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Abstract

This paper proposes a self-adaptive mobile web service (MWS) discovery approach based on the modified negative

selection algorithm (M-NSA) to improve the effectiveness and accuracy of MWS discovery in dynamic mobile envi-

ronment. The main contributions of this work are the service relevance learning model and a MWS matchmaking algorithm

that it is capable of changing as soon as the discovery demonstrates the feasibility of attaining improved effectiveness or

accuracy. This is achieved by transforming the two stages of modified negative selection algorithm (M-NSA) into service

relevance and self-adaptive matchmaking, respectively. The proposed approach is evaluated in terms of both binary and

graded relevance. After an experiment with the largest MWS dataset, the proposed approach records better results in

comparison with the state-of-the-art approaches. This is owing to the self/nonself discrimination mechanism, in addition to

the decent parameter analysis, and the use of more comprehensive information that covers the entire discovery space.

Keywords Self-adaptive � Mobile web service � Service discovery � Negative selection algorithm � Dynamic mobile

environment

1 Introduction

Mobile web service (MWS) discovery is the most impor-

tant stage in a MWS life cycle as it identifies the most

relevant MWS for a particular task in accordance with the

quality and context needs of the service request [1]. Web

service is a reusable, language, and platform independence

software paradigm proposed to facilitate the development

of distributed systems from existing applications with

simplicity and low cost [2, 3]. The current web service

technologies have been extended to mobile web services

(MWS) due to the recent incarnation of the Internet of

Things (IoT) technologies. This is because of the

advancement of mobile devices, the expectation that

mobile internet adoption will revolutionize the broader

digital ecosystem, and the possibility of mobile devices

becoming the primary tool for accessing the internet is now

a reality as the number of users accessing mobile services

goes beyond 5 billion in 2017 [4]. The discovery of MWS

normally takes place in dynamic mobile environment

(DME), an environment that consists of heterogeneous

mobile devices operated by numerous classes of users in

highly mutable settings [5–8]. This environment makes it

almost impossible to have an exhaustive model applicable

in all MWS discovery scenarios. The MWS discovery has

not yet realized its full potential since it has fallen short in

resolving challenges that include a high influx of similar

web services, unpredictable changes in DME. The existing

research on MWS discovery, such as [9–11], mainly

focused on applying the conventional matchmaking tech-

niques constrained by the specific web service description

standard besides inadequate adaptivity [12].

While the existing discovery techniques are constrained

in DME and bound to produce less accurate matchmaking

results, the renewed interest in lightweight and autonomous

solutions (adaptive) is gaining popularity in solving MWS

discovery problems in DME. A self-adaptive approach can
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assess and change its behavior, at whatever point the

assessment demonstrates that the outcome is not as

expected or when improved functionality or performance

might be conceivable [13]. In pursuance of the ultimate

goal of self-adaptive MWS discovery in DME, several

machine learning-based approaches show potential;

unfortunately, these approaches are based on the binary

classification that demands an undesirable compromise

between partial scores and requires manual adjustments,

recreation, and/or retraining of the models during design

time which may lead to ineffectiveness and inaccuracy in

discovery result [14]. In view of these shortcomings, an

improved approach is required to improve the effectiveness

and accuracy of MWS discovery and meanwhile ensure the

stable operation of the web applications. Given that the

solution to such problems exists in probabilistic or deter-

ministic methods, probabilistic methods can deliver the

best or a near-best result in nominal computational time

and model the underlying probability distributions of the

classes [15]. The Mammalian immune system (MIS), a

distributed, multi-tiered, probabilistic, self-adaptive learn-

ing system that consists of an intricate network of tissues,

organs, and chemicals, inspires the artificial immune sys-

tems (AIS) to solve various real-world computational

problems [16]. The first model among the many models in

the artificial immune system (AIS) is the negative selection

algorithm (NSA) introduced by [17] to evaluate a given

state as normal or abnormal by establishing a profile of the

system and mimicking the self/nonself discrimination

mechanism of MIS.

This paper presents a MWS discovery approach based

on modified NSA (M-NSA). To find the most relevant

MWS, the self-adaptive matchmaker (SAMM) learns the

service relevance by using the detector generation stage of

M-NSA. After the service relevance learning (detector

generation stage) is accomplished, the self-adaptive MWS

discovery (detection stage) begins in which each detector’s

distance in the detector set and MWS instance is measured

based on a given request for self/nonself discrimination. A

condition that enables the self-adaptation to occur is added

in the M-NSA to update the detectors to ensure the con-

tinuous discovery of relevant MWS. In this paper, the

extracted and clustered MWS are used to generate detec-

tors. After that, the remaining MWS is plugged into the

detection stage to assess the proposed approach’s capabil-

ities. The experiment first analyzes the detectors’ detection

rate and false alarm rate based on several parameters. The

performance of the SAMM is measured using five perfor-

mance criteria employed in the MWS discovery domain.

The results show that the M-NAS can be easily utilized to

discriminate irrelevant MWS for a given request. The

modification of the traditional version of NSA in terms of

parameters and the self-adaptation process helps eliminate

the design-time adaption strategy that requires recreation

and retraining. Moreover, the proposed approach exhibits

significant improvements in comparison with state-of-the-

art MWS discovery approaches. The key benefit of the

proposed self-adaptive MWS discovery approach is that it

can assess its parameters and change as soon as the

assessment demonstrates the feasibility of attaining

improved accuracy or performance. The major contribu-

tions of the proposed approach can be highlighted as

follows:

• We propose a self-adaptive mobile web service dis-

covery approach based on the modified negative

selection algorithm for more effective and accurate

mobile web service discovery in a dynamic mobile

environment.

• We design a service relevance learning model based on

the negative selection algorithm’s detector generation

stage for better learning of the fine-grained request-

offer interaction.

• We design a self-adaptive matchmaking algorithm

fitted with a reinforced learning process to adapt itself

at runtime in response to self-spaced changes or when

the discovery result is not as expected.

• We carry out a series of experiments using publicly

available datasets to evaluate the performances of the

proposed approach against state-of-the-art approaches.

The rest of this paper is organized as follows: The

background and related works are discussed in Sect. 2.

Section 3 presents the definition and problem description.

Section 4 introduces the proposed approach. In Sect. 5, the

empirical evaluation and results are presented and delib-

erated. Finally, the conclusions and future directions are

discussed in Sect. 6.

2 Background and related work

This section reviews various research works. These include

contemporary web service matchmaking techniques, self-

adaptive web service discovery, and negative selection

algorithms.

2.1 Web service matchmaking techniques

Web service discovery is the act of matchmaking between

the advertised service and the service request to find not

only the best possible web service but also the most rele-

vant web service for a particular task. The matchmaking

techniques are usually classified into four categories based

on the underlying algorithm used. This includes logic-

based, syntactic, and hybrid [18, 19]. Additionally, [14]

recognizes a new category of matchmaking approach
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called adaptive matchmaking. Description and/or rule-

based logic (formal reasoning) such as case-based reason-

ing (CBR), in [20] and genetic algorithm (GA) in [21],

formed the basis for determining the semantic relatedness

between the offered MWS services and the requested MWS

service in logic-based service discovery approaches. The

syntactic approaches usually employ keyword-based

matching. This takes advantage of data-mining techniques

and information retrieval methods such as semantic simi-

larity [22, 23] to determine the level of relatedness between

the offered MWS and the requested MWS instead of for-

mal reasoning [22, 23]. The hybrid matchmaking approa-

ches include integrating formal reasoning and syntactic

techniques to carry out the matching [24], while the

adaptive matchmaking approaches adopt machine learning

techniques to combine the similarity values from various

approaches to ensure efficient use of resources in DME

[25].

Many significant contributions such as

[2, 10, 24, 26, 27] are recorded that mainly focus on

overcoming the complexity of logic-based service discov-

ery in a resource-constrained device and resolve the inac-

curacy of keyword-based service discovery. Recently, the

authors in [10] proposed a keyword-based MWS discovery

approach that discovers services based on the TF-IDF. The

cosine similarities between services and the request are

calculated, after which the service discovery result is

generated based on the similarities. However, the similarity

measure used in keyword-based service discovery can only

give an estimation of similarity between request and ser-

vice after extensive refinement, introduce ambiguation

since it is based on TF-IDF, and lack accuracy due to the

high number of false positive (FP/F ? ve) and the false

negative (FN/F-ve) in matchmaking result [24]. In a new

development, [10] proposed a goal-based MWS discovery

(GSD) approach that discovers MWS by matching service

goals with the goals contained in an expanded/refine query

using keyword-based and topic model-based, NLP-based

method is used to extract MWS goals from services’

descriptions, and clusters are created based on the simi-

larities between the extracted MWS goals. However, lim-

iting the matchmaking to MWS goals only without

considering other variables such as context may hinder the

quality and accuracy of the matchmaking results by

returning semi-relevant or irrelevant MWS although the

use of alternative semantics expands the MWS request.

The authors in [28] proposed a web service operations

discovery (OpD) approach that mines the service interface

to create index libraries and use co-occurrence probability

for the discovery of services with solitary or multiple

operations, while [24] introduced hybrid matchmaking

approach that integrates formal reasoning together with

syntactical techniques to carry out the matching in an open-

ended, dynamic registry. Higher priority is given to the

logic-based matching, while the syntactic matching com-

pensates for the absence of exact matching in the logic-

based. However, a UDDI-based service discovery

scheme is complicated and sometimes incompatible with

an open and broadly decentralized environment. While the

use of the popular discovery techniques may provide some

benefits in terms of standard matchmaking algorithms and

models, the technique is bound to produce less accurate

matchmaking results owing to the ample influx of a variety

of MWS, rapid and unpredictable changes that are taking

place in dynamic mobile environment (DME). In addition,

the renewed interest in lightweight and autonomous solu-

tions renders the usual matchmaking difficult to apply in

DME. As such the self-adaptive web service discovery

technique is gaining popularity in solving MWS discovery

problems in DME.

2.2 Self-adaptive web service discovery

Currently, self-adaption in web service discovery [29],

organization [30], and composition [31] is gaining popu-

larity as it can be used to take advantage of fundamental

adaptivity principles so as to achieve better accuracy and to

ensure efficient use of resources in DME. A self-adaptive

MWS discovery framework can assess and change its own

behavior, at whatever point the assessment demonstrates

that the outcome is not as expected, or when improved

functionality or performance might be conceivable [13].

Adaptation can either be reactive or proactive. Reactive

adaptation checks the current execution to identify con-

siderable changes and adapt, while proactive adaptation

anticipates changes or deviation and adapts [25, 32]. Given

that variability and lack of broad knowledge introduce

uncertainty in self-adaptive web service discovery, uncer-

tainty reduction tactics are introduced to support better

adaptation decisions [33]. In [34], constraint satisfaction

principles are used to create a model to solve the dynamic

adaptation problems caused by changes in the execution

context.

The self-adaptive mechanism is used to define alterna-

tive solutions to withdraw unavailable service when a

service is predicted to be failed according to its quality

values, and/or the service does not fit the required context.

According to [35], the realization of a self-adaptive

mechanism requires control loops that gather details from a

different context and act accordingly. Furthermore, an

execution plan equipped with the ability to shift from one

configuration to another at runtime, strategy to effectively

deal with rapid and unpredictable changes that are taking

place in a DME is some of the benefits of self-adaptive web

service discovery. For the self-adaptive MWS discovery

approach to accomplish its intended function, the following
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two operations usually occur: (i) the observation of the

discovery, (ii) the application of the required strategies to

adjust the discovery mechanism’s behavior in light of

recognized changes. The authors in [29] proposed a self-

adaptive QoS-aware web service discovery (SQoSD)

approach in which the discovery process computes the

similarities between request and offer based on using

concept, attribute, and constraint similarity. The self-

adaptive discovery mechanism iteratively restructures

requirement ontology trees to match web service descrip-

tion ontology trees until the matching result is greater than

a certain threshold or the user requirement is satisfied.

However, this can lead to an infinite loop, which may

hinder the anticipated objectives of matchmaking in DME.

Contemporary self-adaptive approaches include neural

collaborative filtering [36] and deep hybrid collaborative

filtering [9] in which a deep neural network is used to

obtain the nonlinear affinity among services and the

pointwise loss function is used to transform the discovery

operation into a classification problem. Similarly, an

adaptation of probabilistic latent semantic analysis (pLSA)

in which the service attributes are modeled as a heteroge-

neous information network (HIN) and LDA is used to

obtain the essential semantics of MWS and MWS requests

are proposed [10, 35]. However, the LDA-based approach

is less effective as it can only capture fewer semantically

consistent topics without the aid of word embedding or

other query expansion strategies. The adaptation is usually

achieved by enabling the discovery mechanism itself to

detect the situations that warrant adjustments and execute

the changes rather than manual adjustments during design

time or dynamically modifying the service at runtime. The

authors in [37] use the relational topic model (RTM) and

factorization machines (FMs) to model the relationship

between topics of MWS and use factorization machines to

predict MWS for a target request. This approach is also

capable of evaluating parameters under low sparsity like

support vector machines (SVMs) used in [38]. In these

approaches, machine learning models are used to achieve

adaptation rather than abductive reasoning.

One of the glaring observations on self-adaptive

approaches that employ service withdrawal, service

replacement, and process restructuring is the need for

additional time to perform the required action and the

amount of the changes that can trigger adaptation is not

evident in these approaches. The consequences of failure to

determine the amount of the changes that can trigger

adaptation are the accumulation of overhead cost (proces-

sor power, memory, battery, and bandwidth) due to

unnecessary adaptation, especially in a resource-con-

strained environment (DME). The existing approaches are

mostly constricted by a design-time adaption strategy that

requires recreation and retraining of the aggregation model

after feedback collection over a period of time (when the

model became obsolete). There is a clear lack of a rein-

forced learning approach that can make use of feedback

information to provide more relevant MWS at runtime.

Moreover, the high sparsity of the interaction matrix in

MTR-FM hinders the accurate classification of MWS,

while retraining a model from scratch is a very costly

process [38].

In pursuance of the ultimate goal of self-adaptive MWS

discovery in DME, the machine learning-based approaches

are the most promising; unfortunately, these approaches are

based on the binary classification that demands an unde-

sirable compromise between partial scores which may lead

to ineffectiveness and inaccuracy in discovery results.

Furthermore, the extensive processing and continuous loop

necessary to attain better results may lead to inefficient

discovery in DME. Besides, the adaptation and the exe-

cution environment are not tightly interleaved. Thus, there

is a need for a discovery approach that defines alternative

solutions at whatever point the assessment demonstrates

that a better result might be conceivable.

2.3 Negative selection algorithms

The artificial immune system (AIS) derives its inspiration

from nature, specifically, the mammalian immune system

(MIS). Currently, the negative selection algorithm (NSA),

positive selection, clone selection, immune network theory,

and danger theory are the most popular algorithms and

theories of AIS researches [39]. The first model among the

many models in the artificial immune system (AIS) is a

negative selection algorithm (NSA) introduced by [17].

Subsequently, several studies have proposed various NSA

with notable differences in data representation, detector

representation, self-definition, and matching rule. Although

there is a rapidly growing literature on NSA, which indi-

cates that NSA is among the most widely used algorithm in

many fields, the primary application of NSA has been

anomaly detection (the discrimination of normal/self and

anomalous/nonself state) [40]. In comparison with the

positive selection algorithm, the negative selection needs

fewer time and space resources [39]. The negative selection

technique uses self samples to model nonself space,

whereas the positive selection technique uses self samples

to model self space. A given data can be classified as

normal/self data or anomalous/nonself data and raise an

alarm in the case of anomalous/nonself data. The NSA

aims to evaluate a given state as normal or abnormal by

establishing a profile of the normal state of a system. The

classification accuracy is usually improved by minimizing

classification error, i.e., the false positive (FP/F ? ve) and

the false positive (FP/F ? ve). Figure 1 illustrates the basic

idea of generation, detection, and classification in NSA.
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The conventional NSAs are made up of two stages

[40, 41]. In the first stage (generation stage/training stage),

the basic detector generation procedure comprises the

random generation of detector candidates in the whole

nonself space followed by a comparison between the

generated detector and self. If the randomly generated

detector matches self, then the detector is regenerated and a

rematch with self, else, the generated detector is accepted

and added to the mature/valid detector set. In addition, the

regeneration and rematch process can be absconded by

modifying any detector that matches the self. A criterion is

used to determine the sufficiency of the mature/valid

detector set generated and subsequently terminate the

generation/ regeneration stage.

In the second stage (detection stage), the mature/valid

detector set generated in the training/generation stage is

used to determine whether the input data conform to self/

normal or nonself/anomalous. If the mature/valid detector

matched the input data, then the NSA declares that an

anomaly occurs in most applications [41–43]. The match-

ing rule detector generation process involves the use of

matching rules such as Euclidean or cosine distance (which

implies that if a given data are inside the borders of a

detector, then it fulfills the matching rule) to compare a

candidate detector against any self-data. If the candidate

detector matched any self-data, then the candidate detector

is regenerated and a rematch with self-data, else, the can-

didate detector is accepted and added to a valid detector

set. In addition, the matching rule is always used as a basis

for classifying the test data (normal/self data or anomalous/

nonself data) in the detection process [44].

The two models of NSA are binary (BNSA) and real-

valued NSAs (RVNSA). In contrast to the BNSA, there is a

rapidly growing literature on RVNSA, which indicates that

RVNSA is among the most promising in terms of

performance and is the widely used meta-heuristic algo-

rithm in several problem domains such as data partitioning,

categorization, clustering, and classification [45, 46] due to

its powerful information processing capability as it works

on a unitary hypercube [0, 1]n with the end goal that every

self and nonself samples have a center and a fixed radius.

[47] introduce bidirectional inhibition optimization r-vari-

able (BIORV-NSA) to tackle the detection holes and

minimize the number of detectors by adapting the self-

radius as well as the detectors from constant to variable.

This significantly improves the detection rates with a lim-

ited number of detectors as less effective detectors are

replaced with more effective detectors that cover the black

holes. [48] proposed Voronoi diagrams-based NSA (Vor-

NSA) in which the ‘‘Random-Discard’’ model of initial

detector generation is replaced with the ‘‘Computing-Des-

ignated’’ model to reduce the time cost of the traditional

NSA. Afterward, the Map/Reduce framework is integrated

into the detection stage to further minimize the time cost,

especially when dealing with big data.

In [49], particle swarm optimization (PSO) is used to

enhance the detector generation stage of NSA and the fit-

ness function for the detector generation is determined by a

local outlier factor (LOF). The optimized detectors result in

improved the accuracy of detection of spam emails. In an

effort to optimize and extend the application of traditional

NSA, the online adaptive learning ability is introduced to

NSA by [50, 51], as such a boundary-fixed NSA (FB-NSA)

is used to generate an initial set of detectors. The initial set

of detectors is adapted continuously using online adaptive

learning under small samples (OALFB-NSA) in the

detection stage. This approach shows that the detection rate

of a constant set of detectors tends to slow down gradually

with an increase in false alarm rate. However, the adaptive

detectors show an improved detection rate and low false

Fig. 1 The basic idea of generation, detection, and classification in negative selection algorithm
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alarm rate in many instances. [52, 53] introduced the NSA

as a possible solution in web service problem domains. In

this case, the terms used in the operation of the natural

immune system such as antigen, antibody, locus are firstly

redefined to web service optimization problem, solution

vector, abstract web service, etc. NSA ? is proposed using

the negative selection principle to gradually minimize the

QoS problems in service discovery by adopting a string

value to describe the offered services and assign a solution

vector to each service based on its logical structure. The

NSA ? evaluates the QoS by its local fitness based on four

quality dimensions (cost, availability, time, and reliability).

The development of NSA so far paves way for its

application in many areas [52, 53]. Its theoretical and

practical potential for differentiating between what belongs

and what does not belongs make it ideal in solving many

MWS discovery in DME. However, most of the previous

studies have relied on constant-size detectors which lead to

detection holes (black holes), while recent studies relied on

a large number of detectors with continuous overlapping

between detectors instead of identifying the best coverage

of nonself using the coverage estimation which results in

large time cost and complexity. Moreover, the lack of

continuous adaptability is evident in most studies which

gives rise to a low detection rate and high false-positive

rate [50, 51]. Hence, an improved NSA that is appropriate

for self-adaptive MWS discovery DME is essential.

3 Definitions and problem description

In this section, the concepts and definitions are related to

the self-adaptive MWS discovery approach based on a

modified negative selection algorithm as well as the

research problems this paper aims to address.

3.1 Concepts and definitions

Self-adaptive MWS matchmaking algorithm is designed

based on MNSA, which is derived from the artificial

immune system (AIS) to search and discriminate between

self and nonself. In AIS, data samples are defined as

‘‘antigen,’’ normal samples are defined as ‘‘self,’’ abnormal

samples are defined as ‘‘nonself,’’ and antibody is defined

as ‘‘detector.’’ The basic definitions are listed as follows.

Definition 1 Data sample is a collection of MWS that are

yet to be classified as self or nonself. All the MWS in the

feature space constitutes the set of Service Collection. SC

represents the set of MWS data samples. s represents the

individual members of SC. n represents the dimension of s,

and the value of the s attribute i is normalized in the feature

space. SC ¼ fsjs ¼ s1; s2; s3; . . .. . .. . .snð Þ; si 2 0; 1½ �;
1� i� ng.

S0 \ NS0 ¼ ;; S0 [ NS0 ¼ SC ð1Þ

Each s in SC has attributes i which consist of Goals

g1;g2;g3. . .gn and Context cx1;cx2;cx3. . .cxn.

Definition 2 Detectors are generated in response to data

samples (MWS perceived as extraneous). Let (D) be the

detector set. D ¼ d1;d1;d1. . .. . .. . .dn
� �

. d ¼ cd; rd, where d

represents the instances of D, andcd and rd represent the

center and radius of each instance, respectively.

Definition 3 Self are MWS that belong to the relevant

collection which does not induce the generation of detec-

tors. Let (S) be the set of self-samples.

S0 ¼ s1; s2; s3. . .. . .. . .snf g. s ¼ csrs, where s represents the

instances of S, and cs and rs represent the center and radius

of each instance, respectively.

Definition 4 Nonself are MWS that do not belong to the

relevant collection which induces the generation of detec-

tors. Let (S0) be the set of self-samples.

S0 ¼ s01; s
0
2; s

0
3. . .. . .. . .s

0
n

� �

. s ¼ cs; rs0 , where s0 represents

the instances of S0, cs0 and rs0 represent the center and radius

of each instance, respectively.

Definition 5 Matching rules are what govern the detector

generation phase and a matchmaking detection phase.

Irrespective of representation, a matching rule M can be

formally defined as dMs $ distance measure between d

and s is within a threshold s. For example: If

Dist d; sð Þ ¼
P

n

i¼1

di � sið Þ2
� �

\rs, then the candidate

detector d will be discarded; otherwise, it will be position

in the D0 based on its rd.

3.2 Problem description

The research problems this paper aims to address are

defined as follows:

First, how to model the information that covers the

entire discovery space (the requested MWS and the offered

MWS) to learn the MWS relevance based on a given MWS

request. The offered MWS and requested MWS informa-

tion consist of MWS goals and context which are described

below:

• MWS goals extraction: The objective of this task is to

extract the goals that describe the functional capabilities

of MWS from the RESTful description of the MWS.

Goals are a set of words that describe the features of the
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offered MWS and requested MWS. We assume there

are goals in the offered MWS given as g1;g2;g3. . .gn.

• MWS context identification: The objective of this task is

to extract the features that describe the nonfunctional

capabilities of the MWS from the RESTful description.

The context is a set of words and numerical features

that distinguish between similar MWS and enable a

better understanding of MWS requests. We assume

there are context in the offered MWS or request given

as cx1;cx2;cx3. . .cxn.

• Relevant MWS (top-N MWS) identification: The objec-

tive of this task is to measure the relevance by matching

the MWS request and the offered MWS. This creates a

two-dimensional array based on the weight vectors of

length-K.

Second, how to identify, retrieve, and generate the top-N

MWS of the most relevant MWS that satisfies the func-

tional and context needs of MWS requests based on the

SRL model.

4 Self-adaptive MWS matchmaker: overview

Before deliberating on the self-adaptive MWS match-

maker’s technicalities, it is highly desirable to provide a

digest of its functionality and the target problem of MWS

matching in DME. In a typical scenario for which the

matchmaker achieves the desired result, without barring its

utilization under other scenarios, the following notions are

taken into account: (1) The matchmaker is operation as

well as user-centric as users are keenly interested in top-N

MWS as opposed to discovering every MWS that is related

to the request. (2) The provision of new MWS happens

dynamically, and the request of any MWS happens effi-

ciently. For any given MWS request R and MWS offers

O [ SC described in hREST, with SC being the MWS

collection of the self-adaptive MWS matchmaker, a set of

relevant MWS that satisfy the users’ request is returned by

the matchmaker. To achieve this, the matchmaker initially

learns the MWS relevance over a specified training set of

positive and negative samples using M-NSA, and this is

followed by matchmaking where the request is matched

against the offer to obtained results based on the leaned

relevance. The overview of the various stages of the pro-

posed approach is shown in Fig. 2.

4.1 Determine the target category

Based on the work of [10], goal-oriented matching can be

performed by mining functionalities of MWS described

using hREST (textual descriptions). For self-adaptive

MWS matchmaker, the experimentally top-performing,

goal-based text similarity matching is adapted for its

effectiveness. For the matchmaking to be efficient, the

search space is reduced to the cluster of MWS that is most

similar to a given MWS request [54]. Therefore, the most

similar category or cluster of MWS request r as the target

category of R is denoted by tc (r).

Given a request r, the first step of the self-adaptive

MWS matchmaker is to determine the target category or

cluster tc (r). of MWS request r is pre-processed by

extracting the goals and generating a vector of r. Then, the

cosine similarity between r and the center of categories or

clusters, denoted by cc, is calculated using:

Similarity r
*
; cc

*
� �

¼
r
*
�cc
*

r
*

�j jj jcc
*

�

�

�

�

�

�

�

�

�

�

�

�

ð2Þ

This is used to calculate the cosine of the angle between

the two vectors (MWS request vector denoted by r
*
and the

center of MWS categories or clusters denoted by cc
*
). This

metric is a measurement of orientation and not magnitude.

By normalizing the space, the problem with the magnitude

of each word count is eliminated. Figure 3 shows an

example of similarities between MWS request vector and

MWS categories or clusters.

4.2 Service relevance learning (detector
generation)

In order to find the most relevant MWS, the matchmaker

learns the service relevance by using the detector genera-

tion stage of MNSA. The Describe the Detector Generation

Stage in the proposed approach is a four-phase process, the

first phase is random generation of candidate detectors

based on self-sample given as Eqs. (3 and 4), the second

phase is determining the affinity between the instances of

the self-data and detectors computed using the Euclidean

distance in Eq. (5), the third phase is the use of matching

rules to determine the acceptability of the candidate

detector as a matured detector, and finally, the fourth phase

is the condition or criteria that stops the detector generation

stage.

Di ¼ di1; d
i
2; . . .. . .. . .d

i
Q

h i

where i ¼ 1; 2. . .. . .. . .Nd ð3Þ

S j ¼ s
j
1; s

j
2; . . .. . .. . .s

j
Q

h i

wherej ¼ 1; 2. . .. . .. . .Ns ð4Þ

dist Di; S j
	 


¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

Q

k¼1

dik � s
j
k

�

�

�

�

2

v

u

u

t ð5Þ
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4.2.1 Control parameters

The service relevance learning (detector generation stage)

of the MNSA starts by assigning values to a number of

control parameters. The control parameters are initialized

parameters that are fundamental to the MNSA design and

affect the behavior and output of the MNSA. The three

control parameters, in this case, are self-radius rs, the

estimated coverage co, and the maximum number of

detectors Dmax.

Given the need to differentiate self-radius rs from the

detector’s radius rd, the self-radius rs is considered to be

the most significant among the control parameters. The

second control parameter is the maximum number of

detectors Dmax which is pre-set to allow the maximum

number of detectors needed. The third control parameter is

the estimated coverage Ec which is used to determine the

Fig. 2 Overview of the proposed self-adaptive approach

Fig. 3 The similarities between MWS request vector and MWS categories or clusters
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coverage based on the number the mature detectors and the

sufficient number of detectors required. The estimated

coverage Ec ¼ 1� 1=Uð Þ, where 1 is the full coverage, U

is the number of uncovered regions, and 1=U is the esti-

mated uncovered region. For example, if the number of

uncovered regions is 3 out of 100, then the estimated

coverage Ec is 67%.

The second and third control parameters are the deter-

minants of the stopping criteria; the service relevance

learning (detector generation stage) stops when the esti-

mated coverage is achieved or when the maximum detec-

tors are obtained. The elimination of other unnecessary

control parameters such as the maximum age of the

detector (t), makes it better to initialize the service rele-

vance learning (detector generation stage) of the MNSA

compared to other forms of NSA.

4.2.2 The size of the detectors

The detector size is significant as it can influence the per-

formance of M-NSA, variable-sized detectors are utilized

for this situation because it is not necessary to set the

number of detectors ahead of time, the nonself space can be

filled by a small number of variable-sized detectors, and

similarly, small-scale detectors can cover the holes, thus

minimizing the classification error, contrary to constant-

size detectors. Figure 4 shows an example of constant-size

detectors and variable-size detectors in 2-dimensional

space in which the gray area signifies the self-region, which

is typically specified through the self-samples/training data.

The circles are the possible detectors covering the nonself

region. The gaps also known as classification errors are

illustrated in black.

The logical steps of the service relevance learning for

SAMM are illustrated in detail in Fig. 5. Step 6 in Fig. 5

describes the two stopping criteria for service relevance

learning (detector generation). Given that the main objec-

tive is to complete the detector generation at the exact or

nearest to the target value (estimated coverage), therefore,

the most desirable situation is to conclude based on the

estimated coverage. However, an alternative criterion is

setting a maximum number of detectors to handle situa-

tions when the estimated coverage is impractical. While the

alternative is effective in comparison with the estimated

coverage, its coverage effectiveness is far superior to a

fixed-sized detector.

In step 7, the candidate detectors are generated, and

since the MWS is clustered into eight (8) categories, there

is a need to generate, optimize, and train eight sets of

detectors corresponding to each MWS category. The self-

sample from each of the eight categories is used to train the

detectors from the candidate stage to the maturity stage

after which the matured detectors (optimized detectors) are

selected to be used in the detection stage.

Steps 8 through 10 in Fig. 5 describes the matching

process, while steps 12 through 22 describe the condition

that enables the addition and counting of the detectors

already generated. The choice of including more detectors

or not is complicated as the detector coverage is changing

throughout the detector generation. This is because more

detectors would lead to unnecessary detectors and fewer

detectors would lead to a poor detection rate. Therefore, a

fixed sample size is used for the coverage estimation and

the determination of the maximum number of detectors

which mostly keeps the cost of the service relevance

learning under control.

4.3 Self-adaptive MWS discovery (detection
stage)

After the service relevance learning (detector generation

stage) is accomplished, the self-adaptive MWS discovery

(detection stage) begins. Each instance MWS is introduced

to the number of detectors that are generated (detector set).

The affinity metric in Eq. 8 is used to measure the distance

of each detector radius (rd) in the detector set, and if the

distance is less than rd for any detector, the instance MWS

is classified as nonself; otherwise, it is classified as self. By

the rationale of the MNSA, if an instance of MWS is

recognized by any detector, it is classified as nonself. On

Fig. 4 An example of constant-

size and variable-size detectors

in 2 dimensional
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the off chance that no detectors are fit for recognizing the

instance MWS, it is classified as self.

4.3.1 Adoption of distance metrics

Matching rules are based on a based distance measure and

both play the most important role in NSA. Matching rules

are used both in the service relevance learning (detector

generation stage) and in the self-adaptive MWS match-

making (detection stage). The domain and the dataset

representation are used as the criteria to determine the most

appropriate matching rules. r-contiguous bit, r-chunks, and

Hamming distance are more compatible with binary data

representation, while Euclidean distance, Minkowski dis-

tance, and Manhattan distance are more compatible with

real-valued data representation.

While there are a few control parameters that might be

changed to influence the performance of M-NSA, choosing

the most suitable distance measure between Euclidean

distance shown in Eq. (8), Minkowski distance shown in

Eq. (6), and Manhattan distance shown in Eq. (7) is critical

to the performance of the M-NSA algorithm. This is

because the number of detectors generated, the shape of a

detector in an n-dimensional space, and the assessment of

detector coverage are all determined by the distance mea-

sure in real-valued data representation. Likewise, during

the detection stage, the decision rule executed to classify

the unknown incoming data instance as either self or

nonself is based on a distance measure. Therefore, the

Euclidean distance is adopted as the matching rule of M-

NSA as it is more effective on real-valued data compared

to Minkowski distance and Manhattan distance [55].

Minkowski Dist X; Yð Þ ¼
X

n

i¼1

xi � yij jp
 !1=p

ð6Þ

Manhattan Dist X; Yð Þ ¼
X

n

i¼1

jxi � yij ð7Þ

Euclidean Dist X; Yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

ðxi � yiÞ
2

s

ð8Þ

where p is the positive integer 1 in the Manhattan distance

and p is the positive integer 2 in the Euclidean distance,

and xi, yi are the coordinates of x and y, respectively.

Fig. 5 Service relevance learning (initial detector generation)
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4.3.2 Matchmaking strategy

The matchmaking strategy is founded on a practical prin-

ciple of request capabilities and offered capabilities of

MWS to satisfy the users; hence, a logic-based approach is

integrated into the M-NSA, and the strategy entails a series

of steps that are followed to get the most relevant MWS

weighting each of the matching cases as shown in steps 8

through 19 in Fig. 6. In detail, users may request MWS

with certain capabilities; if these capabilities are identical

or similar to the offered capabilities by the service provi-

ders Rs � Os _ Rs ¼ Osð Þ, it is of greater use compared to

any other case. However, if the offered capabilities are

more generic Rs � Osð Þ, it is still more desirable compared

to a situation where the offer can fulfill only a certain part

of the request Rs � Osð Þ. Moreover, if the offered capa-

bilities and the requested capabilities share common fea-

tures Rs \ Osð Þ it is still desirable compared to the absence

of any positive relationship between the request and the

offer Rs 6¼ Osð Þ.
The logical strategy is extended further by converting

any request that did not yield the desired offer into a

detector. The affinity binding between detectors generated

in the service relevance learning stage and the new service

request Rs is compared against the threshold s; if the

affinity is greater than or equal to the threshold, then the

new service request Rs is qualified to be a candidate

detector, else, the position of the detectors will be only

Fig. 6 The self-adaptive matchmaking algorithm
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adjusted as other detectors of equal importance are already

available.

Overall, the matchmaking algorithm is designed to

continually recognize the user’s desired MWS; therefore,

five matching cases are considered in defining the degree of

match (DOM). Exact match Rs � Os _ Rs ¼ Osð Þ, plug-in
match Rs � Osð Þ, subsumption match Rs � Osð Þ, intersec-
tion match Rs \ Osð Þ, and fail/nonmatch Rs 6¼ Osð Þ. Since
the MWS data and detectors are represented by real-valued

data, the proposed matchmaking strategy always deals with

similarity as a real value in [0, 1]. After the examination of

several methods that can be used to represent the DOM,

weights between 0 and 1 are adopted to reflect the real-

valued representation of the MNSA. Consequently, each of

the five DOM (Exact, Plug-in, Subsumes, intersection, and

Fail) carries a weight of 1, 0.75, 0.5, 0.25, and 0, respec-

tively. The empirical evaluation supports the assertion that

this, in addition to the service relevance learning (detector

generation), curtails and compensates for the high number

of false negatives associated with strict logic matchmaking

strategy.

The logical steps of the SAMM are illustrated in Fig. 6.

SAMM adjust adaptively the detectors generated during

service relevance learning according to the MWS discov-

ery result. Steps 22 through 27 in Fig. 6 describes the

condition that enables the self-adaptation to take place.

This is because when too many FN occurs, the detectors

need to be updated to ensure the discovery of relevant

MWS. The two contributing factors of FN are holes in the

self-space that the generated detector cannot cover and the

too-large self-radius that cover nonself space. Moreover,

when the set of self-elements changes (offered MWS) as a

result of the addition of new or unavailability of MWS,

adjusting the detectors becomes necessary to respond to the

changes.

5 The empirical evaluation

This section covers different experiments that are con-

ducted to evaluate the proposed self-adaptive mobile web

service discovery approach based on a modified negative

selection algorithm. The purpose of the experiments is to

answer two questions: (1) What is the performance of the

proposed SRL model in terms of DR and FAR? (2) What is

the performance of the matchmaker despite the changes in

DME? The proposed model as well as the matchmaker was

developed and implemented using Python 3.7 version in

Anaconda Navigator 1.9.2 and carried out on a PC with

Intel Core(TM) CPU i5-5200U, @2.20 GHz, and 8 GB

RAM, running the Windows 10 Home Edition 64-bit OS.

The source code for the proposed approach is readily and

freely accessible in GitHub [56] for testing. This section

also discusses the rationale behind experimental decisions,

and choices regarding test collections, settings, evaluation

metrics, baseline algorithms, and evaluation results are also

discussed.

5.1 Dataset description

In order to ensure impartial results and analysis, a great

deal of experimental norms is taken into consideration, and

the training, testing, and comparison with related algo-

rithms are all conducted under the same experimental

conditions. According to [57], the ProgrammableWeb

dataset is one of the contemporary, consistent, and largest

RESTful web service collections from different domains

publicly accessible for evaluation; in addition, its daily

evolution set it apart from other test collections within the

Semantic Service Matchmaker Evaluation Environment

(SME2). Therefore, it is employed as a testbed to evaluate

the proposed self-adaptive MWS matchmaking algorithm.

As shown in Table 1, the crawled dataset from PW

consists of 13,520 MWS and 5769 Mashups from more

than 400 different domains (categories) such as video,

social, messaging, photographs, games. Given that the

objective constraint of this experiment is MWS, a large

dataset is required for service relevance learning (detector

generation stage) and the ProgrammableWeb dataset is

described using hREST, and information such as name,

tags, description is extracted. It also undergoes through

pre-processing that involves filtration, normalization, and

organization to obtain the feature vectors for training and

testing which serve as the inputs of the service relevance

learning and MWS discovery.

Data splitting strategy is employed to ensure the

resulting model’s generalization ability is as high as pos-

sible, and the intensity of the computation, a balance

between the variance of parameter estimates and perfor-

mance statistics (underfitting and overfitting) should be

considered before data splitting decision [58]. Therefore,

the test collection is split into 80:20 (80 for training and 20

for validation) parts to ensure reasonable computation time

and reduce biases.

Table 1 The statistics of the ProgrammableWeb dataset

SN Attributes Value

1 Number of MWS 13,520

2 Number of categories 466

3 Description language hRESTS

4 Number of composite MWS/mashups 5769

5 Avrg. No. of MWS per composite MWS/mashups 2

6 Avrg. No. of token per MWS 43
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5.2 Performance criteria and evaluation metrics

Two performance criteria determine the success of the

proposed matchmaking algorithms. First is the ability of

the service relevance learning (detector generation) algo-

rithm to have a high detection rate (DR) and low false

alarm rate (FAR). The DR is similar to precision as shown

in Eq. 9, while the FAR is the MWS incorrectly label as

irrelevant (false positives) divided by the total irrelevant

MWS (false positives plus true negatives) as shown in

Eq. 12. Second is the matchmaking algorithm’s ability to

differentiate between MWS that are relevant to a given

request and irrelevant MWS to a given request. This is

usually known as the binary test, followed by the ability of

the algorithm to return with the correct estimation of the

degree of relevance. This is usually known as a graded

relevance test.

The second performance criteria involve the use of F-

Measure to obtain the test’s accuracy. F-measure is a

combined metric (a weighted average of the precision and

recall or harmonic mean of precision and recall) firstly

introduced in information retrieval. 1 represents the best

value, while 0 represents the worst value of F-measure.

While recall expresses the ability of the algorithm to find

all the relevant MWS within a test collection, precision

expresses the proportion of the MWS instances the algo-

rithm says was relevant actually were relevant. The

detailed definition of precision is the number of MWS

correctly label or discovered as relevant (true positives)

divided by the relevant MWS that should be discovered

(true positives plus false positives). The detailed definition

of recall is the number of MWS correctly label or dis-

covered as relevant (true positives) divided by the total

relevant MWS label or discovered (true positives plus false

negatives). True positives (TP), false negatives (FN), true

negatives (TN), false positives (FP) are described in

Table 4. The evaluation metrics for precision, recall, and F-

measure are shown in Eqs. 9, 10, and 11, respectively.

Precision ¼
MWS correctly label or discovered as relevant

Total relevant MWS discovered

¼
True Positives TPð Þ

True Positives TPð Þ + False Positive FPð Þ

ð9Þ

Recall ¼
MWS correctly label or discovered as relevant

Total relevant MWS discovered

¼
True Positives TPð Þ

True Positive TPð Þ + False Negatives FNð Þ

ð10Þ

F �Measure ¼ 2 	
Precision 	 Recall

Precisionþ Recall
ð11Þ

FAR ¼
MWS incorrectly label as irrelevant

Total irrelevant MWS

¼
False Positives FPð Þ

False Positive FPð Þ + True Negatives TNð Þ
ð12Þ

Rank-aware evaluation metrics such as MAP in Eq. 13

and NDCG in Eq. 14 are used to ensure relevant MWS is at

the upper part of the list of discovered MWS. The precision

considers the whole list as a set of MWS and treats all the

errors in the discovery list equally. MAP (binary relevance)

is able to give more weight to errors that happen high up in

the list of discovered MWS. NDCG (graded relevance) is

able to use the fact that some MWS are ‘‘more’’ relevant

than others. Highly relevant MWS should come before

medium relevant MWS, and so on (Table 2).

MAP ¼

PQ
q¼1 AveP qð Þ

Q
ð13Þ

NDCG ¼
1

Z

X

N

k¼1

2relk

log2 k þ 1ð Þ
ð14Þ

5.3 SRL model parameter turning

To ensure that the service relevance learning (detector

generation) can produce the best set of detectors, the

influence of three important parameters (self-radius rs,

estimated coverage Ec, and the maximum number of

detectors Dmax) needs to be tested in various settings. The

self-radius rs is an important parameter in any NSA, since

small rs may lead to false-positive outcomes, while a large

rs may lead to false-negative results. The selection of

mature detectors is subject to the initial and final fitness

values for candidate detectors, generating variable-sized

candidate detectors maximum diversity and minimum

overlap between detectors to ensure that a reduced number

of detectors coverage the entire search space to lessen the

amount of computation. Therefore, both the estimated

coverage Ec and the maximum number of detectors Dmax

are used as the termination conditions to ensure a sufficient

number of detectors as well as full coverage. To validate

the impact of the SRL method for the MWS discovery, we

apply various settings to our MNSA model accordingly:

• MNSA-1: This variant is intended to analyze the effect

of the self-radius rs. In this case, the self-radius rs is set

between 0.01, 0.3, and 0.05, while the maximum

number of detectors Dmax and the estimated coverage

Ec were not given much consideration during the model

training.

• MNSA-2: This variant is intended to analyze the effect

of the maximum number of detectors Dmax. In this case,

the maximum number of detectors Dmax is set between
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100, 200, and 300, while the self-radius rs and the

estimated coverage Ec were not given much consider-

ation during the model training.

• MNSA-3: This variant is intended to analyze the effect

of the estimated coverage Ec. In this case, the estimated

coverage Ec is set between 80%, 90%, and 99%, while

the self-radius rs and the maximum number of detectors

Dmax were not given much consideration during the

model training.

The evaluation metrics discussed previously (detection

rate DR and false alarm rate FAR) are used to measure the

service relevance learning (detector generation) effective-

ness in the experiments.

5.4 Results analysis of the SRL model

Experimental results are shown in Tables 3, 4, and 5.

Table 3 demonstrates the comparisons of detection rates

and false alarm rates of the three MNSA (MNSA-1,

MNSA-2, MNSA-3) in terms of self-radius under the

equivalent experimental conditions (estimated coverage Ec

of 99% and the maximum number of detectors Dmax 100).

It is noticeable that the DR and the FAR are higher when

the self-radius rs is smaller, while the DR and the FAR are

smaller when the self-radius rs is higher.

Table 4 demonstrates the comparisons of detection rates

and false alarm rates of the three MNSA (MNSA-1,

MNSA-2, MNSA-3) in terms of the maximum number of

detectors under the equivalent experimental conditions

(estimated coverage Ec of 99% and self-radius rs 0.01). It is

noticeable that the increase in the maximum number of

detectors does not result in a significant increase in the DR,

but there is an increase of the FAR; however, the maximum

number of detectors works side-by-side with the size of the

training set.

Table 5 demonstrates the comparisons of detection rates

and false alarm rates of the three MNSA (MNSA-1,

MNSA-2, MNSA-3) in terms of estimated coverage under

the equivalent experimental conditions (self-radius rs 0.01

and the maximum number of detectors Dmax 100). It is

noticeable that the DR gradually increases as the estimated

coverage increases, while the FAR gradually decreases as

the estimated coverage increases.

Figure 7 shows the comparisons of the maximum

number of detectors for MNSA-1, MNSA-2, and MNSA-3

under the same expected coverage, and the same training

sets, it is noticeable that the number of mature detectors

required to satisfy the coverage specification of 99% differs

between the three algorithms. As shown in Fig. 7a, MNSA-

1 needs almost 100 detectors to satisfy the coverage

specification, as shown in b, MNSA-2 needs almost twice

the number of mature detectors required by MNSA-1 to

satisfy the coverage specification, and as shown in Fig. 7c,

MNSA-3 needs almost 300 mature detectors to achieve the

expected coverage of 99%. This is due to the increase in

the self-radius rs in which MNSA-1 has a self-radius rs of

0.01, MNSA-2 has a self-radius rs of 0.03, and MNSA-3

has a self-radius rs of 0.05. Therefore, the higher the self-

radius rs, the higher the number of detectors required to

cover the entire self-space.

Figure 8 shows the comparisons of the DR and FAR for

MNSA-1, MNSA-2, and MNSA-3 under the same expected

coverage, and same training sets, it is noticeable from the

figures that the DR and the FAR of the three algorithms

slightly differ when the expected coverage is greater than

50%. There is a significant increase in the DR of greater

than 90% for MNSA-1 due to its smaller self-radius rs and

the increase in the estimated coverage, while the DR for

MNSA-2 and MNSA-3 is lower than 90% due to the larger

self-radius rs. However, the FAR slightly increases as the

DR increases due to coverage of self-data located at the

edge of the self-space. Though it is not ideal for the FAR to

slightly increase due to the increase in the DR, it is still

Table 2 The four probable

results of the test
Variables Description (number of)

TP True positive MWS correctly label or discovered as relevant

FP False Positive MWS incorrectly label or discovered as relevant

TN True negative MWS correctly label or discovered as irrelevant

FN False negative MWS incorrectly label or discovered as irrelevant

Table 3 The comparisons of

detection rates and false alarm

rates in terms of self-radius

Algorithm Self-radius rs = 0.01 Self-radius rs = 0.03 Self-radius rs = 0.05

DR % FAR % DR % FAR % DR % FAR %

MNSA-1 0.92 0.26 0.88 0.25 0.79 0.10

MNSA-2 0.84 0.25 0.81 0.22 0.72 0.07

MNSA-3 0.81 0.22 0.77 0.18 0.69 0.03
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more suitable than other cases where the DR is signifi-

cantly low and FAR is slightly low.

5.5 Evaluation of the matchmaking

The proposed matchmaking algorithm involves the use of

the service relevance learning model, a collection of MWS,

Table 4 The comparisons of

detection rates and false alarm

rates in terms of self-radius

Algorithm No. of D. Dmax = 100 No. of D. Dmax = 200 No. of D. Dmax = 300

DR % FAR % DR % FAR % DR % FAR %

MNSA-1 0.92 0.26 0.93 0.52 0.93 0.53

MNSA-2 0.84 0.25 0.85 0.43 0.85 0.46

MNSA-3 0.81 0.22 0.82 0.40 0.82 0.43

Table 5 The comparisons of detection rates and false alarm rates in terms of self-radius

Algorithm Estimated coverage Ec = 80% Estimated coverage Ec = 90% Estimated coverage Ec = 99%

DR % FAR % DR % FAR % DR % FAR %

MNSA-1 0.78 0.43 0.86 0.41 0.92 0.26

MNSA-2 0.72 0.40 0.75 0.39 0.84 0.25

MNSA-3 0.69 0.40 0.72 0.38 0.81 0.22

Fig. 7 Comparisons of the maximum number of detectors for MNSA-1, MNSA-2, MNSA-3
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and a set of MWS requests. To measure the effectiveness of

the proposed approach, the value of two important

parameters (s and N) needs to be ascertained to ensure the

most relevant services are discovered (Top-N). The

threshold s is used to determine the need for generating

new detectors in a situation where a given query does not

yield a relevant result, while the number of relevant ser-

vices to be returned for a given request is determined by N.

This is because if N is set too high, it can induce overfitting

and hence decrease the matchmaking generalization.

Conversely, if N is set too low, it can induce underfitting,

hence difficult to describe the interactions between offer

and request of MWS. Figure 8 shows the matchmaking

performance under different N in terms of precision, recall,

F-1, and MAP for the ProgrammableWeb dataset.

The threshold value is set between 0.1 and 1 because the

increase in the value of the threshold from 0.1 to 0.5, leads

to an increase in precision and recall. On the contrary, the

increase in the value of the threshold from 0.5 to 0.9, leads

to the continued decrease of the precision and recall

decrease. Although the higher threshold signifies the dis-

covery of MWS closer to the exact matching, the possi-

bility of having exact matching is sometimes unlikely.

Likewise, the lower value of the threshold signifies the

discovery of MWS closer to the fail matching, the possi-

bility of having failed matching is more likely than not.

Therefore, the best precision and recall are attained when

the value of the threshold reaches 0.5. So, the value of the

threshold is settled at 0.5.

Moreover, when the value of N is set at 5, the variation

of the precision and recall values follows a nonlinear pat-

tern as the value of the threshold increases from 0.1 to 1.0.

This is because the small value of the threshold is not

significant enough to determine the relevance of MWS for

a given request, which results in a lower value of precision

and recall at the beginning. As for when N is set at 10, 15,

20, 25, 30, 35, 40, 45, and 50, there is an accelerated

improvement in the value of precision and MAP which

steadied at 15 and moderate slows down. This is because

when N is set at 15, it is quite sufficient to contain the most

relevant MWS as well as eliminate less relevant MWS

compared to when N is set at a higher number (Fig. 9).

5.6 Comparative evaluation with baseline
approaches

Several state-of-the-art MWS discovery approaches are

chosen as baseline approaches for comparison with the

proposed self-adaptive mobile web service discovery

approach. Considering that the proposed approach incor-

porates different attributes of the MWS profile, these

selected baseline approaches cover the four types of

matchmaking (logic-based, nonlogic based, adaptive, and

hybrid), to make a comprehensive comparison while

demonstrating the performance of the proposed approach.

It should be remembered that, in GitHub [56], most of the

source codes are readily and freely accessible, while others

are accessible on request for any of these baseline

approaches. So, for a reasonable comparison, the actual

codes given by the original authors and the settings given

in the corresponding articles were explicitly used. The

selected baseline approaches for MWS discovery are

illustrated as follows:

• GSD [10]: Goal-based service discovery (GSD) is an

approach that retrieves services by matching goals of

services with those contained in an expanded/refine

query using keyword-based and topic model-based,

NLP-based method is used to extract service goals from

services’ textual descriptions, and clusters are created

based on the semantic similarities between the extracted

service goals.

Fig. 8 Comparisons of the DR and FAR for MNSA-1, MNSA-2, MNSA-3
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• DHCF [9]: Deep Hybrid Collaborative Filtering

(DHCF) is an approach that uses a deep neural network

to capture the nonlinear relationship between services.

The pointwise loss function is used to transform the

discovery task into a regression or classification prob-

lem. Collaborative filtering and textual content are

employed to improve relevant service discovery.

• GLDA [11, 59]: This is an adaptation of probabilistic

latent semantic analysis (pLSA) in which the service

attributes are modeled as a heterogeneous information

network (HIN) and LDA is used to capture the

underlying semantics of services and queries. The

service discovery result is generated after the

integration.

• RTM-FM [37]: The Relational Topic Model (RTM) and

Factorization Machines (FMs) is an approach that

models the relationship between topics of MWS and

uses factorization machines to predict MWS for a target

request. This approach is also capable of evaluating

parameters under low sparsity like support vector

machines (SVMs).

• KWSD [10]: Keyword-based service discovery is an

approach that discovers services based on the TF-IDF.

The cosine similarities between services and the

requests are calculated after which service discovery

result is generated based on the similarities.

• NCF [36]: Neural Collaborative Filtering (NCF) is an

approach that uses a neural architecture to learn an

arbitrary function from web service data and capture the

nonlinear relationship between services and then gen-

erate service discovery results based on the given

request.

After the determination of the similarity threshold and

the maximum number of N, the five-evaluation metrics

discussed in Sect. 5.2 (MAP, NDCG, precision, recall,

F-measure) are used to compare the performance of the

proposed approach and baseline approaches. Tables 6, 7,

and 8, and Fig. 10 show the evaluation result of the

Fig. 9 Matchmaking performance under different N
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different approaches. Figure 10a depicts precision com-

parison, Fig. 10b depicts recall comparison, Fig. 10c

depicts F-measure comparison, Fig. 10d depicts MAP

comparison, Fig. 10e depicts NDCG comparison. Several

important observations are attained from the comparison

which is discussed in the following section.

5.7 Results and discussion

As can be seen, the proposed approach exhibits significant

improvements over the competing approaches at certain

points within certain parameters, more specifically, the

number of N. As illustrated in Fig. 10a, with the gradual

increase in the number of N, the precision decreases

slightly in SAMM, GDS, and GLDA. This is because the

larger the size of N, the more services will be matched and

Table 6 Evaluation results of Precision@N

Approaches Precision@N

N = 5 N = 10 N = 15 N = 20 N = 25 N = 30 N = 35 N = 40 N = 45 N = 50

GDS 0.8498 0.8060 0.7658 0.7055 0.6475 0.5687 0.5044 0.4274 0.3899 0.3688

DHCP 0.1719 0.1090 0.0801 0.0642 0.0538 0.0461 0.0415 0.0368 0.0337 0.0311

GLDA 0.8002 0.7648 0.7180 0.6784 0.6543 0.6318 0.6064 0.5838 0.5598 0.5400

RTM-FM 0.6896 0.4425 0.3870 0.3352 0.2797 0.2590 0.2405 0.2257 0.2161 0.2094

KWSD 0.1023 0.0730 0.0539 0.0441 0.0370 0.0310 0.0261 0.0234 0.0201 0.0191

NCF 0.1641 0.1400 0.1282 0.1218 0.1182 0.1152 0.1126 0.1109 0.1092 0.1088

SAMM 0.9167 0.8413 0.7745 0.7155 0.6703 0.6414 0.6139 0.5888 0.5648 0.5450

Table 7 Evaluation results of Recall@N

Approaches Recall@N

N = 5 N = 10 N = 15 N = 20 N = 25 N = 30 N = 35 N = 40 N = 45 N = 50

GDS 0.4892 0.6007 0.6515 0.7121 0.7374 0.7560 0.7796 0.7915 0.8211 0.8308

DHCP 0.5085 0.6200 0.6708 0.7097 0.7350 0.7536 0.7671 0.7790 0.7908 0.8010

GLDA 0.4207 0.4626 0.5000 0.5264 0.5552 0.5851 0.6161 0.6431 0.6649 0.6787

RTM-FM 0.2524 0.4689 0.5218 0.5747 0.6234 0.6275 0.6302 0.6358 0.6400 0.6455

KWSD 0.3382 0.4676 0.5303 0.5931 0.6234 0.6457 0.6659 0.6841 0.7003 0.7145

NCF 0.3912 0.5008 0.5481 0.5801 0.6020 0.6240 0.6392 0.6476 0.6611 0.6695

SAMM 0.4991 0.6106 0.6614 0.7320 0.7569 0.7755 0.7990 0.8327 0.8417 0.8430

Table 8 Evaluation results of F-measure@N

Approaches F-measure@N

N = 5 N = 10 N = 15 N = 20 N = 25 N = 30 N = 35 N = 40 N = 45 N = 50

GDS 0.6210 0.6884 0.7040 0.7088 0.6895 0.6491 0.6125 0.5551 0.4285 0.3794

DHCP 0.2326 0.1713 0.1342 0.1115 0.0946 0.0829 0.0750 0.0681 0.0623 0.0575

GLDA 0.5502 0.5778 0.5942 0.6006 0.5976 0.6090 0.6204 0.6112 0.6050 0.6002

RTM-FM 0.4891 0.3891 0.3636 0.3380 0.3141 0.2897 0.2685 0.2495 0.2402 0.2272

KWSD 0.1571 0.1263 0.0979 0.0821 0.0699 0.0592 0.0502 0.0453 0.0391 0.0372

NCF 0.2302 0.2220 0.2165 0.2132 0.2111 0.2093 0.2082 0.2068 0.2062 0.2055

SAMM 0.6463 0.7076 0.7135 0.7237 0.7110 0.7021 0.6943 0.6898 0.6760 0.6620
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retrieved. Other approaches such as MTR-FM, DHCP,

KWSD, and NCF show stability as the number of N

increases. However, recall and the F-measure of all the

approaches show a gradual increase as the number of N

increases as expected considering that N is used to limit the

number of MWS to be returned for every request. Given

that the recall ensures that no relevant MWS is missing, it

is still outfitted with a top-N bound due to the objective of

SAMM which is to return the most relevant MWS.

Compared with the latest baseline approaches, SAMM

performs slightly better in evaluation metrics such as recall

(0.8430) and performs significantly better in precision

(0.9167), MAP (0.5028), and NDCG (0.8613). This is

because the high sparsity of the interaction matrix in MTR-

FM hinders the accurate classification of MWS. While the

Fig. 10 The performance comparison of different approaches
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adoption of neural network strategy in NCF and DHCF

leads to significant improvement in the performance by

capturing nonlinear relations between MWS, these

approaches fall slightly short, given that SAMM does not

have the partial score issues that are widely attributed to

NCF and DHCF.

The evaluation shows that GSD, a goal-based approach

that measures the similarities between the goals of MWS

and MWS, requests that can be expanded with alternative

semantics achieves better precision (0.8498) than GLDA

(0.8002), NCF (0.1641), MTR-FM (0.6896), KWSD

(0.1023), and DHCF (0.1719). The results indicate that the

MWS goals can provide significant support for MWS dis-

covery if extracted appropriately, which also validates the

decision to integrate MWS goals at the base of SAMM.

Figure 10a depicts a precision comparison in which KWSD

performs lower (0.1023) than all the other approaches,

given that it is based on TF-IDF after extensive refinement

that leads to a high number of false positive (FP/F ? ve)

and the false negative (FN/F-ve) in matchmaking.

Another significant observation is that the performance

of SAMM based on few numbers of N is better than the

LDA-based approach but not as consistent. One possible

explanation is the use of context information to enrich the

semantics of both MWS and well as user requests, thereby

boosting the MWS discovery performance of SAMM.

Moreover, the LDA-based approach is less effective as it

can only capture fewer semantically consistent topics

without the aid of word embedding or other query expan-

sion strategies. The use of heterogeneous information

network (HIM) together with implicit feedbacks makes

consistency possible across an extended number of N.

Given that the precision is slightly higher than the recall

when Top-N is low and vice versa, the harmonic means is

obtained to determine the effectiveness of SAMM and the

baseline approaches. It can be observed that though SAMM

has high precision (0.9167) but low recall (0.8327), it is

still very accurate, but it misses an insignificant number of

MWS that are difficult to classify. This is why the stability

of F-measure as the Top-N increases. The MAP and NDCG

values of the top 50 discovered MWS are measured under

the specified parameter settings, and the results show

reassuring improvement in the case of SAMM. Moreover,

compared with the latest approaches, SAMM records dif-

ferent levels of improvement at different values of N, and

the best improvements recorded are 6.69%, 5.37%, 8.18%,

6.32%, and 2.76%, on Precision@5, Recall@40, F1@35,

MAP@10, and NDCG@10, respectively.

After a thoughtful analysis, it is safe to say that the best

performance achieved by SAMM is mainly because of the

service relevance learned using M-NSA which contributes

to the separation of relevant MWS from a collection of

MWS. The effectiveness of SAMM is owing to the

additional consideration of variable-sized detector and the

elimination of other unnecessary control parameters such

as maximum age the detector (t) in the service relevance

learning process contributes greatly to the higher perfor-

mance of SAMM as well as the way it leverages more

comprehensive information that covers the entire discovery

space (service requester, service provider, and the envi-

ronment) to achieve better performances.

In comparison with other one-class classification meth-

ods such as FM, SVM prior knowledge about the MWS

data is not a prerequisite for SAMM and is barely stifle by

discrete data; therefore, runtime adaption strategy is

applicable. Moreover, the extensive experiment and anal-

ysis carried out to curtail the classification error improves

the performance of SAMM. This is because on the one

hand, too small self-radius and the insufficiency of self-

samples to cover sufficient self-space result in a high false-

positive error. On the other hand, too-large self-radius and

the insufficiency of self-samples to cover nonself space

result in a high false-negative error. Therefore, the balance

stroked while selecting the self-radius to minimize the

classification error.

5.8 Assumptions and limitations

The proposed self-adaptive mobile web service discovery

approach based on a modified negative selection algorithm

has some shortcomings. Currently, the proposed approach

is trained and tested for steady data, and various steps

would be taken in the face of the new MWS data depending

on the amount of the new MWS. If the amount of the new

MWS is minimal, the parameters of the SRL model will be

retained; otherwise, the SRL model will be re-trained with

different parameters. The estimation of the threshold that

enables the self-adaptation depends on balancing the reli-

ability of the algorithm and the effectiveness of the MWS

discovery. This calls for further investigation.

The size of the ProgrammableWeb dataset is one of the

constraints of this paper. Though it is the largest RESTful

web service collection publicly accessible for evaluation,

13,520 MWS is not the desired number (large enough) for

accurate training and testing of the model. On the other

hand, transfer learning provides an alternative solution.

However, it is affected by reproducibility issues, and

catastrophic forgetting as the distribution of new testing

data changes, the SLR model trained on a task of service

relevance learning typically fails to use previously learned

information. Another limitation of the proposed approach

is that it is based on a negative selection algorithm, which

uses a specific matching rule and a specific detector shape.

The most widely used matching rule (Euclidean) and

detector shape (hyperspherical) adopted for M-NSA

depend on real-valued data representation. This limitation
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is not restricted to the proposed approach. The binary data

representation is an alternative, but its performance is

worse in the MWS discovery domain.

The time complexity of the proposed approach is

assumed to be less than that of the traditional negative

selection algorithms which are (exponential). This is

because the selected MNSA-1 selected for SRL has a

smaller detector size, as well as the elimination of other

unnecessary control parameters such as the maximum age

of the detector (t). This decreases the complexity of time

and increases the efficiency of producing the detectors.

Moreover, the proposed approach aims to adapt the tradi-

tional NSA for service relevance learning and the discov-

ery of the most relevant MWS rather than to introduce a

new NSA. However, the time complexity analysis of the

proposed approach will be looked at in the future to further

confirm its effectiveness or otherwise.

6 Conclusion

This paper has presented an improved self-adaptive MWS

discovery approach for DME based on M-NSA in which

the detector generation stage is transformed into a service

relevance learning by modeling the self-space with an

appropriate self-radius rs and a number of NWS and gen-

erated a dynamic number of detectors with variable sizes.

The detection stage is transformed into self-adaptive

matchmaking (SAMM) and fitted with a reinforced learn-

ing process to adapt itself at runtime in response to changes

of self-space or when the discovery result is not as

expected. The proposed algorithm was evaluated using the

RESTful description of MWS (ProgrammableWeb dataset)

to demonstrate the M-NSA’s detector generation process,

after appropriate selection and setting of various parame-

ters, a high detection rate, and low false alarm rate is

achieved. The experimental results showed the applicabil-

ity and effectiveness of the proposed improved approaches

in MWS discovery. The service relevance learned using

M-NSA contributes to the separation of relevant MWS

from a collection of MWS, which contributes to the

effectiveness of SAMM. Moreover, additional considera-

tion of variable-sized detector and the elimination of other

unnecessary control parameters in the service relevance

learning process contribute greatly to the higher perfor-

mance of SAMM as well as the way it leverages more

comprehensive information that covers the entire discovery

space (service requester, service provider, and the envi-

ronment) to achieve better performances. Although the

proposed approach demonstrates improved performance

and can be considered a success in the MWS discovery

domain, a thorough investigation as well as a decent

empirical study should be conducted for application in

other related domains. It is noteworthy that the detector

generation is a continuous process considering the high

influx of MWS and the changes in DME; therefore, it is

essential to explore alternatives to decrease the time and

space complexities in the future. Strategies for effective

management of the threshold value can be considered for

further research, while integrating PSO in the detector

generation stage can be an interesting idea for future works

in the MWS discovery domain.
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33. Moreno GA, Cámara J, Garlan D, Klein M (2018) Uncertainty

reduction in self-adaptive systems. In: 2018 IEEE/ACM 13th

international symposium on software engineering for adaptive

and self-managing systems (SEAMS). IEEE, pp 51–57

34. Paz A, Arboleda H (2016) A model to guide dynamic adaptation

planning in self-adaptive systems. Electron Notes Theor Comput

Sci 321:67–88

35. Di Nitto E, Ghezzi C, Metzger A et al (2008) A journey to highly

dynamic, self-adaptive service-based applications. Autom Softw

Eng 15:313–341. https://doi.org/10.1007/s10515-008-0032-x

36. He X, Liao L, Zhang H, et al (2017) Neural collaborative filter-

ing. In: 26th Int World Wide Web Conf WWW 2017 pp 173–182.

https://doi.org/10.1145/3038912.3052569

37. Cao B, Liu J, Wen Y et al (2019) QoS-aware service recom-

mendation based on relational topic model and factorization

machines for IoT Mashup applications. J Parallel Distrib Comput

132:177–189. https://doi.org/10.1016/j.jpdc.2018.04.002

38. Klusch M, Kapahnke P (2012) The iSeM matchmaker: a flexible

approach for adaptive hybrid semantic service selection. J Web

Semant 15:1–14. https://doi.org/10.1016/j.websem.2012.07.003

39. Ramdane C, Chikhi S (2017) Negative selection algorithm: recent

improvements and its application in intrusion detection system.

Int J Comput Acad Res 6:20–30

40. Liu Z, Li TAO, Yang JIN, Yang TAO (2017) An improved

negative selection algorithm based on subspace density seeking.

IEEE Access 5:12189–12198

41. Mohi-Aldeen SM, Mohamad R, Deris S (2016) Application of

negative selection algorithm (NSA) for test data generation of

path testing. Appl Soft Comput J 49:1118–1128. https://doi.org/

10.1016/j.asoc.2016.09.044

42. Ji Z, Dasgupta D (2004) Real-valued negative selection algorithm

with variable-sized detectors. Lect Notes Comput Sc

3102:287–298. https://doi.org/10.1007/978-3-540-24854-5_30

43. Fouladvand S, Osareh A, Shadgar B et al (2017) DENSA: an

effective negative selection algorithm with flexible boundaries

for self-space and dynamic number of detectors. Eng Appl Artif

Intell 62:359–372. https://doi.org/10.1016/j.engappai.2016.08.

014

44. Zeng J, Liu X, Li T et al (2009) A self-adaptive negative selection

algorithm used for anomaly detection. Prog Nat Sci 19:261–266.

https://doi.org/10.1016/j.pnsc.2008.06.008

45. Nanda SJ, Panda G (2014) A survey on nature inspired meta-

heuristic algorithms for partitional clustering. Swarm Evol

Comput 16:1–18. https://doi.org/10.1016/j.swevo.2013.11.003

46. Dasgupta D, Yu S, Nino F (2011) Recent advances in artificial

immune systems: Models and applications. Appl Soft Comput J

11:1574–1587. https://doi.org/10.1016/j.asoc.2010.08.024

47. Cui L, Pi D, Chen C (2015) BIORV-NSA: bidirectional inhibition

optimization r-variable negative selection algorithm and its

application. Appl Soft Comput J 32:544–552. https://doi.org/10.

1016/j.asoc.2015.03.031

48. Zhu F, Chen W, Yang H et al (2017) A quick negative selection

algorithm for one-class classification in big data era. Math Probl

Eng. https://doi.org/10.1155/2017/3956415

2028 Neural Computing and Applications (2022) 34:2007–2029

123

https://doi.org/10.1016/j.future.2015.04.017
https://doi.org/10.1016/j.future.2015.04.017
https://doi.org/10.1007/s13218-015-0415-7
https://doi.org/10.1038/nature14541
https://doi.org/10.1038/nature14541
https://doi.org/10.1109/RISP.1994.296580
https://doi.org/10.1109/RISP.1994.296580
https://doi.org/10.1002/cpe.2886
https://doi.org/10.1016/j.procs.2018.04.101
https://doi.org/10.1016/j.fcij.2018.10.007
https://doi.org/10.1109/TSC.2015.2430328
https://doi.org/10.1109/TSC.2015.2430328
https://doi.org/10.1016/j.asoc.2018.03.038
https://doi.org/10.1109/TKDE.2016.2645769
https://doi.org/10.1109/TKDE.2016.2645769
https://doi.org/10.11113/jt.v77.6183
https://doi.org/10.1109/TSC.2018.2831678
https://doi.org/10.1109/TSC.2018.2831678
https://doi.org/10.4018/978-1-5225-7501-6
https://doi.org/10.4018/978-1-5225-7501-6
https://doi.org/10.1016/j.compeleceng.2017.06.030
https://doi.org/10.1007/s10515-008-0032-x
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1016/j.jpdc.2018.04.002
https://doi.org/10.1016/j.websem.2012.07.003
https://doi.org/10.1016/j.asoc.2016.09.044
https://doi.org/10.1016/j.asoc.2016.09.044
https://doi.org/10.1007/978-3-540-24854-5_30
https://doi.org/10.1016/j.engappai.2016.08.014
https://doi.org/10.1016/j.engappai.2016.08.014
https://doi.org/10.1016/j.pnsc.2008.06.008
https://doi.org/10.1016/j.swevo.2013.11.003
https://doi.org/10.1016/j.asoc.2010.08.024
https://doi.org/10.1016/j.asoc.2015.03.031
https://doi.org/10.1016/j.asoc.2015.03.031
https://doi.org/10.1155/2017/3956415


49. Idris I, Selamat A, Thanh Nguyen N et al (2015) A combined

negative selection algorithm-particle swarm optimization for an

email spam detection system. Eng Appl Artif Intell 39:33–44.

https://doi.org/10.1016/j.engappai.2014.11.001

50. Dong L, Liu S, Zhang H (2016) A boundary-fixed negative

selection algorithm with online adaptive learning under small

samples for anomaly detection. Eng Appl Artif Intell 50:93–105.

https://doi.org/10.1016/j.engappai.2015.12.014

51. Dong L, Liu S, Zhang H (2017) A method of anomaly detection

and fault diagnosis with online adaptive learning under small

training samples. Pattern Recognit 64:374–385. https://doi.org/

10.1016/j.patcog.2016.11.026

52. Zhao X, Wen Z, Li X (2014) QoS-aware web service selection

with negative selection algorithm. Knowl Inf Syst 40:349–373.

https://doi.org/10.1007/s10115-013-0642-x

53. Zhao X, Li R, Zuo X (2019) Advances on QoS-aware web service

selection and composition with nature-inspired computing. CAAI

Trans Intell Technol 4:159–174. https://doi.org/10.1049/trit.2019.

0018

54. Garba S, Mohamad R, Saadon NA (2020) Search space reduction

approach for self-adaptive web service discovery in dynamic

mobile environment. In: Saeed F, Mohammed F, Gazem N (eds)

Emerging trends in intelligent computing and informatics.

Springer International Publishing, Cham, pp 1111–1121

55. Abid A, Khan MT, de Silva CW (2017) Layered and real-valued

negative selection algorithm for fault detection. IEEE Syst J.

https://doi.org/10.1109/JSYST.2017.2753851

56. Garba S, Mohamad R, Saadon NA (2020) Self-adaptive MWS

matchmaker. GitHub Repos

57. Cao B, Frank Liu X, Liu J, Tang M (2017) Domain-aware

Mashup service clustering based on LDA topic model from

multiple data sources. Inf Softw Technol 90:40–54. https://doi.

org/10.1016/j.infsof.2017.05.001

58. Xu Y, Goodacre R (2018) On splitting training and validation set:

a comparative study of cross-validation, bootstrap and systematic

sampling for estimating the generalization performance of

supervised learning. J Anal Test 2:249–262. https://doi.org/10.

1007/s41664-018-0068-2

59. Tian G, Zhao S, Wang J et al (2019) Semantic sparse service

discovery using word embedding and Gaussian LDA. IEEE

Access 7:88231–88242. https://doi.org/10.1109/ACCESS.2019.

2926559

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2022) 34:2007–2029 2029

123

https://doi.org/10.1016/j.engappai.2014.11.001
https://doi.org/10.1016/j.engappai.2015.12.014
https://doi.org/10.1016/j.patcog.2016.11.026
https://doi.org/10.1016/j.patcog.2016.11.026
https://doi.org/10.1007/s10115-013-0642-x
https://doi.org/10.1049/trit.2019.0018
https://doi.org/10.1049/trit.2019.0018
https://doi.org/10.1109/JSYST.2017.2753851
https://doi.org/10.1016/j.infsof.2017.05.001
https://doi.org/10.1016/j.infsof.2017.05.001
https://doi.org/10.1007/s41664-018-0068-2
https://doi.org/10.1007/s41664-018-0068-2
https://doi.org/10.1109/ACCESS.2019.2926559
https://doi.org/10.1109/ACCESS.2019.2926559

	Self-adaptive mobile web service discovery approach based on modified negative selection algorithm
	Abstract
	Introduction
	Background and related work
	Web service matchmaking techniques
	Self-adaptive web service discovery
	Negative selection algorithms

	Definitions and problem description
	Concepts and definitions
	Problem description

	Self-adaptive MWS matchmaker: overview
	Determine the target category
	Service relevance learning (detector generation)
	Control parameters
	The size of the detectors

	Self-adaptive MWS discovery (detection stage)
	Adoption of distance metrics
	Matchmaking strategy


	The empirical evaluation
	Dataset description
	Performance criteria and evaluation metrics
	SRL model parameter turning
	Results analysis of the SRL model
	Evaluation of the matchmaking
	Comparative evaluation with baseline approaches
	Results and discussion
	Assumptions and limitations

	Conclusion
	References


