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a b s t r a c t

The concerning waste management issue of natural fibers and the downsides of synthetic

fibers have governed natural fibers' utilization as reinforcements in composites. Incorpo-

rating a single type of reinforcing fiber does not inevitably produce composites that meet

exceptional quality standards, particularly in dynamic mechanical properties. Various

studies have demonstrated excellent properties of natural fiber reinforced hybrid com-

posites. Accordingly, this paper aims to review research related to natural fiber reinforced

hybrid composites that emphasize the dynamic mechanical properties. A summary for

each type of hybrid composites, including thermoset and thermoplastic polymers, bio-

polymers, nanocomposites, and bionanocomposites was provided. The variables of rele-

vance in this overview are the loss modulus, storage modulus, damping factor, and glass

transition temperature. Overall, the reviewed works revealed that lignocellulosic fibers are

extensively used to reinforce composites. Nearly all hybridization of multiple reinforcing

fibers had synergistic influences on the hybrid composites' dynamic mechanical properties.

However, there are several cases whereby the addition of hybrid reinforcing particles leads
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to a detrimental effect on the composites’ quality. There is a limitless possibility for further

improvements of natural fiber reinforced hybrid composites.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction
The utilization of natural fibers is emerging rapidly, owing to

their biodegradability, abundance, reasonable cost, and min-

imal energy usage in processing [1,2]. The outstanding char-

acteristics of natural fibers, such as high specific modulus,

lightweight, and excellent resistance to wear and tear, have

given rise to their utilization as reinforcing agents in polymers

composites, including thermoset and thermoplastics [3,4].

Generally, natural fibers can be categorized into plant, animal,

and mineral fibers. This review principally emphasizes natu-

ral fibers originating from plants as this source of fiber is

recently becoming the center of attention of the research so-

ciety and the industry [5]. Nonetheless, natural fibers of ani-

mal and mineral origins are not disregarded as this review

aims to provide a holistic view of natural fiber reinforced

polymer composites.

Bamboo, sugar palm, bagasse, wood, kenaf, jute, hemp,

pineapple, and cotton fibers have been extensively used in

various polymers, aiming to enhance the composites’ prop-

erties, particularly from the environmental and biodegrad-

ability standpoints [5e8]. These fibers are similar in terms of

their chemical constituents, namely cellulose, hemicellulose,

and lignin, yet marginally different in terms of their physical

and mechanical properties due to their variation of fiber

diameter, length, and specific gravity [9]. Despite the extensive

exploration of natural fibers as polymer reinforcing materials,

various other natural fibers such as pines, banana, abaca, and

ramie fibers with similar chemical composition are yet to be

explored comprehensively [5]. The paucity of evidence on

these fibers as composites reinforcing agents suggests that

there is room for further exploration in the research field, and

there are boundless possibilities to bring this technology to a

greater extent.

Hybrid composites are fabricated using more than one

reinforcing agents in the same polymer matrix, intending to

boost the composite properties. Combining several reinforc-

ing materials makes it possible to get either a synergistic or

antagonistic effect of the materials [10]. In addition, the

properties can also be tuned by balancing the positive aspects

of one material with the downsides of another [11]. The

incorporation of multiple reinforcements in a matrix offers a

broader extent of properties that are unattainable by single

fiber reinforced composites. Accordingly, the hybridization of

natural and synthetic origins reinforcing agents has gained a

considerable attention from the scientific community [12]. In

the manufacturing and production industries, the use of

synthetic fibre composites is inevitable because their qualities

are acknowledged to be superior to those of natural fibre.

High-performance polymer matrix composite products, such

as fibre reinforced plastic tanks, aircraft components, vehicle
parts, and building panels, have all been made with synthetic

fibre. Glass, carbon, and aramid are some of themost regularly

used synthetic fibres in the composites industry [13].

Upon fabricating reinforced composites, the performance

should be tested to ensure it achieves the specified industrial

standards [14]. It is crucial to check and validate the com-

posites' performances and characteristics, particularly when

subjected to periodic stress such as damping. Dynamic me-

chanical analysis (DMA) is a convenient analytical method to

analyze a composite material's properties as a function of

time, temperature, or frequency. This technique has been

used for the last few decades, and until today, it is still

considered an essential method in the material engineering

field, owing to its outstanding detection sensitivity [15]. Over

the past few years, several articles had comprehensively

reviewed the dynamic mechanical properties of natural fiber

composites [16e19]. However, none of the review focused

solely on natural fiber reinforced hybrid polymer composites.

In this review, the dynamic mechanical properties of natural

fiber reinforced hybrid polymer composites are reviewed.
2. Dynamic mechanical analysis (DMA)

DMA is an analytical method that evaluates the viscoelastic

properties of materials, particularly polymers and compos-

ites, by measuring the stress or strain resulting from a

dynamically varying stress or strain subjected to the sample.

DMA is also termed as dynamic mechanical thermal analysis

(DMTA) when the temperature response is analyzed. The

typical DMA parameters of interest for composite materials

are storage modulus, loss modulus, and damping factor as a

function of time, temperature, or frequency [20]. The storage

modulus (E0) or dynamic modulus describes a material's
stiffness and elastic behavior. This parameter theoretically

allies with Young's modulus, but it should be emphasized that

they are not identical [20]. On the other hand, the loss

modulus (E00) or dynamic loss modulus portrays a material's
viscous response and is associated with the sample's heat

energy dissipation. This variable is usually linked to the ma-

terial's “internal friction”. It is primarily affected by the mo-

lecular arrangements, heterogeneities, motions, and phase

transition processes [21]. The storage modulus and loss

modulus concept can be explained by a bouncing ball's
behavior, which dissipates and stores energy, as illustrated in

Fig. 1.

The damping factor (tan d) or loss tangent is one of the vital

variable obtained from DMA, expressed as the ratio of the loss

modulus and the storage modulus (tan d ¼ E”/E0), as depicted

in Fig. 2 [22]. The resulting parameter of loss modulus and

storage modulus is termed as complex modulus (E*), which

describes a material's resistance to deformation. A highly
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Fig. 1 e Representation of the loss modulus and storage

modulus.

Fig. 2 e Correlation between storage modulus, loss

modulus, shear modulus, and damping factor.
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elastic material will have a low value of damping factor as it

can easily deform when subjected to external force, whereas

vice versa for a non-elastic or rigid material. From the view-

point of fiber reinforced polymer composites, greater interfa-

cial bonding between the fiber and matrix components will

result in a higher value of damping factor [21]. This charac-

teristic is caused by the lower energy loss due to internal

molecular motion as the movement of interlocked molecular

structures are restricted; hence, yielding higher storage

modulus to loss modulus ratio [23].

2.1. Glass transition temperature (Tg)

The measurement of glass transition temperature (Tg) is one

of the principal applications of DMA. The Tg is a temperature

at which a thermosetting and amorphous polymer undergoes

a transition from a rigid structure to a rubbery state. It should

be noted that Tg is not the same asmelting temperature (Tm), a

temperature at which a material starts to melt, which often

occurs for polymers with a crystalline structure. The Tg is

highly dependent on the crosslink density of a polymer [24].

For thermosets, a high crosslink density restricts the molec-

ular motions, resulting in higher energy requirement to

enable segmental mobility during glass transition [25].
Consequently, this behavior yields a higher modulus, lower

damping factor, and higher Tg. The crosslink density effect is

distinctive in the rubbery and transition state of amaterial but

not in the glassy region. Hence, the modulus values of lightly

and highly cross-linked polymers are similar at the DMA

curve's glassy region. In contrast, at the curve's rubbery and

transition regions, highly cross-linked polymer will show

much higher modulus values, portraying tighter molecular

arrangement and higher stiffness. Fig. 3 depicts a comparison

of composites with high and low crosslink densities. For

amorphous thermoplastic materials with flexible backbone

will have lower Tg values, whereas plastic materials whose

molecular structure is stiff, rigid, and inflexible showhigher Tg

values [26]. Additionally, the degree of branching (DB) of

polymers also affects the Tg in a way that a higher DB of a

polymer will result in a higher Tg [27].

A polymer that comprises both amorphous and crystalline

structure will have both Tg and Tm, with Tg that is always

lower than Tm. The capability of polymers to exist in two

different functional states enables them to have a wide range

of applications. Some polymers such as polystyrene and pol-

ymethyl methacrylate are used below their Tg in their rigid or

brittle state. In this state, the molecular bonds are interlocked

and thus restricts molecular motion [15]. The hardness of the

materials makes them suitable for packaging, furniture, and

laboratory equipment. On the other hand, polyisoprene and

polyisobutylene are used in their rubbery state above their Tg.

In contrast to the rigid phase, the polymer's molecular chains

are mobilized in the rubbery state, resulting in high flexibility

and softness [15]. This property is useful for various applica-

tions such as adhesives, sealants, and lubricants. In terms of

the Tg determination, the DMA technique is superior to other

methods, with up to 100 times higher sensitivity than the

differential scanning calorimetry (DSC) method [28]. The

determination of Tg via DMA can be done using three

methods; the temperature at (1) the onset of E0, (2) the

maximum of E*, and (3) the highest point of tan d. Fig. 4 shows

a sample of Tg determination using the storagemodulus curve

of DMA.
3. General characteristic and classification of
natural fiber reinforced hybrid polymer
composites

Fiber reinforced hybrid polymer composites are extensively

used as substitutes of metallic materials for automotive,

building, and aerospace applications [29e31]. A combination

of two or more reinforcing materials in a single polymer ma-

trix forms hybrid composites that may have greater stiffness

and strength compared to the individual components. The

hybrid reinforcement may vary depending on its source

(natural/natural and natural/synthetic) or scale (micro/nano),

resulting in a wide diversity in properties [32]. Theoretically,

the properties of hybrid composites should obey the rule of

hybrid mixtures if no chemical or physical interaction occurs

between the reinforcing fibers [33]. The rule is expressed as

follows;

PH ¼P1V1 þ P2V2 (1)
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Fig. 3 e Storage modulus and loss modulus of highly and lightly cross-linked composites [21].

Fig. 4 e Determination of Tg from storage modulus curve [15].
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where PH is the estimated property of hybrid composite, P1 and

P2 are the properties of composites with individual fiber re-

inforcements 1 and 2, respectively, and V1 and V2 are the

volume fraction of each fiber in the hybrid composite such

that:

V1 þV2 ¼ 1 (2)

Hybrid composites can be classified according to various

aspects such as its polymer matrix, scale of reinforcing ma-

terial, reinforcement types, and bond strength [34]. Typically,

the classificationmade based onmatrixmaterials is divided in

two categories; (1). Thermoset such as epoxy and polyester;

and (2). Thermoplastic such as acrylonitrile butadiene styrene

(ABS), polypropylene (PP), and polycarbonate (PC). In this

work, the authors proposed another category to be included,

which is bio-polymer. Recently, the use of environmentally

friendly matrices such as cellulose, starch, poly (lactic acid),

and biodegradable epoxy are increasing due to its desired

biodegradable characteristic [35e38]. In addition, the devel-

opment of fiber reinforced biopolymer has a potential to

reduce carbon footprint [39]. Taking all into considerations,
hybrid bio-polymer composites are worth to be discussed

more in the future.

Another categorical group of hybrid composites is made

based on the reinforcing fiber scale. If one of the reinforcing

materialsused in thematrix is in thenanometric scale (between

1 nm and 100 nm), the composite is termed nanocomposite.

Nanoparticles, nanotubes, and lamellar nanostructures are

often incorporated in a polymer matrix, resulting in nano-

composites with unprecedented flexibility and enhanced prop-

erties [40]. This review emphasizes on the dynamicmechanical

properties of thermoset, thermoplastic, and bio-polymer com-

posites, nanocomposites, and bionanocomposites.
4. Dynamic mechanical properties of natural
fibers reinforced hybrid composites

4.1. Hybrid thermoset and thermoplastic composites

To date, numerous studies have fabricated and investigated

the performance of natural fibers reinforced hybrid thermoset
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and thermoplastic composites. Some significant works of the

composites that considered DMA properties are summarized

in Table 1.

Recently, Nurazzi and co-authors [52] have carried out an

extensive study on the dynamic mechanical properties of

sugar palm yarn/glass fiber reinforced unsaturated polyester

hybrid composites. The sugar palm yarn fiber was chemically

treated as a remarkable attempt to improve the fiber/matrix

interfacial adhesion alongside other properties enhance-

ments. The results have shown that the inclusion of alkali

treated sugar palm yarn had improved the stiffness consid-

erably, evident by the increase of storage modulus as shown

in Fig. 5. At higher temperature, there is no notable change in

storage modulus due to hybridization or an increase of the

glass fiber ratio and alkaline treatment. It was claimed that the

treated fiber had better compatibility with the glass fiber and

matrix as the hydrophilicity of the sugar palm fiber was

reduced after being treated. In addition, the Tg of treated fiber

hybrid composite had shifted from 61.20 to 73.84 �C, implying

enhanced interfacial adhesion between the reinforcement

and the matrix.

A DMA study of jute/sisal fiber reinforced hybrid polyester

composite was presented by Gupta et al. [53]. The fibers in

each composite were maintained at 30% of the total weight.

The findings revealed that hybrid composites with higher sisal

fiber content (jute to sisal ratio of 25:75) exhibited higher

storage and loss moduli than composites with hybrid ratios of

50:50 and 75:25. Furthermore, the hybrid composite also por-

trayed the most desired damping factor (0.278) and higher Tg

(94 �C) as compared to other fabricated composites with

different fibers ratios. On the other hand, composites with a

single type of reinforcing fiber showed minor enhancements

of DMA properties.

Recently, areca and kenaf fibers hybridization as reinforc-

ing material for an epoxy matrix was examined by Sathya-

seelan et al. [41]. The study emphasized the different stacking

sequence of the reinforcing fibers. The DMA results showed

that the areca/kenaf hybrid composite showed intermediate

storage and loss moduli enhancement, whereas the kenaf

fiber reinforced composites exhibited superior properties.

Regarding the damping factor, it was reported that kenaf fiber

reinforced composite had approximately 13% lower value

compared to areca reinforced composite. Upon the hybridi-

zation of both fibers, an intermediate damping factor value

was obtained.

An interesting study by Arulmurugan et al. [42] has

attempted a slightly different approach by adding BaSO4 filler

in aloe vera/hemp fiber and flax/hemp fiber reinforced hybrid

epoxy composites. The result has demonstrated that without

the filler, flax/hemp fiber hybrid composite exhibited higher

storage modulus compared to aloe vera/hemp fiber hybrid

composite. The inclusion of filler has only a slight enhance-

ment effect for BaSO4/flax/hemp composite, while a tremen-

dous improvement was portrayed by BaSO4/aloe vera/hemp

hybrid composite. Similar trends were observed for the loss

modulus and damping factor of the composites. It was

declared that the filler particles promote molecular mobility

and minimize the fiber-matrix bonds.

The number of works for thermoplastic polymers are not

as extensive as the research done on thermoset polymers

https://doi.org/10.1016/j.jmrt.2022.04.155
https://doi.org/10.1016/j.jmrt.2022.04.155


Fig. 5 e Storage modulus of (a) untreated and (b) treated sugar palm yarn fiber hybrid composites [52].
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[59,60]. A recent study carried out by Atiqah et al. [55]

attempted to hybridize natural and synthetic fibers, namely

sugar palm and glass fibers, as reinforcement for poly-

urethane matrix. In contrast to other studies that typically

manipulate the ratio of reinforcing fibers, this particular work

used a constant sugar palm to glass fiber ratio of 30:10. The

sugar palm fiber was subjected to several treatment methods,

which are alkaline and silane treatments, aiming to enhance

the composite's properties. The impressive effort results in

remarkable findings as better properties were obtained upon

the inclusion of treated fiber. In particular, hybrid composites

with treated sugar palm fiber exhibited lower storage

modulus, indicating that the resulting composite was more

flexible and had a lower stiffness degree. A similar trend was

reported for the lossmodulus variable, with broadening of the

loss modulus peaks. Concerning the damping factor, hybrid

composites with untreated, alkaline treated, and alkaline/

silane treated sugar palm fibers portrayed a lower damping

factor relative to hybrid composite with saline-treated sugar

palm fiber. The Tg of the hybrid composites derived from the

loss modulus curve revealed that the addition of treated sugar

palm fiber in the matrix had lowered the Tg by up to 5 �C.

4.2. Hybrid bio-polymer composites

Starch, poly (lactic acid), chitosan, polycaprolactone, and

biodegradable epoxy are categorized as bio-polymer matrixes

[36,37,61e63]. Up to now, a number of studies have begun to

explore the use of bio-polymers as a matrix for hybrid com-

posites as the material is environmentally benign and biode-

gradable. Some of the reported works on the DMA study of

natural fiber reinforced hybrid biopolymer composites are

tabulated in Table 2. An impactful work published by Pappu

et al. [64] has comprehensively elucidated the characteristics

of sisal/hemp fibers hybrid poly (lactic acid) composites. Un-

like other studies that emphasized on varying fiber composi-

tions and ratios, this study prioritize on only one fixed

composition, that was 15% sisal, 15% hemp, and 70% poly

(lactic acid). Five replicates of the same composition were

tested and lucidly reported in the article, and hence, all results

are well grounded. The DMA results showed that the damping

ability of hybrid fiber composite was enhanced as evidenced
Table 2e Reportedwork on dynamicmechanical analysis
of natural fibers reinforced hybrid bio-polymer
composites.

Reinforcement Bio-polymer
matrix

References

Hemp/Sisal fiber Poly (lactic acid) [64]

Cassava bagasse/Sugar

palm fiber

Cassava starch [65]

Sisal/Corn fiber Poly (lactic acid) [66]

Flax/Basalt fiber Poly (lactic acid) [67]

Basalt/Cissus

quadrangularis fiber

Poly (lactic acid) [68]

Hemp/Sisal fiber Biodegradable

epoxy

[69]

Oil palm/Kenaf fiber Poly (lactic acid) [70]

Cotton/Starch Poly (lactic acid) [71]

Flax/Jute fiber Poly (lactic acid) [72]
by the decrease of tan d peak. Also, the Tg increased from 50 �C
for the neat matrix to 80 �C for the hybrid composites.

Edhirej et al. [65] examined the DMA properties of cassava

bagasse/sugar palm fiber reinforced hybrid starch composite.

The cassava bagasse loading was remained at 6% w/w,

whereas the sugar palm fiber loading was varied from 0% to

8% w/w. In accordance with the reported data, it has been

demonstrated that the sugar palm fiber inclusion in the

composite had substantially increased the storage modulus

values at low-temperature range by up to three folds. This

finding indicates that the reinforcing particles are compatible

with the matrix and, in turn, had increased the hybrid com-

posite's stiffness. With respect to the lossmodulus, the hybrid

composites' loss modulus peak had shifted to lower temper-

atures and higher values, suggesting higher flexibility upon

the addition of hybrid reinforcement.

A compelling study by Luo et al. [66] had attempted to

hybridize corn fiber, an underutilized natural fiber due to its

poor mechanical properties, with sisal fiber as a reinforce-

ment for poly (lactic acid) matrix. The total fiber content was

maintained at 30% of the total composite's volume, whereas

both fibers' ratio was varied. Based on the DMA result, it was

deduced that the sisal fiber provided more stiffness to the

composite as compared to the corn fiber. This statement was

made on the basis of higher storage modulus values exhibited

by hybrid composites with higher loading of sisal fiber. In

terms of the damping characteristic, the hybrid composites

showed lower damping factors than the neat poly (lactic acid),

suggesting that fiber particles restrict the polymericmolecular

chains' movement. The derived Tg also revealed that the

presence of corn and sisal fibers reduced the mobility of the

molecular chains as the Tg shifted to higher temperatures.

Among all hybrid composites, composite with sisal to corn

fiber ratio of 7:3 demonstrated the best DMA properties.

An investigation on the DMA properties of flax/basalt fiber

reinforced hybrid poly (lactic acid) composite was undertaken

by Eselini et al. [67]. Unlike other research works, this partic-

ular study attempted to hybridize two different origins of

natural fibers, plant (flax) and mineral (basalt) fibers, in a

single matrix. Basalt fiber has a nearly similar performance in

comparison to synthetic glass fiber yet relatively cheaper to be

obtained. Several hybrid composites were fabricated with

various ratios of flax to basalt fiber. The DMA data revealed

that the storage modulus was increased with higher basalt

fiber loading, indicating that the basalt fiber restricts the

motion of polymeric chains. Hybrid composites with higher

loading of flax fiber exhibited relatively low storage modulus,

whichmay relate to the plant fiber's deterioration. Concerning
the damping factor, a similar trend to the storage modulus

was observed. The incorporation of hybridized flax and basalt

fiber in the matrix appeared to have no substantial effect on

the Tg, with only 1e2 degree of variation compared to the neat

poly (lactic acid).

A year later, a similar work that hybridizes mineral and

plant fibers was reported by Kumar and Prakash [68]. They

hybridized basalt and Cissus quadrangularis (CQ) fibers, an

indigenous medicinal plant widely available in India, as

reinforcement for poly (lactic acid) polymer. Three composites

with varying fiber loadings and total fiber compositions were

fabricated and examined using DMA. The DMA study found

https://doi.org/10.1016/j.jmrt.2022.04.155
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Table 3 e Reported work on dynamic mechanical analysis of hybrid bionanocomposites.

Nano-reinforcement Macro-size
reinforcement

Matrix Mixing ratio Fabrication Remark References

Graphene

nanoplateletes

Kevlar/Cocos

nucifera

Epoxy GNP(45wt.%) and Epoxy (55wt.%) Ultra-sonicator The addition of GNP up to 0.5 wt.%

increased the loss modulus by enhancing

fiber/matrix adhesion.

[76]

Cellulose nanofibers and

montmorillonite

nanoclay

Kenaf fiber Epoxy CNF (0.75wt.%), kenaf (40.00 wt%)

and Epoxy (59.25wt.%)

Mechanical stirrer Addition of OMMT improved thermal

stability owing to the shielding effect.

[77]

rGO Cotton fiber Epoxy rGO (0-1wt%), epoxy resin (64.14 wt

%) and cotton (34.86e25.86 wt%)

Hand mixing,

compression molding

technique

Filler particles improve the mechanical

properties of the textile waste composites.

[78]

MWCNTs Glass/Kenaf and

carbon/kenaf

fiber

Epoxy MWCNT (1.0 vol%), Chinese ink (5.6

vol%) and Epoxy (70 vol%)

Sonication, airbrush

spray, and vacuum

bagging

The addition of the China ink/MWCNT

combination increased the rigidity of the

glass-kenaf laminate.

[79]

Nanoclay Bamboo/Kenaf

fiber

Epoxy Nanoclay (1wt.%) and Epoxy (95

e99 wt%)

Mechanical stirrer,

homogenizer, and hand

lay-up

Insoluble combination of epoxy with

unmodified nanoclay resulted a lower E0

value

[80]

Nanoclay Jute fiber Epoxy Nano-clay (1, 3, 5 and 7 wt.%), jute

(20wt.%), and Epoxy (73-80wt.%)

magnetic stirrer,

ultrasonicator and

compression molding

The jute fibre treatment and the addition

of nano-clay proved the enhanced

interfacial bonding.

[81]

Nano CaCO3 Bamboo pulp

fiber

High-density

polyethylene

HDPE (65wt.%), BPF (0 & 30wt.%),

MAPE (4wt.%) and PE-wax (1wt.%)

Hot press molding

(HPMP), extrusion

molding (EMP) and

injection molding

process (IMP)

The EMP composites had the highest

interfacial bonding, whereas the HPMP

composites had the poorest.

[82]

SiO2 Nanoparticles Wheat straw

fiber

Low-density

polyethylene

LDPE (50wt.%), MA-g-PE (2 phr),

SiO2(0e5phr), and wheat (50wt.%)

Injection molding The amalgamation of SiO2 particles

resulted in significant decreases in the

rate of heat release, burning, and mass

loss.

[83]

Nanoclay Jute fiber Natural rubber Nanoclay (2.5wt.%), jute (0-20wt.%)

and NR (80-100wt.%)

Sonicator The storage modulus of the

nanocomposite NR-nanoclay and NR-jute

was noticeably higher than the neat

compound.

[84]

Nano alumina Coir pith fiber Polyester Nil Mix blend In comparison to plain polyester, the

composites exhibit superior filler-matrix

adhesion and interfacial bond strength.

[85]

Graphene oxide/

nanoclay platelets

e Polyglycerol-

sebacate/Gelatin

PGS (80wt.%), Gel (20%), GO (0-

1wt.%) and Clay (0-1wt.%)

In situ polymerisation Clay nanoplates played a vital part in the

synergetic of the hybrid nanocomposite.

[86]

Halloysite nanotubes Sisal fiber Polypropylene PP(82-100wt.%), sisal (10wt.%) and

HNT (0-850wt.%)

Internal mixer and

compression molding

The mixture of 6% HNTs filler and 10%

sisal fibres resulted in a considerable

increase in storage modulus.

[87]

MWCNTs/graphene Jute fiber Polyvinyl alcohol PVA (20wt.%), G (0.25e20wt.)

MWCNT (0e10%) and JF

Ball-milled, mechanical

stirrer and hot press

The modulus of storage and durability of

the PVA/G nanocomposites enhanced

with the help of jute.

[88]
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that the basalt fiber significantly improved the fiber-matrix

interface interaction, as portrayed by the increment of stor-

age modulus. The loss modulus of hybrid composites was

lower than the single CQ fiber reinforced composites.

Regarding the elasticity, the composite with a higher hybrid-

ized fiber loading exhibited lower damping factor, implying

higher elastic property. The inclusion of hybrid fibers also

increased the Tg of the composite by around 7 �C in compar-

ison to the control.

Recently, Krishnasamy et al. [69] highlighted the effect of

hemp and sisal fibers at various stacking patterns on the DMA

properties of biodegradable epoxy hybrid composites. It has

been demonstrated that the non-hybrid composites with

single reinforcement have better DMA properties compared to

the hemp/sisal fiber hybrid composites. This conclusion was

made based on the detrimental reduction of storage modulus

with the incorporation of both fibers in a single matrix. Be-

sides, the calculated effectiveness coefficient also revealed the

lower efficiency of fiber reinforcement with hybrid compos-

ites. Regarding the lossmodulus, single reinforced composites

exhibited higher loss modulus values, while hybrid compos-

ites portrayed lower values than the neat epoxy. The incor-

poration of single and hybrid fibers in the matrix also lowered

the composite's damping factor, indicating the formation of

strong fiber-matrix bonding that impedes molecular move-

ment. Tg values derived from the loss modulus and tan d

showed insignificant differences for neat and hybrid

composites.

4.3. Hybrid bionanocomposite

Bionanocomposite is a composite material that constitutes

at least one type of nano-scale range particles and a bio-

logical sourced material or biopolymer [73]. Some of the

published works on the DMA properties of hybrid bio-

nanocomposites are summarized in Table 3. In accordance

with the compilation of works, it appeared that most stud-

ied hybrid bionanocomposites are reinforced with multiple

scale particles. Multi-scale composites are composite ma-

terials that comprise reinforcing elements from various

length scales such as macro, micro, and nano scales [74].

Fig. 6 illustrates the preparation process of multi-scale

graphene/carbon fiber reinforced copper matrix hybrid

composite.

An impactful work by Jesuarockiam et al. [76] has explored

the dynamic mechanical properties of Kevlar/Cocos nucifera

sheath (CS)/epoxy composites with graphene nano platelets

(GNP). It is well known that replacing synthetic fiber with

natural fiber may negatively effects the composites’ proper-

ties. Hence, the GNP was implemented to enhance the ther-

mal and viscoelastic behavior. The Kevlar and CS fibers were

layered at varying sequence, whereas the GNP was added at

varying composition ranging from 0% to 0.75%. From the DMA,

the storage maodulus and loss modulus of S3G3 composite

(1:1 ratio of Kevlar/CS and 0.75 wt.% of GNP) exhibited almost

similar storage and loss moduli to S1G0 (Kevlar/epoxy). It also

exhibited better compatibility between the multi-scale filler

and epoxy with lower tan d. Overall, the hybrid nano-

composite at an optimum composition can effectively replace

the Kevlar/epoxy composites.

https://doi.org/10.1016/j.jmrt.2022.04.155
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Fig. 6 e Schematic illustration of the construction of multiscale hybrid composite [75].
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A detailed DMA study on the multi-scale hybridization of

nano-reinforcement and kenaf fiber for an epoxy composite

was also reported by Khan et al. [77]. Three different types

of nano-reinforcements, namely cellulose nanofibers (CNF),

montmorillonite (MMT) nanoclay, and organo-montmorillonite

(OMMT) organoclay, were included separately in the polymer

matrix at a constant loading of 0.75% and subsequently incor-

porated with 40% of kenaf fiber to form hybrid epoxy bio-

nanocomposites. It was stated that the modification of MMT to

OMMT was an attempt to address the incompatibility of MMT

with a hydrophobic polymer such as epoxy. In accordance with

theDMAresults, it has conclusively been shown that theOMMT

hybrid composite restricts themobility of the polymeric chains

relatively better than CNF and MMT hybrid composites, as

observable by a higher value of storage modulus. The hybrid

composites' loss modulus also portrayed the same trend as the

storage modulus, with a maximum value exhibited by the

OMMT hybrid composite. Similarly, the OMMT hybrid com-

posite showed the most desired damping characteristic as

observed by the damping factor's low magnitude. It appeared

that thenanoclaymodificationhad tremendously improved the

interfacial adhesion between the reinforcement and the poly-

mer matrix.

A recent study by Kamble et al. [78] assessed the DMA

properties of reduced graphene oxide (rGO) nanoparticles/

cotton fiber hybrid reinforced epoxy bionanocomposite. The

total reinforcing particles were fixed at roughly 36%, whereas

the rGO loading was varied from 0% to 1%. Based on the DMA

finding, it was figured out that the rGO incorporation in the

hybrid epoxy composite at 0.1% and 0.3% loadings had

improved the stiffness as observed by the increment of the

storagemodulus. In contrast, the reductionof storagemodulus

was noticed when higher rGO loadings were included in the

composite, suggesting possible aggregation of the nano-

particles. No substantial loss modulus change was observed

with the inclusion of the rGOparticles in the hybrid composite.
In terms of the viscoelasticity, hybrid composites loaded with

0.1% and 0.3% rGOwere lower in damping factor relative to the

neat epoxy, while composites with higher ratios of rGO

exhibitedhigher damping factors compared to the control. The

increase of the damping factor suggests poor particles/matrix

interface bonding at higher loadings of rGO.

Joseph et al. [88] performed compelling research that hy-

bridizes more than two reinforcing particles. MWCNTs, gra-

phene, and jute fiber were added into a single polyvinyl alcohol

matrix in this particular work. The graphene loading was

remained constant at 20 wt%, while the jute fiber loading was

varied from 0wt% to 20wt%. TheMWCNTswas added at 2.5 wt

% loading in only one hybrid composite. It was hypothesized

that the inclusion of MWCNTs in the hybrid composite can

prevent the aggregation of the graphene particles. The pre-

sented DMA data showed that the incorporation of jute fiber in

the composite at up to 5 wt% had a positive influence on the

hybrid composite's stiffness, as portrayed by the increment of

storagemodulus value. Nevertheless, a higher concentration of

jute fiber had caused poor dispersion and agglomeration of

particles, resulting in a detrimental effect on the stiffness. It

was also revealed that the hybridization of graphene and jute

fiber had a synergistic effect on the composite's damping

behavior, as portrayed by the significant reduction of tan d

value. The inclusion of MWCNTs marginally improved the

hybrid composite's hardness by bridging the graphene particles

with the polymer matrix.

A pioneering study of poly glycerol-sebacate (PGS)/gelatin

copolymer reinforced with hybridized graphene oxide (GO)

and MMT nanoclay was reported recently by Aghajan et al.

[86]. Several composites were fabricated without and with

nano-reinforcement with a total loading of 1.0%. Based on the

DMA result, it was found that the inclusion of GO and MMT

individually did not alter the composites' stiffness, as revealed
by the unchanged storagemodulus values. Unfortunately, the

hybridization of two nano reinforcements had an antagonistic

https://doi.org/10.1016/j.jmrt.2022.04.155
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Table 4 e Application of DMA.

Polymer properties &
characterization

Polymer composite characterization Industrial applications

� Polymer blends and phase morphology � Storage and loss moduli of polymer composite � Chemical industry

� Polymerepolymer compatibility � Evaluation of the interfacial bonding in

polymer composites

� Melting point, dynamic modulus,

Tg of chemicals

� Polymer rheological and thermal

properties

� Investigation of an ideal curing schedule

of fiber reinforced polymer composites

� Paints and lacquers industry

� Effect of orientation on the mechanical

properties of solid polymers

� Sol gel transformation in polymer composite � The curing reactions and Tg

of the materials

� Rate and extent of curing properties of

thermoset resins

� Characterization of the thermo-rheological

properties of gel systems

� Oil and gas industry

� Melting point of semi-crystalline

polymers

� Mechanical, viscoelastic properties, melting

point, vulcanization in elastomeric polymer

composite

� Structural pipeline repair

� Polymer glass Tg � Evaluation of composite structure and

performance

� Pharmaceutical and biomedical science

� Polymer damping properties � Optimization of the formulation of

pharmaceutical drug delivery systems

� Polymer storage and loss moduli � Food industry

� Glass transition and gelation point

� Automotive industry

� Curing reactions, damping behavior,

dynamic modulus of auto and

aerospace components
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effect on the stiffness, which was claimed to be caused by the

formation of a separated filler network that restricts the PGS

chains' movement. Besides, it was also found that the non-

hybrid inclusion of nanoparticles had reduced the compos-

ites’ elastomeric behavior, as observable by the increment of

the loss modulus. The tan d of the hybrid composite was

higher than the control, indicating poor nano-scale filler dis-

tribution in the matrix.
5. Applications of DMA

DMA can be utilized for various applications in research and

industrial fields. The summarized applications of DMA are

depicted in Table 4. Despite being initially invented for study-

ing metals' deformation, DMA is handy for polymer and poly-

mer composite characterizations due to its ability to provide

remarkable insights into the polymermolecular structure and

stiffness [91]. Owing to its outstanding sensitivity andaccuracy

to detect molecular relaxation and macroscopic process, re-

searchers often opt for the DMA technique instead of

temperature-only based methods. DMA is applied to perform

various tests in material engineering research such as ther-

momechanical analysis, static and dynamic stressestrain,

creep recovery, stress relaxation, and dynamic temperature,

frequency, and time scans. These techniques revealed

numerousmaterial properties such asTg, thermal expansivity,

Young's, loss, and storage moduli, load capacity, ductility,

toughness, stiffness, damping, and crosslink density. Based on

the recently reported works [92e94], fabricated materials

characterized via DMA are primarily designed for biomedical,

military, packaging, electronic, and chemical industry

applications.
6. Conclusions and future insights

Based on the review, it can be generalized that the DMA

technique is a vital method to elucidate the properties of

natural fiber hybrid reinforced composites.

� DMA method enables a highly accurate and sensitive

detection of storage and loss moduli, damping factor and

Tg of heterogeneous polymeric composites.

� The hybridization of two or more reinforcing agents in a

single matrix may and may not positively influence the

fabricated hybrid composites' DMA properties and Tg.

� Various hybrid combinations; natural/natural, synthetic/

natural, single scale, and multi-scale hybridizations to

reinforce polymer composites were reported in the

literature.

� The loading ratios of the reinforcing particles affect the

DMA results tremendously. Hence, it is crucial to optimize

the formulation of the composite to obtain optimum DMA

properties.

� For the case of nano-scale reinforcements, particularly for

bionanocomposites incorporated with graphene de-

rivatives, higher loading often causes particles agglomera-

tion that negatively affects the composites' characteristics.

Overall, this paper has discussed and reviewed some

significant works on the DMA properties of hybrid rein-

forced polymer composites. This review has provided

comprehensive information that can be used as a founda-

tion to perform further investigations related to hybrid

composites. On the basis of the reviewed research works,

several recommendations are proposed for future

endeavors.
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� The demand for thermoplastics and biopolymers is

currently increasing as the human standard of living im-

proves, both in terms of development and sustainability. In

comparison to hybrid thermoset composites, there has

been a paucity of information on hybrid thermoplastic and

bio-polymer composites. More DMA studies on both types

of composites should be conducted to obtain better in-

sights into the behavior and characteristics upon the

incorporation of hybrid reinforcements.

� In some cases, the addition of natural fibers in the com-

posites have negatively affected the DMA properties. Some

researchers have demonstrated the use of nanofillers to

counterbalance the negative effect. Future research should

look into adding nano-reinforcements to existing hybrid

composites to improve their propertieswhile keeping them

cost-effective and environmentally sustainable.

� Nano reinforcements have been reported to agglomerate at

higher loading ratios, limiting their use to low concentra-

tions. Future research should look into ways to prevent

agglomeration, such as chemical treatment or grafting, in

order to uncover the previously unseen possibility of nano

reinforcements in composites at higher loadings.
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