL lags
as inputs. Based on the reviewed papers collected in this study,
few studies used ACF and/or PACF to select the most proper pre-
ceding GWL variables. The ACF and PACF approaches provide
much more information on the main characteristics of the
time-series of groundwater fluctuations over a certain period.
The fluctuations of the GWL provide a direct measure of the
effects of groundwater development and valuable knowledge
about the dynamics of an aquifer in GWL time-series data.
Therefore, there is a high possibility to accurately forecast
future GWL from its previous data.

� To obtain more precise GWL predictions, many studies have
used antecedent data of GWL, as well as hydrological and mete-
orological information, such as Raf, H%, T, EVP, and so on. How-
ever, increasing the number of input variables could hinder the
process of developing reliable and accurate models. In future
research, the researchers may have to apply feature selection
techniques to select the most significant input parameters and
to get rid of redundant information [306,307]. Moreover, the
selection of the most appropriate variables can enhance the
model learning process, save time, and reduce computational
costs [54]. Thus, applying a feature selection approach prior to
the learning phase of AI models may help to achieve more pre-
cise and reliable GWL prediction models.

� A majority of researchers have developed predictive models at
monthly and daily time scales. More attention should be paid
to the prediction of yearly GWL, as it is considered very signif-
icant for water resource management and planning in the long-
term. Moreover, long-term GWL forecasting could help
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decision-makers to develop strategic plans and policies for
water management and to ensure water sustainability, espe-
cially in dry areas.

� Our review showed that, among the genetic programming tech-
niques, Classic GP, MGGP, and GEP have been successfully used
for GWL prediction to date. Future studies could be designed to
assess the efficiency of other GP variants, such as Linear GP
[308] or multi-stag GP [309], for GWL prediction.

� Further studies should take into consideration the filling in (i.e.,
imputation) of missing groundwater values using deep learning
techniques [310–313]. Groundwater observations are usually
sparse and the existence of missing values (e.g., due to instru-
ment failure or poor monitoring management systems) are
common. These missing values may degrade the data quality
and increase the uncertainty in spatio-temporal groundwater
analysis and simulation [314]. Hence, reliable groundwater data
filling algorithms are needed, in order to reproduce the actual
conditions for groundwater forecasting. As the groundwater
pattern is usually non-linear or non-stationary, imputing the
missing values is a complex issue. For this task, deep learning
could provide a powerful tool to extract the non-linear spatio-
temporal groundwater patterns without considering their
explicit forms [315]. The LSTM is specifically designed for
long-term period data prediction, being equipped with memory
cells that retain important information regarding historical
events [316]. Therefore, the improvement of LSTM models in
groundwater missing value imputation is foreseen to be a pop-
ular topic. Furthermore, groundwater sensors can employ deep
learning methods to detect and correct some unreasonable or
outlier readings; in this way, only useful information will be
transmitted to the central system.

� Hybrid versions of ML models that incorporate nature inspired
algorithms for tuning the hyperparameters standalone MLmod-
els are highly empathised to be explored in this research
domain. As the optimization of the internal models parameters
is influencing the learning process and the prediction capacity
[317,318].

5. Conclusions

The current survey was established to provide an informative
milestone on the implementation of machine learning models in
the simulation of GWL. The survey covered the period of 2008–
2020, where all the gathered studies were obtained from indexed
journals in the Web of Science. Based on the reported review, ten
versions of ML models have been applied for GWL modeling over
the globe. The survey identified several essential elements in the
existing GWL simulation models, including the applied algorithms,
input parameters, target parameters, investigated regions, data
span, and performance metrics. The surveyed studies were
assessed and evaluated scientifically, and numerous findings were
discussed in detail. In accordance with the current status of the
conducted literature, various possible future research directions
were recognized for the interested readers and practitioners in this
domain.

Abbreviations

The list of abbreviations used in this paper are tabulated in
Table 12.



Table 12
The list of abbreviations used in this paper.

ACF Autocorrelation Function AE Absolute Error

AI Artificial Intelligence ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Networks AR Autoregressive
ARIMA Autoregressive Integrated Moving Average ARMA Autoregressive-Moving-Average
ARMAX Auto Regressive Moving Average With External Model ARX Auto-Regressive With External Model
BA Bat Algorithm BNN Bayesian Neural Networks
BP Backpropagation BR Bayesian Regularization
BRT Boosted Regression Tree CANFIS Co-Adaptive Neuro-Fuzzy Inference Systems
CART Classification And Regression Tree CBA Classification Based On Association Rule
CC Correlation Coefficient CEEMD Complementary Ensemble Empirical Mode Decomposition
CFL-WA Committee Fuzzy Logic Weighted Averaging CFN Cascade Forward Network
CSO Cat Swarm Optimization CWT Continuous Wavelet Transform
DE Differential Evolution DL Deep Learning
DWT Discrete Wavelet Transform EANN Emotional ANN
EBF Evidential Belief Function EEMD Ensemble Empirical Mode Decomposition
ELM Extreme Learning Machine EP Evaporation
EVP Evapotranspiration EV Error Variation
FFA Firefly Optimization Algorithm FFBPNN Feed-Forward Back-Propagation Neural Network
FFNN Feed Forward Neural Network FL Fuzzy Logic
GA Genetic Algorithm GB Gradient Boosting
GBR Gradient Boosted Regression GEP Gene Expression Programming
GIS Geographic Information System GMDH Group Method Of Data Handling
GOA Grasshopper Optimization Algorithm GP Genetic Programming
GP Gaussian Process GPC Gaussian Process Classification
GPR Aussian Process Regression GR Gridded Rainfall
GRACE Gravity Recovery And Climate Experiment GRI Groundwater Resources Index
GRNN Generalized Regression Neural Network GSA Gravitational Search Algorithm
GSM Grey Self-Memory Model GT Gamma And M-Tests
GWA-GWHP Groundwater Abstraction Associated With Operation Of The GWHP System GWF Groundwater Fluctuation
GWA-WCC Groundwater Abstraction Associated With Operation Of The WCC System GWL Groundwater Level
GWO Grey Wolf Optimizer H% Humidity
HBSA Hybrid Bat-Swarm Algorithm HIS Improved Harmony Search
HS Harmony Search HWES Holt-Winters Exponential Smoothing
IA Index Of Agreement IL Infiltration Loss
IoT Internet Of Things ISA Interior Search Algorithm
KA Krill Algorithm kNN K Nearest Neighbor
LAT Latitude LFL Larsen Fuzzy Logic
LM Levenberg–Marquardt LNG Longitude
LSBoost Last Squares Boosting LSSVM East-Squares Support Vector Machine
LSTM Long Short-Term Memory LSTM-LA Long Short-Term Memory-Lion Algorithm
M5tree M5 Model Tree MA Moving Average
MAE Mean Absolute Error MAPE Mean Absolute Percentage Error
MARS Multivariate Adaptive Regression Spline MCMC Markov Chain Monte Carlo
ME Mean Error MF Membership Functions
MFL Mamdani Fuzzy Logic MGGP Multigene GP
ML Machine Learning MLP Multilayer Perceptron
MLR Multiple Linear Regression MODWT Maximal Overlap Discrete Wavelet Transform
MOGA Multi-Objective Genetic Algorithm MRVA Mississippi River Valley Alluvial
NB Naïve Bayes NCCI National Cartographic Center Of Iran
NF Neuro-Fuzzy NMSE Normalized Mean Square Error
NRMSE Normalized Root Mean Square Error NS Nash–Sutcliffe Efficiency Coefficient
NSE Nash–Sutcliffe Efficiency OK Ordinary Kriging
P Precipitation PACF Partial Autocorrelation Function
PSO Particle Swarm Optimization Q Discharge
QPSO Quantum Behaved Particle Swarm Optimization Function R Pearson’S Correlation Coefficient
Raf Rainfall RBFNN Radial Basis Function Neural Network
RE Reduction Of Error Statistics RE Relative Error
RF Random Forest RFR Random Forest Regression
RMSE Root Mean Square Error RNN Recurrent Neural Network
ROC Receiver Operating Characteristics RS River Stage
SARIMA Seasonal Autoregressive Integrated Moving Average SCFL Simple Committee Fuzzy Logic
SD Sunshine Duration SFL Ugeno Fuzzy Logic
SFR Stream Flow Rate SGS Sequential Gaussian Simulation
SM Soil Moisture SMO Sequential Minimal Optimization
SOA Service-Oriented Architecture SOM Self-Organizing Map
SPI Standardized Precipitation Index SVD Singular Value Decomposition
SVM Support Vector Machines SVR Support Vector Regression
SWL Surface Water Level T Temperature
Tmax Maximum Temperature Tmean Mean Air Temperature
Tmin Minimum Temperature WA Whale Algorithm
WA Weed Algorithm WANFIS Wavelet-Adaptive Neuro-Fuzzy Inference System
WEF Weighted Error Function WGEP Wavelet Gene Expression Programming
WL Water Level WLR Wavelet-Linear Regression
WMT Wavelet-M5 Model Tree WNN Wavelet- Neural Network
WS Wind Speed WSVR Wavelet-SVR
WT Wavelet Transform
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