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Abstract

One of the primary concerns with open-view human action recognition (HAR) is

the large differences between data distributions of the target and source views.

Subsequently, such differences cause the data shift problem to occur, and hence,

decreasing the performance of the system. This problem comes from the fact that

real-world situation deals with unconstrained rather than constrained situations

such as differences in camera resolutions, field of views, and non-uniform

illumination which are not found in constrained datasets. The primary goal of

this paper is to improve this open-view HAR by proposing the unsupervised

domain adaptation approach. In particular, we demonstrated that the balanced

weighted unified discriminant and distribution alignment (BW-UDDA) managed

to handle the dataset with significant differences across views such as those found

in the MCAD dataset. We showed that by using the MCAD dataset on two types

of cross-view evaluations, our proposed technique outperformed other unsuper-

vised domain adaptation methods with average accuracies of 13.38% and 61.45%.

Additionally, we applied our method to a constrained multi-view IXMAS dataset

and achieved an average accuracy of 90.91%. The results confirmed the superi-

ority of the proposed technique.
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1 Introduction

In recent years, the interest in human action recognition (HAR) has received substantial

attention from researchers around the globe due to its wide applications. According to J. K.

Aggarwal, et al. [1], an action can be interpreted as an activity involving a person with several

movements. Examples of basic human actions include ‘walking’, ‘running’, ‘waving’, and

‘punching’. These are the most commonly used basic actions to be recognized in intelligent

video security surveillance purposes. It is known that HAR faces several challenges and issues

such as background complexity, inter and intra-class variations, noise, occlusions, low reso-

lution, real-time processing, and view invariance.

Previously, most researchers focused on single-view approaches and they have achieved

remarkable results [16, 30, 35, 36]. However, methods implemented in a single-view setup

cannot accurately recognize actions performed from a different viewpoint. Since then, re-

searchers have put more effort into recognizing human action in multiple cameras setup or

multi-view to achieve high view invariance performance. Although HAR based on multiple-

view methods has been an active research field in the past decade [12, 13, 20, 26], the datasets

used were limited only to a studio or constrained environment. The limitation of the

constrained datasets has led to the current studies of multi-view for unconstrained datasets to

reflect the real-world challenges. In studying the unconstrained multi-view HAR, two crucial

issues need to be addressed: (1) Label data. In a real-world implementation, labels for

classifying actions are simply not available. This is in contrast to the controlled dataset where

labels are available and sufficient for both training and testing. (2) Distribution shift.

Constrained datasets are typically designed to have fixed parameters such as camera pixel,

resolution, illumination, field of view, simultaneously recorded and uniform background

scenes. Obviously, with these constraints, the focus is to increase the performance accuracy

of the action classes. However, any changes from these set parameters will certainly cause the

dynamics of the features to change, and hence, cause a data shift or distribution mismatch that

will result in degraded performance. Therefore, it is essential to ensure that the data is

optimally discriminative before feeding into the standard classifiers.

In this paper, we conduct a study on an open-view HAR with respect to the unconstrained

dataset. Previous works in multi-camera HAR were limited to applications using constrained

multi-camera datasets that were constrained with the above limitations. In such a constrained

arrangement, many methods have reached a near perfection performance. Some of these

constrained datasets include KTH [16] and Weizmann [10] for a single camera, and IXMAS

[41], WVU [15], and MUHAVI [32] for multi-cameras. Conversely, this paper focuses on

handling open-view HAR cases that have been highlighted by [33] with the following

characteristics:

(1) Applicable only for multi-camera datasets or within cameras.

(2) The correlation between cameras is minimized so as the dataset resembles closely to the

real-world environment. Thus, many parameters such as illumination, camera type,

background scenes, and split action recorded, will be allowed to be varied.

(3) No labeled data is available in the gallery (target) view.

We acknowledge that some of the existing multi-view methods are able to tackle multi-camera

issues such as the transferable dictionary learning approach [52]. However, we noticed that the

transferable dictionary learning technique is learned directly from the original space of the
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source and target views and needs a rigid assumption that the distribution data is identical

across the view. Contrary to this, open-view HAR tends to have large differences in the data

distribution, and therefore, the use of a transferable dictionary learning approach is unsuitable

to handle this issue.

To alleviate the different data distribution issues with limited or even missing labels,

unsupervised domain adaptation methods have been proposed [29]. The purpose of the

unsupervised domain adaptation is to reduce the distribution shift in low-level dimensional

spaces effectively so that previously labeled source view feature data can be used in target

view feature data. Inspired by their achievements, this paper initially, analyzes the effective-

ness of unsupervised domain adaptation methods in addressing the open-view HAR. Then, we

also propose a new unsupervised domain adaptation technique named Balanced Weighted

Unified Discriminant and Distribution Alignment (BW-UDDA). Our technique considers

some of the weaknesses of the previous methods in an effort to increase the performance

accuracy. To illustrate the strength of our approach, we evaluate our proposed technique by

comparing it with other state-of-the-art unsupervised domain adaptation methods. In summary,

the main contributions of this paper are as follow:

(1) We extend the study of HAR onto an open-view platform. Previous studies on HAR

concentrate on a closed-view that is limited and considered solved.

(2) We propose the use of an unsupervised domain adaptation approach to address the

open-view HAR problem. To the best of our knowledge, this is the first attempt.

(3) We offer a new unsupervised domain adaptation technique leveraging on weaknesses of

previous methods to boost the accuracy performance of open-view HAR.

The rest of the paper is organized as follows: Section 2 reviews all relevant work while

Section 4 discusses our proposed methods. Next, Section 5 describes the experimental setups,

results, and discussion, and lastly, Section 5 concludes this paper.

2 Related works

2.1 View-invariant human action recognition

From the literature, the work in view-invariant HAR can be divided into two categories: (1)

feature invariant and (2) knowledge transfer.

The feature invariant aims to exploit any shared features between views and build a

descriptor from these shared features. Junejo et al. [11] proposed a descriptor by building upon

a self-similarities matrix (SSM) from the low-level features between two views. The pattern of

the SSM is evaluated to observe the similarity across different viewpoints. This technique,

however, is sensitive when the appearance changes. Yan et al. [45] improved the SSM

performance by adding a multi-task linear discriminant analysis (LDA) to maximize class

covariance andminimize the within-class covariance. Li et al. [3] introduced a low-level feature

extraction from a dynamic system and Hankel matrix called ‘Hankelet’. The hankelets between

two views are compared with dissimilarity scores before representing the feature vectors as a

bag of henkelets (BoHK). This method, however, has a similar drawbackwith the SSM in that it

is sensitive to a large viewpoint change. Ciptadi et al. [6] proposed new local features by

considering spatial and temporal information called a movement pattern histogram (MPH). The

MPH encodes the global temporal pattern over the video based on optical flow tracking and,

from the results, it is compatible with other descriptors in terms of view-invariance.
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On the other hand, the knowledge transfer with transfer learning strategy aims at gathering

and exploiting the statistical connection between the feature vectors (as input data) from the

source view to the target view. The strategy is to build a view-invariant feature space from the

source to the target domain and classify different classes from different viewpoints. Farhadi

et al. [7] proposed a maximum margin clustering (MMC) approach to generate split-based

features of the source view, and the transfer split values to the target view. Zhang et al. [49]

added temporal information into the MMC to proposed a Contextual MMC (CMMC).

However, both of these methods required feature-to-feature correspondence to train the

classifiers, leading to a high computational cost. Liu et al. [20] generated bilingual words

from a bipartite graph that bridged two different bags of visual words (BoVW) from different

domains into a bag of bilingual word (BoBW) model. Li et. al. [17] introduced virtual views

that connect a source view and a target view in a continuous virtual path. Later, Zhang et al.

[50] modified this approach by keeping all the visual information on the virtual path without

tuning the parameter. Zheng et al. [52] built dictionaries based on sparse coding for the source

and target views in another development. These dictionaries represent every video with the

same action with similar sparse representation. Alternatively, Kong et al. [14] considered a

view specific with a view shared feature learning by using a marginalized stacked denoising

autoencoder based on a deep learning approach.

In contrast, Wu et al. [44] proposed heterogeneous feature spaces for a source view and

target view that are learned from a projection matrix. Each class is then classified by its

corresponding weight. Finally, Liu et al. [21] later proposed a unified framework that

incorporates [14, 52] and adapts a new distribution which they called joints sparse represen-

tation and distribution adaptation.

The view-invariant method applied in this paper falls under the category of knowledge

transfer. However, different from the above works, which focus more on the closed-view

dataset setting, our work concentrates on the open-view dataset setting. Our motivation is

inspired by Li et al. [18] and Su et al. [33]. Li et al. [18] proposed a multi-camera action dataset

(MCAD) to study the open-view HAR. However, we notice that both works have only used

existing multi-view methods and are still open to many proposed methods to improve the

problem.

2.2 Unsupervised domain adaptation

Domain adaptation can be viewed as a special case of transfer learning [28, 31] when the

data’s training and testing are not drawn from the same distribution. Consequently, a distri-

bution mismatch is created since the classifier trained on the source domain degrades its

performance when tested on the target domain. Domain adaptation methods tend to reduce the

divergence between the source and the target domains until the model trained on the source

performs well on the target domain. This paper focuses on the unsupervised approach of

domain adaptation that is more practical for real-world applications. Nevertheless, it is very

challenging for the reason that there is no label for the conditional distribution of the target

domain P(Y|XT), and the fact that a discriminative model trained on the source domain P(Y|XS)

cannot be leveraged. Among the possible choices then is either to utilize the marginal

distribution P(XT) and P(XS), or to use a pseudo label class of the classifier to fit the target

domain P(bY |XT). We have divided the work on unsupervised domain adaptation into two

groups: (1) data centric and (2) subspace centric.
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The Data-centric methods seek a unified or joint transformation, (.), that projects the

source and target domains into a new space that reduces the discrepancy between the domains

and simultaneously preserves the data properties in their original spaces [46]. Pan et al. [28]

proposed the transfer component analysis (TCA) approach. This method learns by transferring

components across domains that minimize the maximum mean discrepancy (MMD) between

the two new representations of the two domains using a reproducing kernel Hilbert space

(RKHS). Data properties are preserved in the subspace spanned by these transfer components

while data discrepancies are reduced. Long et al. [24] proposed a joint distribution adaptation

(JDA) approach that considers a marginal distribution shift and a conditional distribution shift

using a pseudo label of the target domain. Later, the same authors also proposed a transfer joint

matching (TJM) approach that adds instance reweighting into the TCA in finding the unified

subspace. Ghifary et al. [9] used scatter component analysis (SCA) to convert both feature

vectors in the source and target domains into scattered space in the RKHS, minimizing the

divergence. Wang et al. [38] proposed a balanced distribution adaptation (BDA) approach that

considers the weight to balance the importance of the marginal and conditional distributions

concerning similar or dissimilar datasets. The same author then, proposed manifold dynamic

distribution adaptation (MDDA) [37] which improves the BDA by manually inserting weights

to the two distributions to dynamically adapt the weight difference specifically when there is a

large discrepancy between the two domains.

On the other hand, the Subspace centric methods aim to manipulate the subspaces of two

domains to reduce the domain shifts without directly exploiting the data (feature vectors) [46].

Fernando et al. [8] proposed a subspace alignment (SA) by aligning the source and target

subspaces using a transformation matrix. This technique also considers a unified or joint

transformation to reduce the discrepancy. Gong et al. [4] proposed geodesic flow kernel (GFK)

which that geodesic flow kernel was used to model the domain shift by integrating an infinite

number of subspaces on the geodesic flow. The trick is to explores an intrinsic low-

dimensional spatial structure that associates two domains and try to find geodesic line from

Xs point to Xt point so that the raw feature can be transformed in to a space of infinite

dimension where distribution difference can be reduced. However, both the SA and GFK

methods fail to emphasize the importance of minimizing the distributions between domains

after aligning or integrating the subspaces. Due to this shortcoming, Sun et al. [34] proposed a

subspace distribution alignment (SDA) to improve SA and GFK. However, their method does

not align the subspaces; but instead, it aligns the source and target data distribution. Alterna-

tively, Zhang et al. [47] proposed a joint geometrical and statistical alignment (JGSA)

approach that aligns the subspace and the distribution. Compared to the SDA, JGSA does

not learn the alignment matrix to map the source data to the target, instead, it simultaneously

optimizes the two couple of projections from the source domain to the target domain. Wang

et al. [39] proposed manifold embedded distribution alignment (MEDA) that raised the class

imbalance between domains and proposed automated balanced weight factors that capitalized

on the importance of statistical marginal and conditional data distribution. Apart from com-

puting feature discrepancy by the sum of marginal and conditional distribution MMDs as [24,

25, 38, 47], Zhang et al. [48] proposed a novel theoretical basis for computing feature

discrepancy through joint probability distribution discrepancy directly through the use of

MMD computation. Their work is known as discriminative joint probability maximum mean

discrepancy (DJP-MMD). DJP-MMD not only minimizes the discrepancy for the same class

between different classes or domains but simultaneously maximizes the discrepancy between

different classes or domains.
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3 Formulation

This section will be divided into four subsections: (1) Current issues, (2) Problem definition,

(3) low-level feature extraction and encoding, and (4) balanced weighted unified discriminant

and distribution alignment.

3.1 Current issues

We have found that the best representation for the unsupervised domain adaptation approaches

follows that of the data-centric model. This model aims at transforming or projecting the data

into a unified or joint subspace by learning adaptation matrices that minimize the discrepancy

between the distributions of the source and the target views. The standard tool to reduce the

difference between domains is to use a nonparametric Maximum Mean Discrepancy (MMD)

distance measure that operates in infinitely reproducing kernel Hilbert space (RKHS). How-

ever, considering only the distribution factors does not always guarantee promising results. For

that reason, many previous works have combined MMD computation with dimensionality

reduction methods to increase the accuracy. Among the popular dimensionality methods is the

use of the unsupervised principal component analysis (PCA) [24, 25] technique. On the

contrary, methods proposed in [9, 47] utilized the label information in the source domain by

using linear discriminant analysis (LDA) separately for the source domain and PCA for the

target view.

LDA is a supervised method used to solve binary class problems by minimizing the within-

class-scatter matrix, Sw and simultaneously maximizing the between-class scatter matrix Sb.

Still, the conventional LDA has the following disadvantages [5, 43]: (1) it is sensitive to

outliers or noise data in square operation, and (2) it only uses global information and neglects

local information. Liu et al. [23] showed that adding local information into LDA can improve

the accuracy performance. Hence, this work focuses on enhancing the discriminative part in

feature adaptation by adding locality-sensitive discriminant analysis (LSDA) into unsupervised

domain adaptation models. LSDA uses nearest-neighbor graphsG with a weight matrix W that

characterizes the local geometry of the data manifold to produce a within-class graph Gw and

between-class graph Gb. Both the Gw and Gb in LSDA represent local information, while Sw
and Sb in LDA represent global information.

We also noticed from [38] that imbalanced class often occurs in the domain adaptation

paradigm. This class imbalance usually depends on the condition of the both (source and

target) view: the more similar the source view and target view is, the more dominant the

conditional distribution gets. On the other hand, the less similar viewpoint between source

view and target view is, the more dominant the marginal distribution gets.

3.2 Problem definition

Based on the issues addressed above, we propose a joint domain adaptation framework that

fuses both the local and global information to enhance performance. In addition, our proposed

joint domain adaptation framework model utilizes the existing split transformation adaptation

matrices [47] that reduce the divergence of the source and target views and takes advantage

when the discrepancy is too large between both domains. We also utilize the classifier-based

transfer and manifold regularization used in [39] to avoid feature distortion and maximize the

intrinsic manifold structure of data.
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Additionally, inspired by the success of [38], we extend the concept of balancing into our

proposed framework. Therefore, our proposed technique consists of 3 components: (1)

Subspace alignment (we adopt exactly from [47]), (2) Balance weight distribution alignment,

and (3) Discriminative feature vector. The architecture for our proposed methods, BW-UDDA,

is shown in Fig. 1.

To proceed with our proposed method, the following definitions will be used:

(1) Definition 1 (View). The source domain data, xs∈ℝ
d x m is drawn from Ps(Xs) and target

domain xt∈ℝ
d x n is drawn from Pt(Xt), where d is the size of the codebook, while m and

n are the sample size for xs and xt, respectively. Since this work focuses on unsupervised

domain adaptation in open-view HAR, the source domain will be renamed as the source

view and it is defined as Ds = {(xi, yi)…(xm, ym)} and the unlabelled target domain as the

target view, Dt = {(xj)…(xn)}, where x ∈ ℝD . We summarize the notations and symbols

in Table 1.

(2) Definition 2 (Task). Domain adaptation deals with the dataset shift problem that makes

the source distribution and the target distribution of features/labels no longer identical.

What this means is that the marginal and conditional distributions of both domains are

different, i.e., Ps(Xs) ≠ Pt(Xt), and Ps(ys| xs) ≠ Pt(yt| xt) even though feature space and

label space for both source and target views are the same.

3.3 Low-level feature extraction and encoding

For the features, we choose the improved dense trajectories (iDTs) [43] approach which

provides us with trajectory shape, histogram of oriented gradient (HOG), histogram of optical

flow (HOF), and motion of boundary histogram (MBHx and MBHy) for feature extraction and

encoding. We follow [21, 53] in adopting the Locality-constrained Linear Coding (LLC) [40]

scheme to represent iDTs by multiple bases. The main reason is to reduce the quantization

Fig. 1 Architecture of our proposed method, BW-UDDA with three components: Subspace Alignment, Bal-

anced Weighted Distribution Alignment, and Discriminative Features Vector. Our aims were to find the

adaptation matrices, U and V and then the new source and target view representation Zs and Zt
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error while preserving the local smooth sparsity. We follow [21] to choose the LLC scheme,

and the codebook size is set to 4000 for all training-testing partitions, meaning that the

encoded iDTs feature is 4000. Out of these, we only choose 200 local iDTs randomly as in

[53].

3.4 Balanced weighted unified discriminant and distribution alignment (BW-UDDA)

This sub-section presents the local discriminants and introduces balanced weighted factors in

feature transformation into our proposed joint domain adaptation framework. We aim to find a

pair of projections, U for the source view and V for the target view, to obtain new represen-

tations Zs and Zt, before we feed them into the linear classifier for classification.

The BW-UDDA has four goals: (a) Adapting local discriminant into dimensionality

reduction strategy, (b) Obtaining a pair of projections between the source and target views.

This is achieved by minimizing and balancing the distribution divergence and subspace

divergence, (c) Preserving the neighborhood structure of the dataset, and (d) Concatenating

all the objectives functions and finding the optimal classifier, iteratively.

3.4.1 Dimensionality reduction

The main purpose of dimensionality reduction is to convert a high-dimensional space into a

low-dimensional space so that the data can be compactly but meaningfully represented. The

standard dimensionality technique used in unsupervised domain adaptation is the principal

component analysis (PCA) since no class information is required. Another dimensionality

reduction technique that has also been used extensively is the linear discriminant analysis

(LDA) method. Not only that LDA reduces the high-dimensional space, but it also maximizes

the variance between classes and minimizes the variance within a class. With these benefits,

LDA is also suitable for unsupervised domain adaptation by leveraging the class information

already available in the source view. However, we identified that LDA has some drawbacks,

particularly it is unadaptable since it is a global discriminant and its sensitiveness to outliers

and noise. Due to these limitations, we introduce locality-sensitive discriminant analysis

(LSDA) along with LDA to highlight the importance of the global and local discriminants,

and in that respect, we improve the accuracy performance.

Table 1 Symbols and Description used in this paper

Symbols Description Symbols Description

Ds, Dt source/target view xs, xt source/target view input data

nsnt number of samples in source/target ys, yt source/target view input labels

ω balanced weighted factor U, V adaptation matrix

G nearest neighbor graph M MMD matrix

Sw,Sb within-class-scatter matrix/

between-class-scatter-matrix

Wij weight matrix of G

Ps(Xs), Pt(Xt) marginal distributions source

and target view

Zs, Zt new representation of

source/ target views

Ps(ys|xs), Pt(yt|xt) conditional distributions

source and target view

bz low-dimensional data for LDA/LSDA

α, β, γ, λ, η, ζ parameters
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First, we form the nearest neighbor graph, G; and its weight matrix is given as follows:

W ij ¼
1; xi∈knn x j

� �
or x j∈knn xið Þ

0; otherwise

�
ð1Þ

where knn(xi) is the set of k-NN corresponding to xi. The obtained nearest neighbors’ graph,G

will be divided into two subgraphs: the within-class subgraph, Gw, and the between-class

subgraph, Gb. Let bZ = (bz1;bz2;…bzm)T be such a low-dimension data in the q-dimensional space,

bzi ¼ UTxi, and {Ww, Wb} be the weight matrices for {Gw, Gb}, respectively. The objective

functions can be defined as follows:

min∑
ij

bzi−bz j
���

���
2

Ww
ij ð2Þ

max∑
ij

bzi−bz j
���

���
2

Wb
ij ð3Þ

Equation (2) will incur a heavy penalty if neighboring points xi and xj are mapped far apart

while they are actually in the same class, likewise with Eq. (3), will incur a heavy penalty if the

neighboring point xi and xj are mapped close together while they are actually in the different

classes. By minimizing Eq. (2), if xi and xj are close and sharing the same label, then yi and yj
will be close as well. Likewise, by maximizing Eq. (3), if xi and xj are close but in a different

label, then yi and yj will be far apart. Hence, Eq. (2) and (3) can be represented as

min
U

Tr UTTwU
� �

ð4Þ

max
U

Tr UTTbU
� �

ð5Þ

where Tw ¼ X T
s Lw X s and Tb ¼ X T

s Lb X s. Lw and Lb are the Laplacian matrix of Gw and Gb,

respectively. It is defined as Lw = Dw- Ww, Lb = Db- Wb. The Dw and Db are the diagonal

matrices with diagonal entries Dw
ii = ∑ jW

w
ij and D

b
ii = ∑ jW

b
ij, respectively. We define the global

discriminant LDA as follows:

min
U

Tr UT SwU
� �

ð6Þ

max
U

Tr UT SbU
� �

ð7Þ

wh e r e Sw ¼ ∑
C

c¼1

X cð Þ
s H cð Þ

s X cð Þ
s

� �T
i s w i t h i n - c l a s s s c a t t e r m a t r i x a n d S b=

∑
C

c¼1

ns
cð Þ μ cð Þ−μ
� �

μ cð Þ−μ
� �

T is the between-class scatter matrix. H cð Þ
s is the centering matrix

of data within a class, ns(c) is a number of class samples in class c, μ is the total sample mean

vector and μ(c) is the average vector belong to class c.

We unified the global and local discriminants to optimize the discriminative source

information by adding Eqs. (4), (5), (6), and (7), as Eq. (8) and (9) below:
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min
U

T r UT Sw þ γTwð Þ U
� �

ð8Þ

max
U

Tr UT Sb þ γTbð ÞU
� �

ð9Þ

where γ is the balance parameter that merges global and discriminant matrices. For the target

view, we only use PCA, as in Eq. (10), to maximize the variance since there is no-label

information is available.

max
V

Tr VT StV
� �

ð10Þ

where St= X t H tX
T
t is the target view scatter matrix, while H t ¼ I t−

1
nt
1t1

T
t is the centering

matrix.

3.4.2 Distribution and subspace divergence minimization

Unsupervised domain adaptation frameworks usually involve two transformation techniques:

(a) Distribution divergence minimization, and (b) Source discriminative information preser-

vation. We consider both methods in our joint objective function. In this sub-section, we learn

two projections (both from source and target views) into respective subspaces so that the

marginal and conditional distribution divergences are minimized and preserved, and the

divergence of two projections is constrained to be geometrically small. We achieved this by

introducing a balance factor in the process of minimizing the distribution divergence. By

balancing the contribution of marginal and conditional distributions, we believe that the

accuracy performance can be optimized. This is because for similar dataset, the conditional

distribution becomes more dominant, and for dissimilar dataset, the marginal distribution

becomes more dominant.

First, we employed maximum mean discrepancy (MMD), which computes the distance

between the sample mean of source and target data in the Reproducing Kernel Hilbert Space

(RKHS). The MMD computation for marginal and conditional distributions is as follows:

min
U ;V

1

ns
∑

xsi∈Xs

UTxsi−
1

nt
∑

xtj∈Xt

VTxtj

�����

�����

2

H

ð11Þ

min
U ;V

∑
C

c¼1

1

ns cð Þ
∑

xsi∈Xs
cð Þ

UTxsi−
1

nt cð Þ
∑

xtj∈Xt
cð Þ

VTxtj

�����

�����

2

H

ð12Þ

From Eq. (11) and (12), we can combine the marginal and conditional distribution shift

minimization to get the distribution divergence term:

minU ;VTr UT VT
� � RSS Rst

Rts Rtt

� 	
U

V

� 	
 �
ð13Þ

where Rss = X S
bMSSX

T
S , Rst = X S

bMStX
T
t , Rst=X t

bM tSX
T
S and Rtt = X t

bM ttX
T
t .

bM is the MMD

matrix involving marginal and conditional distributions for both marginal and conditional

28488 Multimedia Tools and Applications (2022) 81:28479–28507



distributions. We proposed to introduce a balance factor, ω inside the MMD matrix compu-

tational as follows:

bM ss ¼ 1−ωð ÞMss þ ω
XC

c¼1

M ss
cð Þ

where;M ss ¼
1

nsns
1s1

T
s ; M cð Þ

ss

� 
i j
¼

( 1

n
cð Þ
s n

cð Þ
s

xi; x j∈X
cð Þ
s

0 otherwise

ð14Þ

bM st ¼ 1−ωð ÞMst þ ω
XC

c¼1

M st
cð Þ

where;M st ¼
1

nsnt
1s1

T
t ; M

cð Þ
st

� 
i j
¼

( −1

n
cð Þ
s n

cð Þ
t

xi∈X
cð Þ
s ; x j∈X

cð Þ
t

0 otherwise

ð15Þ

bM ss ¼ 1−ωð ÞMss þ ω
XC

c¼1

M ss
cð Þ

where;M ts ¼
1

ntns
1t1

T
s ; M

cð Þ
ts

� 
i j
¼

( −1

n
cð Þ
t n

cð Þ
s

x j∈X
cð Þ
t ; xi∈X

cð Þ
s

0 otherwise

ð16Þ

bM ss ¼ 1−ωð ÞMss þ ω
XC

c¼1

M ss
cð Þ

where;M tt ¼
1

ntnt
1t1

T
t ; M

cð Þ
tt

� 
i j
¼

( 1

n
cð Þ
t n

cð Þ
t

xi; x j∈X
cð Þ
t

0 otherwise

ð17Þ

where 1sϵ ℝ
ns and 1tϵ ℝ

ns are a column vector with all ones. From Eqs. (14), (15), (16), and

(17), the balanced weighted factor, ω acts as a trade-off parameter and its value is in between

{0,0.1,0.2…1}, meaning that the distance matrix between domains can be optimized if we

manually apply this balanced weighted factor.

Similarly, the subspace divergence can be minimized by shifting the adaptation matrices U

and V to be close to one another. In our work, we employed the Frobenius norm, ‖.‖F, since it

ensures information features data in both the source and target views to be preserved besides

acting as a regularizer. The subspace divergence term can be formed as follows:

min
U ;V

U−Vk k2F ¼ min
U ;V

Tr U−Vð ÞT U−Vð Þ
� 

ð18Þ

Eq. (18) can be represented as Eq. (19) as follows:

min
U ;V

Tr UT VT
� � I −I

−I I

� 	
U

V

� 	
 �
ð19Þ
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where I is an identity matrix. U and V are the transformation matrices, and once we define U

and V through joint objective function (section 3.4.4), we obtain the new representations for

the source and target views, i.e., Zs = UTXs and Zt = VTXt.

3.4.3 Manifold regularization

We followed the works in [5, 19, 39, 43] in adding the Laplacian regularization term. This is to

take advantage of similar geometry resulting from the nearest neighbor graph, G. Note that,

manifold regularization is different from the local discriminant that was elaborated earlier (Eqs.

(1)–(5)). Previously, local discriminant deals with structure in the source data, Xs, while

manifold regularization acts as an additional regularizer and is added to the final view-

invariant classifier (see section 4.4.4). Under the geodesic smoothness and matrix tricks, the

manifold regularization is implemented in the new representation, Z = [Zs, Zt], and is

computed as follows:

cM f Ps;PTð Þ

¼ ∑
nsþnt

i; j¼1

AT zi−A
T z j

� �2 bW ij

¼ Tr ATZ D−Vð ÞZTA
� �

¼ Tr ATZLZTA
� �

ð20Þ

where L is graph Laplacian matrix for manifold regularization, D is a diagonal matrix with

each item Dii ¼ ∑
n

j¼1

V ij and A ¼ a1ð ; a2Þ
T
∈ℝ nþmð Þ x1 is the coefficients vector, Z. The bW ij is

a graph affinity matrix for new representation and is defined as:

bW ij ¼
cos zi; z j

� �
; if zi∈knn z j

� �
or z j∈knn zið Þ

0; otherwise

�
ð21Þ

3.4.4 Unified objective function and optimal classifier

In this last part, we included Eqs. (8), (9), (10), (13), and (19) into the joint objective function

to obtain a new representation Z.

max
U ;V

Tr UT VT
� � β Sb þ γTbð Þ 0

0 αSt

� 	
U

V

� 	
 �

Tr UT VT
� � Rss þ λI þ β Sw þ γTwð Þ Rst−λI

Rts−λI Rtt þ λþ αð ÞI

� 	
U

V

� 	
 � ð22Þ

where , β, and λ are trade-off parameters to balance the importance of each element for each

objective function, respectively. By rewriting [UT VT ]= JT , and through the optimization

process, we set δL/δJ = 0, and the following equation is derived:
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β Sb þ γT bð Þ 0

0 αSt

� 	
J ¼

Rss þ λI þ β Sw þ γTwð Þ Rst−λI

Rts−λI Rtt þ λþ αð ÞI

� 	
JΦ ð23Þ

We need to solve for the eigenvector J, and once J is computed, it is easy to define the

transformation matrices, U and V, and thus the new representation Z = [Zs, Zt]. Next, for the

classifier, instead of using 1-NN as a standard classifier such as in [24, 38, 47], we followed

[39] to learn our adaptive classifier, f, on labeled source view, Ds and then to predict labels in

the target view, Dt. To learn f, we summarized the structural risk minimization over Ds

represented as follows:

f ¼ arg min
f ∈HK

∑
n

i¼1

yi− f Z ið Þð Þ2 þ η fk k2K ð24Þ

Using the representer theorem in [2], f admits the expansion:

f Zð Þ ¼ ∑
nþm

i¼1

aiK Z i; Zð Þ ð25Þ

where K(Z,∙) is the kernel function, ai as in Eq. (20). We reformulated Eqs. (24) and (25) and

also adding manifold regularization in Eq. (20), and as a result, the new objective function of f

is defined as follows:

f ¼ arg min
f ∈HK

Y−AKð Þθk k2F þ ηTr ATKA
� �

þ ζTr ATKLKTA
� �

ð26Þ

where η and ζ are the regularized parameter, θ is the diagonal domain indicator matrix with

each element θii ¼ 1; if i ϵ Ds;otherwise θii = 0. We set the derivative δf =δA = 0, and obtain

the solution of A as follows:

A ¼ θþ ζLð ÞK þ ηIð Þ−1θY T ð27Þ

Once we obtainA, we can calculate f ¼ A*K (Eq. (25)) and predict the class label forDt. We

use classification accuracy on the test data as the evaluation metric.

Accuracy ¼
zt : zt∈Dt∧by ztð Þ ¼ y xtð Þ
���

���
zt : zt∈Dtj j

ð28Þ

whereDt is the target view for the new representation of target data, Zt, y(xt) is the actual label

of the target view and by ztð Þ is predicted label by the adaptive classifier, f. The complete

procedural steps for our BW-UDDA model are summarized in Algorithm 1.
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4 Experiments

In this section, we evaluated our proposed technique with two different datasets. First, in

solving the open-view HAR problem, we evaluated our proposed approach with the MCAD

dataset. This dataset has less correlation between views and is designed to simulate closely

with the real-world surveillance scenarios. Then, to benchmark our work with a more

commonly used dataset, we applied our method to the IXMAS dataset. This dataset is

categorized as a constrained dataset. Although it is not characterized as an open-view dataset,

this dataset has been used as a baseline for new multi-cameras action recognition methods.

From these two datasets, we observed that the MCAD dataset is more challenging than that of

the IXMAS dataset, and we also observed that our proposed method successfully responded to

these two different datasets.

The evaluation protocol was performed in a standard cross-view validation. To the best of

our knowledge, there are two methods for cross-view validation. First, the classifier is trained

on one view (source view) and then tested on another view (target view) [14, 21, 51]. Second,

the target view samples are split into two. The first half will be trained along with the source

view, and the second half is used for testing. The second approached has been adopted in [18,

22, 27, 33]. To verify the efficacy of our method, we considered both evaluation methods and

refer to them as the 1st and the 2nd cross-view evaluation method. As with other works, we

adopted the leave-one-action-class-out training strategy which meant that only one action class

was used for testing the target view. We noted that the classification accuracy reported here is

based on the average of all action class accuracies. All conducted experiments were performed

on Intel (R) CoreTM i7 system with 20GB RAM using MATLAB programming language.

4.1 MCAD dataset for open-view human action recognition

The MCAD dataset has 14,298 action samples recorded by two kinds of cameras: 3 Static

cameras and 2 Pan-Tilt-Zoom (PTZ) cameras. All of the static cameras have a resolution of

1280 × 960 pixels with the fisheye effect while the PTZ cameras have a resolution of 704 ×

576 pixels with a smaller field of view. The MCAD dataset complies with the open-view
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action recognition criteria such as the illumination, background, day and night, field-of-view,

and different split time recorded action recorded for each view [33]. The MCAD dataset has 18

action classes in total. These actions are ‘point’, ‘wave’, ‘jump’, ‘crouch’, ‘sneeze’, ‘sit-down’,

‘stand-up’, ‘walk’, ‘person-run’, ‘cell-to-ear’, ‘use-cell-phone’, ‘drinking-water’, ‘take-pic-

ture’, ‘object-get’, ‘object-put’, ‘object-left’, ‘object-carry’, and ‘object-throw’. Figure 2 shows

some example frames from the MCAD dataset.

We fixed the dimension, d = 100 for our method as well as for all the state-of-the-art

methods. Others parameters needed for BW-UDDA were = 0.01, λ = 1.0, =0.9, =0.9,

η=0.2, ζ=0.9, and maximum iteration numbers, T = 10. The dimensionality of the MCAD

dataset was high, so we, therefore, utilized additional PCA in the pre-processing stage. All the

experiments were implemented using the RBF kernel.

4.1.1 1st cross-view validation experiment

In this experiment, we evaluated our BW-UDDA and other several state-of-the-art methods

using an unsupervised domain adaptation approach. We implemented a 1-NN classifier as the

baseline. The state-of-the-art methods used were JDA [24], JGSA [47], MEDA [39], and

JPDA [48]. We reported our recognition results in Table 2. The following are the observations

we derived:

(1) Generally, results are considered poor for all methods with our proposed method

achieved the highest average accuracy at 13.38%. The poor performance was due to

the fact that there were no overlapping views between the training and testing data. As

stated previously, the MCAD data is designed to have little correlation between views.

The highest accuracy achieved for BW-UDDA technique is for PTZ06 vs. PTZ04 with

Fig. 2 Samples of the MCAD dataset from five different cameras. Each scene is different with respect to the

actors, backgrounds, and views, and they are recorded in different resolutions, times, both during the day and

night
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an average accuracy of 19.20% while the lowest is for PTZ06 vs. Cam06 with an average

of 9.29%. in the former, both cameras are of the same type with PTZ06 has a small field

of view (see comment three under 2nd cross-view validation experiment). Hence, the

effect of data shift is minimal. In contrast to the latter, Cam06 has a wide and distant field

of view. This contrasting views between the two cameras causing the data shift to be

worsen.

(2) Applying the unsupervised domain adaptation methods increased the accuracies in

general. The result shows that the average accuracy for feature data without unsupervised

domain adaptation is 11.32%. On the contrary, all of the unsupervised domain adaptation

methods have an average accuracy higher than 11.32%.

(3) BW-UDDA outperformed the other methods in10 out of 20 experiments. The overall

average for BW-UDDA, 13.38%, is higher than other state-of-the-art methods (JGSA-

12.93% and JDA-12.73%). This can be explained by JGSA improving JDA in consid-

ering split adaptation matrix calculation for the dataset with very large differences for

each view. While our work improves JGSA by considering the balanced weighted and

local discrimination,

(4) These results confirmed that open-view action recognition is a very challenging problem

and has tremendous room for improvement. With an average result of around 12% for all

the evaluations, it signifies that the current research is still far from solving the real-world

situation.

4.1.2 2nd cross-view validation experiment

In this experiment, we tried to observe the influence of the second half of the target view

during the classification. We compared our result with SA [8], JDA [24], JGSA [47], and

JPDA [48]. Results are reported in Table 3 and the followings are the observations:

(1) The overall accuracies are much better than those of the 1st experiment. This should not

be a surprise since half of the target data with labels was used for training the classifier.

The average accuracy for all evaluations involving all views is around 60%.

(2) The proposed technique achieved the highest performance with an average accuracy of

61.45%. It outperformed 11 out of 20 cross-view evaluations. Moreover, we also

observed that our technique managed to close the accuracy variance between views

while increasing the accuracy for each view. For instance, in the 1-NN baseline, the

accuracy for Cam04 vs PTZ04 is 57.92%, and the accuracy for Cam04 vs PTZ06 is

63.61%. The difference between these two evaluation pairs is 5.69%. With the BW-

UDDA technique, not only that the accuracy for these two pairs increases to 64.86% and

64.58%, respectively, the accuracy difference between these two evaluations decreases to

only 0.28%.

(3) The PTZ06 camera always got the highest result when it acted as the target view for all

methods. The reason being is that PTZ06 is physically closest to the actor compared to

other cameras and thus, it has a relatively smaller field of view. This shows that different

fields of view affect the accuracy performance, making MCAD a challenging dataset.
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4.1.3 Confusion matrix

We next analyzed the performance of BW-UDDA for individual classes based on both the 1st

and 2nd cross-view validation methods using the confusion matrices as illustrated in Fig. 3.

Without loss of generality, we chose to display the results for Cam 04 vs Cam 05 in the

confusion matrices. The average accuracy of the 1st cross-view was 16.13%, and the average

accuracy of the 2nd cross-view was 61.39%. Here also we a saw similar observation that the

accuracy of the 1st cross-view is much poorer than the accuracy of the 2nd cross-view

experiments. Regardless, we found that action classes ‘sit-down’ and ‘object thrown’ obtained

the highest scores in both experiments.

There were also confusing arm movements found in both confusion matrices. Examples of

action classes involving arm movements are ‘point’, ‘wave’, ‘cell-to-ear’, ‘use-cell-phone’,

‘drinking water’, and ‘take pictures’. Due to their similarity, these classes are easily confused

and thus, difficult to classify. Examples of small action movements involving ‘point’, ‘waves’,

‘cells to the ear’, and ‘use-cell-phone’ from all five cameras are shown in Fig. 2.

4.2 IXMAS dataset for multi-camera constrained dataset

As mentioned earlier, we also applied our method to a standard and popular multi-

camera human action recognition IXMAS dataset [42]. This dataset has 1650 action

samples with 11 actions classes recorded by 4 side view cameras and 1 top-view

camera. The actions involved are ‘check-watch’, ‘cross-arms’, ‘get-up’, ‘kick’, ‘pick-

up’, ‘punch’, ‘scratch-head’, ‘sit-down’, ‘turn-around’, ‘walk’ and ‘wave’. Following

similar experimental setups as we did with the MCAD dataset, we evaluated the

IXMAS dataset with 1st cross-view and 2nd cross-view validation experiments.

Sample frames of the IXMAS dataset are illustrated in Fig. 4.

4.2.1 1st cross-view validation experiment

Once again, we used 1-NN as the baseline. We compared our results with TJM [25], TCA

[28], SA [8], JDA [24], MEDA [39], and JPDA [48]. Table 4 shows all of the results and the

followings are our observations:

(1) As expected, the results of the 1st cross-view evaluation for IXMAS are much better

compared to those of the MCAD dataset. The highest accuracy obtained is 58.18% using

the JDA technique which is for Cam1 vs. Cam0. For Camera 4 (either source view or

target view), the BW-UDDA method performed constantly with the highest accuracy.

Unlike other cameras, camera 4 is the only camera that provides top view. The average

results for all the evaluations are 27.4%. This accuracy explained that the IXMAS dataset

is less challenging compared to the MCAD dataset.

(2) BW-UDDA did not perform well as expected. Our proposed method

outperformed only seven out of 20 evaluations. Nonetheless, we observed that

all of the seven evaluations involved Cam4 either as a source view or a target

view. This indicates that our proposed technique is not affected even when the

field of view is different between the cameras.
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4.2.2 2nd cross-view validation experiment

Similarly, we compared our proposed technique with SDA [34], TJM [25], TCA [28], SA [8],

JDA [24], JGSA [47], and JPDA [48], and all of the results are tabulated in Table 5 with the

following observations:

(1) Similar to the MCAD dataset performance, 2nd cross-view validation experiment

showed much better results. The overall average accuracy is around 85%. This value is

higher than that of the MCAD because the IXMAS dataset is less challenging.

(a) Confusion matrix of the 1st cross-view evaluation experiment

(b) Confusion matrix of the 2nd cross-view evaluation experiment
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Fig. 3 Analysis of BW-UDDA using confusion matrices based on the 1st cross-view evaluation and the 2nd

cross-view evaluation experiments taken from Cam04 vs Cam05. Both cases are for theMCAD dataset involving

18-classes. (a) Confusion matrix of the 1st cross-view evaluation experiment. (b) Confusion matrix of the 2nd

cross-view evaluation experiment
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(2) BW-UDDA showed the highest performance with an average accuracy of 90.91%. As

can be seen, BW-UDDA outperformed in 17 out of 20 evaluations. This result confirms

the potential of the proposed method in unsupervised domain adaptation.

4.2.3 Confusion matrix

We further analyzed each class from both evaluations of the IXMAS dataset in a form of a

confusion matrix. Figure 5 shows the confusion matrix for Cam4 vs Cam3. The average

accuracy for the 1st cross-view evaluation was 20% while the average accuracy for the 2nd

cross-view evaluation was 95.15%. From both matrices, class-action ‘pick-up’ and ‘sit-down’

were consistently well classified. However, from Fig. 5(b), ‘punch’ and ‘wave’ were easily

confused with the ‘kick’ action. This may be explained that even in a ‘kick’ action the arm

movement is still involved, and the confusion is exacerbated by the low-resolution frames of

the IXMAS dataset.

4.3 Balanced weighted factor analysis

As stated in section 4.3, BW-UDDA depends on the balanced weighted factor, ω, to obtain the

optimum accuracy. To show its influence on the accuracy performance we analyzed several

values of ω. Specifically, we useω in range = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and

1.0}. For the analysis, we selected the 2nd cross-view evaluation in MCAD dataset. We chose

Fig. 4 Samples of IXMAS multi-view dataset. Each row shows action viewed across five different cameras

28499Multimedia Tools and Applications (2022) 81:28479–28507



Ta
b
le
4

R
es
u
lt
s
fo
r
th
e
IX

M
A
S
d
at
as
et
u
si
n
g
1
st
cr
o
ss
-v
ie
w

v
al
id
at
io
n
(t
ra
in

in
so
u
rc
e
v
ie
w

an
d
te
st
in

ta
rg
et
v
ie
w
)

S
rc
|T
g
t

C
0
|C
1

C
0
|C
2

C
0
|C
3

C
0
|C
4

C
1
|C
0

C
1
|C
2

C
1
|C
3

C
1
|C
4

C
2
|C
0

C
2
|C
1

C
2
|C
3

C
2
|C
4

C
3
|C
0

C
3
|C
1

C
3
|C
2

C
3
|C
4

C
4
|C
0

C
4
|C
1

C
4
|C
2

C
4
|C
3

A
v
e.

1
-N

N
3
7
.2
7

3
6
.3
6

2
4
.8
5

1
5
.7
6

3
4
.8
5

1
5
.4
5

4
9
.0
9

1
2
.4
2

3
7
.2
7

2
2
.1
2

2
9
.3
9

1
3
.9
4

2
8
.7
9

5
6
.6
7

2
6
.9
7

1
0
.3
0

1
7
.8
8

1
0
.0
0

1
7
.2
7

1
0
.6
1

2
5
.3
6

T
JM

4
5
.7
6

4
0
.6
1

4
6
.0
6

1
7
.8
8

4
9
.0
9

1
4
.8
5

5
9
.3
9

1
2
.4
2

4
0
.0
0

2
0
.3
0

3
6
.3
6

1
6
.9
7

3
5
.7
6

5
6
.0
6

2
6
.3
6

1
3
.9
4

2
3
.0
3

1
0
.0
0

1
5
.4
5

1
1
.5
2

2
9
.5
9

T
C
A

4
6
.6
7

3
9
.7
0

4
3
.9
4

1
6
.0
6

4
7
.8
8

1
5
.1
5

5
8
.1
8

1
2
.7
3

4
0
.9
1

1
3
.9
4

2
3
.6
4

1
6
.9
7

3
7
.5
8

5
4
.2
4

2
6
.0
6

1
1
.5
2

2
2
.4
2

9
.3
9

1
5
.7
6

1
1
.5
2

2
8
.2
1

S
A

4
0
.0
0

3
6
.6
7

2
9
.0
9

1
4
.5
5

3
7
.8
8

1
3
.6
4

5
1
.8
2

1
0
.9
1

3
8
.7
9

2
0
.3
0

2
9
.7
0

1
6
.3
6

3
1
.8
2

5
4
.2
4

2
5
.1
5

1
3
.3
3

1
8
.4
8

9
.3
9

1
5
.7
6

1
1
.8
2

2
5
.9
8

JD
A

5
8
.7
9

3
4
.8
5

5
3
.9
4

1
6
.9
7

5
8
.1
8

9
.3
9

5
8
.1
8

1
0
.9
1

4
0
.6
1

1
2
.4
2

2
3
.6
4

1
6
.6
7

4
7
.2
7

5
7
.5
8

3
1
.5
2

1
0
.0
0

1
9
.7
0

9
.7
0

1
7
.5
8

1
0
.9
1

2
9
.9
4

JG
S
A

5
2
.4
2

4
2
.1
2

3
7
.5
8

2
1
.8
2

5
5
.7
6

7
.8
8

5
8
.4
8

1
5
.4
5

3
9
.3
9
4

1
8
.7
8
8

3
5
.7
5
8

1
6
.0
6
1

4
1
.8
2

5
5
.4
5

2
5
.7
6

1
0
.9
1

2
0
.6
1

6
.9
7

1
8
.7
9

1
3
.0
3

2
9
.7
4

M
E
D
A

4
1
.5
2

3
5
.1
5

2
6
.0
6

1
9
.7
0

4
3
.3
3

7
.5
8

5
0
.6
1

9
.7
0

3
7
.8
8

7
.5
8

2
9
.3
9

1
7
.2
7

2
7
.2
7

5
3
.3
3

2
7
.8
8

1
1
.8
2

1
6
.3
6

9
.7
0

1
7
.5
8

1
1
.8
2

2
5
.0
8

JP
D
A

3
2
.7
3

3
8
.4
8

3
1
.8
2

1
6
.0
6

3
4
.5
5

9
.7
0

5
2
.1
2

1
7
.8
8

4
0
.9
1

1
1
.8
2

1
7
.8
8

1
7
.2
7

2
9
.7
0

5
3
.6
4

1
5
.7
6

1
0
.0
0

2
2
.7
3

9
.3
9

1
8
.4
8

1
2
.7
3

2
4
.6
8

O
u
rs

4
3
.0
3

3
9
.3
9

2
8
.1
8

1
9
.0
9

5
0
.9
1

7
.2
7

5
2
.1
2

1
8
.1
8

3
6
.0
6

1
6
.0
6

3
2
.7
3

1
7
.5
8

2
8
.7
9

5
3
.0
3

2
7
.2
7

2
0
.9
1

2
3
.9
4

1
0
.3
0

2
3
.3
3

2
0
.0
0

2
8
.4
1

28500 Multimedia Tools and Applications (2022) 81:28479–28507



Ta
b
le
5

R
es
u
lt
s
fo
r
th
e
IX

M
A
S
d
at
as
et
u
si
n
g
2
n
d
cr
o
ss
-v
ie
w

v
al
id
at
io
n
(t
ra
in

in
so
u
rc
e
v
ie
w

+
h
al
f
ta
rg
et
v
ie
w

an
d
te
st
in

an
o
th
er

h
al
f
ta
rg
et
v
ie
w
)

S
rc
|T
g
t

C
0
|C
1

C
0
|C
2

C
0
|C
3

C
0
|C
4

C
1
|C
0

C
1
|C
2

C
1
|C
3

C
1
|C
4

C
2
|C
0

C
2
|C
1

C
2
|C
3

C
2
|C
4

C
3
|C
0

C
3
|C
1

C
3
|C
2

C
3
|C
4

C
4
|C
0

C
4
|C
1

C
4
|C
2

C
4
|C
3

A
v
e.

1
-N

N
7
5
.7
6

7
3
.9
4

8
0
.0
0

8
4
.8
5

8
1
.2
1

7
3
.3
3

8
6
.0
6

7
8
.1
8

8
3
.0
3

7
6
.9
7

8
1
.8
2

8
7
.2
7

8
3
.6
4

7
6
.9
7

8
0
.0
0

8
1
.8
2

8
2
.4
2

7
3
.9
4

7
4
.5
5

8
6
.0
6

8
0
.0
9

S
D
A

8
0
.6
1

7
9
.3
9

8
6
.0
6

8
3
.6
4

8
4
.2
4

8
1
.2
1

8
7
.8
8

8
6
.6
7

8
8
.4
8

8
3
.0
3

9
0
.9
1

8
8
.4
8

8
9
.7
0

7
6
.3
6

7
7
.5
8

8
5
.4
5

8
1
.8
2

7
8
.7
9

7
6
.3
6

8
8
.4
8

8
3
.7
6

T
JM

8
4
.8
5

8
6
.0
6

9
0
.9
1

9
0
.9
1

8
8
.4
8

8
4
.8
5

9
0
.3
0

9
0
.3
0

8
4
.8
5

8
0
.6
1

8
8
.4
8

8
6
.0
6

8
7
.8
8

8
4
.8
5

8
7
.8
8

8
7
.2
7

8
2
.4
2

8
3
.6
4

8
5
.4
5

8
4
.8
5

8
6
.5
5

T
C
A

8
0
.6
1

8
0
.6
1

8
9
.0
9

8
7
.2
7

8
5
.4
5

8
3
.6
4

8
6
.0
6

8
1
.2
1

8
7
.8
8

8
1
.2
1

8
3
.6
4

8
5
.4
5

8
3
.6
4

8
6
.6
7

8
5
.4
5

8
7
.2
7

8
8
.4
8

8
2
.4
2

8
5
.4
5

8
9
.0
9

8
5
.0
3

S
A

8
3
.0
3

7
9
.3
9

9
0
.3
0

8
7
.8
8

8
7
.2
7

7
8
.7
9

8
6
.6
7

8
5
.4
5

8
7
.2
7

7
9
.3
9

8
9
.7
0

9
2
.1
2

8
7
.2
7

8
0
.0
0

7
9
.3
9

8
5
.4
5

8
3
.6
4

8
4
.2
4

7
6
.3
6

8
6
.6
7

8
4
.5
2

JD
A

8
6
.6
7

8
0
.0
0

8
7
.8
8

8
4
.2
4

8
4
.8
5

8
1
.2
1

9
1
.5
2

8
8
.4
8

8
4
.2
4

7
5
.7
6

8
4
.8
5

8
7
.2
7

8
4
.8
5

8
1
.2
1

8
4
.2
4

8
7
.8
8

8
6
.6
7

8
4
.2
4

8
3
.0
3

8
9
.0
9

8
4
.9
1

JG
S
A

8
6
.6
7

8
2
.4
2

9
2
.7
3

9
0
.3
0

8
9
.0
9

8
4
.8
5

9
2
.7
3

9
0
.3
0

8
6
.0
6
1

8
5
.4
5
5

8
9
.6
9
7

8
7
.8
7
9

9
1
.5
2

8
4
.8
5

7
9
.3
9

8
6
.6
7

8
9
.7
0

8
6
.6
7

8
1
.2
1

9
3
.3
3

8
7
.5
8

JP
D
A

8
1
.2
1

8
2
.4
2

9
0
.9
1

8
6
.0
6

8
6
.6
7

8
0
.6
1

8
5
.4
5

9
2
.1
2

8
4
.2
4

8
2
.4
2

8
9
.0
9

8
3
.6
4

8
7
.2
7

8
3
.6
4

8
4
.2
4

8
3
.6
4

9
0
.9
1

8
2
.4
2

8
2
.4
2

8
7
.8
8

8
5
.3
6

O
u
rs

8
9
.7
0

8
6
.6
7

9
1
.5
2

9
2
.7
3

9
4
.5
5

8
6
.0
6

9
5
.7
6

9
6
.9
7

9
2
.7
3

8
7
.2
7

9
3
.3
3

9
6
.3
6

8
7
.2
7

9
0
.3
0

8
4
.8
5

9
4
.5
5

9
0
.9
1

8
6
.0
6

8
5
.4
5

9
5
.1
5

9
0
.9
1

28501Multimedia Tools and Applications (2022) 81:28479–28507



Cam04 as the source view and the rest as target views. The results are plotted and shown in

Fig. 6.

Traditionally, it has been assumed that the marginal and conditional distribution are equally

important. This scenario is similar to setting the balanced weighted factor, ω = 0.5. However,

as can be seen in Fig. 6, this value of ω did not perform satisfactorily. On one extreme, if the

value of ω is set to 0, the overall performance drops dramatically. This indicates that both the

conditional and marginal distributions cannot be ignored in the BW-UDDA settings. On the

other extreme, when the value of ω is set to 1, most of the cross-view evaluations reached their

(a) Confusion matrix of the 1st cross-view evaluation 

experiment

(b) Confusion matrix of the 2nd cross-view evaluation 

experiment
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Fig. 5 Analysis of BW-UDDA using confusion matrices based on the 1st cross-view evaluation and the 2nd

cross-view evaluation experiments taken from Cam04 vs Cam03. Both cases used the IXMAS dataset involving

11-classes. (a) Confusion matrix of the 1st cross-view evaluation experiment. (b) Confusion matrix of the 2nd

cross-view evaluation experiment

Fig. 6 Balanced weighted factor ω with different values, and the optimal accuracy for BW-UDDA using the

MCAD dataset
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optimum accuracy. This is a situation in which the conditional distribution contributes more to

the overall performance than that of the marginal distribution. However, this scenario is not

uniform throughout all evaluations. As an example, in Cam 04 vs PTZ 06 evaluation, the

accuracy performance is optimal when the value of ω is set to 0.4, and the accuracy decreases

as we increase the value of ω to 1.

4.4 Local discriminant effectiveness analysis

Finally, we analyzed the effectiveness and advantages of the LSDA. First, we assessed the

BW-UDDAwith and without LSDA. To perform the analysis, we fixed the balanced weighted

factor, ω, to 0.5. Again, we selected the 2nd cross-view evaluation using the MCAD dataset for

the analysis. We recorded the results in Table 6 and plotted the comparison results in Fig. 7.

From Table 6 and Fig. 7, we observed that BW-UDDA with LSDA showed a significant

influence in the accuracy compared to BW-UDDA without LSDA. Out of 20, BW-UDDA

outperformed in 15 evaluations and has the highest average accuracy of 60.08%. These results

established the importance of incorporating LSDA into our proposed technique and confirmed

the work of [23] that combining LDA with LSDA improves accuracy.

5 Conclusion

This paper deals with how to improve the human action recognition (HAR) field that suffers

from data shifts problem due to the large differences between data distributions of the target

and source views. Such a problem degrades significantly the performance accuracy particu-

larly in an unconstrained dataset for open view HAR case. To alleviate this problem, we

2 4 6 8 10 12 14 16 18 20

A total of 20 evaluations for MCAD dataset from Cam04 vs Cam 05 until PTZ 06 vs PTZ04
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Fig. 7 Visualization comparison of BW-UDDA between with and without LSDA
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leveraged the unsupervised domain adaptation method to reduce the data shift problem and to

increase the accuracy performance. Specifically, we proposed Balanced Weighted-Unified

Discriminant and Distribution Alignment (BW-UDDA) to improve the unsupervised domain

adaptation technique for open-view HAR. The outcomes of experiments we conducted proved

that our proposed method outperformed most of the state-of-the-art unsupervised domain

adaptation methods when applied to open-view HAR. The results also indicated that the

open-view HAR remains to be a challenging problem. Therefore, ongoing efforts to further

improve and enhance the performance will continue as HAR places more useful applications

in our daily lives.
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