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Abstract

One of the primary concerns with open-view human action recognition (HAR) is
the large differences between data distributions of the target and source views.
Subsequently, such differences cause the data shift problem to occur, and hence,
decreasing the performance of the system. This problem comes from the fact that
real-world situation deals with unconstrained rather than constrained situations
such as differences in camera resolutions, field of views, and non-uniform
illumination which are not found in constrained datasets. The primary goal of
this paper is to improve this open-view HAR by proposing the unsupervised
domain adaptation approach. In particular, we demonstrated that the balanced
weighted unified discriminant and distribution alignment (BW-UDDA) managed
to handle the dataset with significant differences across views such as those found
in the MCAD dataset. We showed that by using the MCAD dataset on two types
of cross-view evaluations, our proposed technique outperformed other unsuper-
vised domain adaptation methods with average accuracies of 13.38% and 61.45%.
Additionally, we applied our method to a constrained multi-view IXMAS dataset
and achieved an average accuracy of 90.91%. The results confirmed the superi-
ority of the proposed technique.
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1 Introduction

In recent years, the interest in human action recognition (HAR) has received substantial
attention from researchers around the globe due to its wide applications. According to J. K.
Aggarwal, et al. [1]- an action can be interpreted as an activity involving a person with several
movements. Examples of basic human actions include ‘walking’, ‘running’, ‘waving’, and
‘punching’. These are the most commonly used basic actions to be recognized in intelligent
video security surveillance purposes. It is known that HAR faces several challenges and issues
such as background complexity, inter and intra-class variations, noise, occlusions, low reso-
lution, real-time processing, and view invariance.

Previously, most researchers focused on single-view approaches and they have achieved
remarkable results [16, 30, 35, 36]. However, methods implemented in a single-view setup
cannot accurately recognize actions performed from a different viewpoint. Since then, re-
searchers have put more effort into recognizing human action in multiple cameras setup or
multi-view to achieve high view invariance performance. Although HAR based on multiple-
view methods has been an active research field in the past decade [12, 13, 20, 26], the datasets
used were limited only to a studio or constrained environment. The limitation of the
constrained datasets has led to the current studies of multi-view for unconstrained datasets to
reflect the real-world challenges. In studying the unconstrained multi-view HAR, two crucial
issues need to be addressed: (1) Label data. In a real-world implementation, labels for
classifying actions are simply not available. This is in contrast to the controlled dataset where
labels are available and sufficient for both training and testing. (2) Distribution shift.
Constrained datasets are typically designed to have fixed parameters such as camera pixel,
resolution, illumination, field of view, simultaneously recorded and uniform background
scenes. Obviously, with these constraints, the focus is to increase the performance accuracy
of the action classes. However, any changes from these set parameters will certainly cause the
dynamics of the features to change, and hence, cause a data shift or distribution mismatch that
will result in degraded performance. Therefore, it is essential to ensure that the data is
optimally discriminative before feeding into the standard classifiers.

In this paper, we conduct a study on an open-view HAR with respect to the unconstrained
dataset. Previous works in multi-camera HAR were limited to applications using constrained
multi-camera datasets that were constrained with the above limitations. In such a constrained
arrangement, many methods have reached a near perfection performance. Some of these
constrained datasets include KTH [16] and Weizmann [10] for a single camera, and IXMAS
[41], WVU [15], and MUHAVI [32] for multi-cameras. Conversely, this paper focuses on
handling open-view HAR cases that have been highlighted by [33] with the following
characteristics:

(1) Applicable only for multi-camera datasets or within cameras.

(2) The correlation between cameras is minimized so as the dataset resembles closely to the
real-world environment. Thus, many parameters such as illumination, camera type,
background scenes, and split action recorded, will be allowed to be varied.

(3) No labeled data is available in the gallery (target) view.

We acknowledge that some of the existing multi-view methods are able to tackle multi-camera

issues such as the transferable dictionary learning approach [52]. However, we noticed that the
transferable dictionary learning technique is learned directly from the original space of the
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source and target views and needs a rigid assumption that the distribution data is identical
across the view. Contrary to this, open-view HAR tends to have large differences in the data
distribution, and therefore, the use of a transferable dictionary learning approach is unsuitable
to handle this issue.

To alleviate the different data distribution issues with limited or even missing labels,
unsupervised domain adaptation methods have been proposed [29]. The purpose of the
unsupervised domain adaptation is to reduce the distribution shift in low-level dimensional
spaces effectively so that previously labeled source view feature data can be used in target
view feature data. Inspired by their achievements, this paper initially, analyzes the effective-
ness of unsupervised domain adaptation methods in addressing the open-view HAR. Then, we
also propose a new unsupervised domain adaptation technique named Balanced Weighted
Unified Discriminant and Distribution Alignment (BW-UDDA). Our technique considers
some of the weaknesses of the previous methods in an effort to increase the performance
accuracy. To illustrate the strength of our approach, we evaluate our proposed technique by
comparing it with other state-of-the-art unsupervised domain adaptation methods. In summary,
the main contributions of this paper are as follow:

(1) We extend the study of HAR onto an open-view platform. Previous studies on HAR
concentrate on a closed-view that is limited and considered solved.

(2) We propose the use of an unsupervised domain adaptation approach to address the
open-view HAR problem. To the best of our knowledge, this is the first attempt.

(3) We offer a new unsupervised domain adaptation technique leveraging on weaknesses of
previous methods to boost the accuracy performance of open-view HAR.

The rest of the paper is organized as follows: Section 2 reviews all relevant work while
Section 4 discusses our proposed methods. Next, Section 5 describes the experimental setups,
results, and discussion, and lastly, Section 5 concludes this paper.

2 Related works
2.1 View-invariant human action recognition

From the literature, the work in view-invariant HAR can be divided into two categories: (1)
feature invariant and (2) knowledge transfer.

The feature invariant aims to exploit any shared features between views and build a
descriptor from these shared features. Junejo et al. [11] proposed a descriptor by building upon
a self-similarities matrix (SSM) from the low-level features between two views. The pattern of
the SSM is evaluated to observe the similarity across different viewpoints. This technique,
however, is sensitive when the appearance changes. Yan et al. [45] improved the SSM
performance by adding a multi-task linear discriminant analysis (LDA) to maximize class
covariance and minimize the within-class covariance. Li et al. [3] introduced a low-level feature
extraction from a dynamic system and Hankel matrix called ‘Hankelet’. The hankelets between
two views are compared with dissimilarity scores before representing the feature vectors as a
bag of henkelets (BoHK). This method, however, has a similar drawback with the SSM in that it
is sensitive to a large viewpoint change. Ciptadi et al. [6] proposed new local features by
considering spatial and temporal information called a movement pattern histogram (MPH). The
MPH encodes the global temporal pattern over the video based on optical flow tracking and,
from the results, it is compatible with other descriptors in terms of view-invariance.
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On the other hand, the knowledge transfer with transfer learning strategy aims at gathering
and exploiting the statistical connection between the feature vectors (as input data) from the
source view to the target view. The strategy is to build a view-invariant feature space from the
source to the target domain and classify different classes from different viewpoints. Farhadi
et al. [7] proposed a maximum margin clustering (MMC) approach to generate split-based
features of the source view, and the transfer split values to the target view. Zhang et al. [49]
added temporal information into the MMC to proposed a Contextual MMC (CMMC).
However, both of these methods required feature-to-feature correspondence to train the
classifiers, leading to a high computational cost. Liu et al. [20] generated bilingual words
from a bipartite graph that bridged two different bags of visual words (BoVW) from different
domains into a bag of bilingual word (BoBW) model. Li et. al. [17] introduced virtual views
that connect a source view and a target view in a continuous virtual path. Later, Zhang et al.
[50] modified this approach by keeping all the visual information on the virtual path without
tuning the parameter. Zheng et al. [52] built dictionaries based on sparse coding for the source
and target views in another development. These dictionaries represent every video with the
same action with similar sparse representation. Alternatively, Kong et al. [14] considered a
view specific with a view shared feature learning by using a marginalized stacked denoising
autoencoder based on a deep learning approach.

In contrast, Wu et al. [44] proposed heterogeneous feature spaces for a source view and
target view that are learned from a projection matrix. Each class is then classified by its
corresponding weight. Finally, Liu et al. [21] later proposed a unified framework that
incorporates [14, 52] and adapts a new distribution which they called joints sparse represen-
tation and distribution adaptation.

The view-invariant method applied in this paper falls under the category of knowledge
transfer. However, different from the above works, which focus more on the closed-view
dataset setting, our work concentrates on the open-view dataset setting. Our motivation is
inspired by Li et al. [18] and Su et al. [33]. Li et al. [18] proposed a multi-camera action dataset
(MCAD) to study the open-view HAR. However, we notice that both works have only used
existing multi-view methods and are still open to many proposed methods to improve the
problem.

2.2 Unsupervised domain adaptation

Domain adaptation can be viewed as a special case of transfer learning [28, 31] when the
data’s training and testing are not drawn from the same distribution. Consequently, a distri-
bution mismatch is created since the classifier trained on the source domain degrades its
performance when tested on the target domain. Domain adaptation methods tend to reduce the
divergence between the source and the target domains until the model trained on the source
performs well on the target domain. This paper focuses on the unsupervised approach of
domain adaptation that is more practical for real-world applications. Nevertheless, it is very
challenging for the reason that there is no label for the conditional distribution of the target
domain P(Y]X7), and the fact that a discriminative model trained on the source domain P(Y|Xs)
cannot be leveraged. Among the possible choices then is either to utilize the marginal
distribution P(X7) and P(Xj), or to use a pseudo label class of the classifier to fit the target
domain P()A’|XT). We have divided the work on unsupervised domain adaptation into two
groups: (1) data centric and (2) subspace centric.
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The Data-centric methods seek a unified or joint transformation,  (.), that projects the
source and target domains into a new space that reduces the discrepancy between the domains
and simultaneously preserves the data properties in their original spaces [46]. Pan et al. [28]
proposed the transfer component analysis (TCA) approach. This method learns by transferring
components across domains that minimize the maximum mean discrepancy (MMD) between
the two new representations of the two domains using a reproducing kernel Hilbert space
(RKHS). Data properties are preserved in the subspace spanned by these transfer components
while data discrepancies are reduced. Long et al. [24] proposed a joint distribution adaptation
(JDA) approach that considers a marginal distribution shift and a conditional distribution shift
using a pseudo label of the target domain. Later, the same authors also proposed a transfer joint
matching (TJM) approach that adds instance reweighting into the TCA in finding the unified
subspace. Ghifary et al. [9] used scatter component analysis (SCA) to convert both feature
vectors in the source and target domains into scattered space in the RKHS, minimizing the
divergence. Wang et al. [38] proposed a balanced distribution adaptation (BDA) approach that
considers the weight to balance the importance of the marginal and conditional distributions
concerning similar or dissimilar datasets. The same author then, proposed manifold dynamic
distribution adaptation (MDDA) [37] which improves the BDA by manually inserting weights
to the two distributions to dynamically adapt the weight difference specifically when there is a
large discrepancy between the two domains.

On the other hand, the Subspace centric methods aim to manipulate the subspaces of two
domains to reduce the domain shifts without directly exploiting the data (feature vectors) [46].
Fernando et al. [8] proposed a subspace alignment (SA) by aligning the source and target
subspaces using a transformation matrix. This technique also considers a unified or joint
transformation to reduce the discrepancy. Gong et al. [4] proposed geodesic flow kernel (GFK)
which that geodesic flow kernel was used to model the domain shift by integrating an infinite
number of subspaces on the geodesic flow. The trick is to explores an intrinsic low-
dimensional spatial structure that associates two domains and try to find geodesic line from
X, point to X, point so that the raw feature can be transformed in to a space of infinite
dimension where distribution difference can be reduced. However, both the SA and GFK
methods fail to emphasize the importance of minimizing the distributions between domains
after aligning or integrating the subspaces. Due to this shortcoming, Sun et al. [34] proposed a
subspace distribution alignment (SDA) to improve SA and GFK. However, their method does
not align the subspaces; but instead, it aligns the source and target data distribution. Alterna-
tively, Zhang et al. [47] proposed a joint geometrical and statistical alignment (JGSA)
approach that aligns the subspace and the distribution. Compared to the SDA, JGSA does
not learn the alignment matrix to map the source data to the target, instead, it simultaneously
optimizes the two couple of projections from the source domain to the target domain. Wang
et al. [39] proposed manifold embedded distribution alignment (MEDA) that raised the class
imbalance between domains and proposed automated balanced weight factors that capitalized
on the importance of statistical marginal and conditional data distribution. Apart from com-
puting feature discrepancy by the sum of marginal and conditional distribution MMDs as [24,
25, 38, 47], Zhang et al. [48] proposed a novel theoretical basis for computing feature
discrepancy through joint probability distribution discrepancy directly through the use of
MMD computation. Their work is known as discriminative joint probability maximum mean
discrepancy (DJP-MMD). DJP-MMD not only minimizes the discrepancy for the same class
between different classes or domains but simultaneously maximizes the discrepancy between
different classes or domains.
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3 Formulation

This section will be divided into four subsections: (1) Current issues, (2) Problem definition,
(3) low-level feature extraction and encoding, and (4) balanced weighted unified discriminant
and distribution alignment.

3.1 Current issues

We have found that the best representation for the unsupervised domain adaptation approaches
follows that of the data-centric model. This model aims at transforming or projecting the data
into a unified or joint subspace by learning adaptation matrices that minimize the discrepancy
between the distributions of the source and the target views. The standard tool to reduce the
difference between domains is to use a nonparametric Maximum Mean Discrepancy (MMD)
distance measure that operates in infinitely reproducing kernel Hilbert space (RKHS). How-
ever, considering only the distribution factors does not always guarantee promising results. For
that reason, many previous works have combined MMD computation with dimensionality
reduction methods to increase the accuracy. Among the popular dimensionality methods is the
use of the unsupervised principal component analysis (PCA) [24, 25] technique. On the
contrary, methods proposed in [9, 47] utilized the label information in the source domain by
using linear discriminant analysis (LDA) separately for the source domain and PCA for the
target view.

LDA is a supervised method used to solve binary class problems by minimizing the within-
class-scatter matrix, S,, and simultaneously maximizing the between-class scatter matrix Sp.
Still, the conventional LDA has the following disadvantages [5, 43]: (1) it is sensitive to
outliers or noise data in square operation, and (2) it only uses global information and neglects
local information. Liu et al. [23] showed that adding local information into LDA can improve
the accuracy performance. Hence, this work focuses on enhancing the discriminative part in
feature adaptation by adding locality-sensitive discriminant analysis (LSDA) into unsupervised
domain adaptation models. LSDA uses nearest-neighbor graphs G with a weight matrix W that
characterizes the local geometry of the data manifold to produce a within-class graph G,, and
between-class graph G,,. Both the G,, and G, in LSDA represent local information, while S,,
and S, in LDA represent global information.

We also noticed from [38] that imbalanced class often occurs in the domain adaptation
paradigm. This class imbalance usually depends on the condition of the both (source and
target) view: the more similar the source view and target view is, the more dominant the
conditional distribution gets. On the other hand, the less similar viewpoint between source
view and target view is, the more dominant the marginal distribution gets.

3.2 Problem definition

Based on the issues addressed above, we propose a joint domain adaptation framework that
fuses both the local and global information to enhance performance. In addition, our proposed
joint domain adaptation framework model utilizes the existing split transformation adaptation
matrices [47] that reduce the divergence of the source and target views and takes advantage
when the discrepancy is too large between both domains. We also utilize the classifier-based
transfer and manifold regularization used in [39] to avoid feature distortion and maximize the
intrinsic manifold structure of data.
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Additionally, inspired by the success of [38], we extend the concept of balancing into our
proposed framework. Therefore, our proposed technique consists of 3 components: (1)
Subspace alignment (we adopt exactly from [47]), (2) Balance weight distribution alignment,
and (3) Discriminative feature vector. The architecture for our proposed methods, BW-UDDA,
is shown in Fig. 1.

To proceed with our proposed method, the following definitions will be used:

(1) Definition 1 (View). The source domain data, x,€R? X" is drawn from P,(X;) and target
domain x,€R? X" is drawn from P,X,), where d is the size of the codebook, while m and
n are the sample size for x and X, respectively. Since this work focuses on unsupervised
domain adaptation in open-view HAR, the source domain will be renamed as the source
view and it is defined as Dy = {(x;, ¥;)...(x,;, yn)} and the unlabelled target domain as the
target view, Dy = {(x))...(x,)}, where x € RP . We summarize the notations and symbols
in Table 1.

(2) Definition 2 (Task). Domain adaptation deals with the dataset shift problem that makes
the source distribution and the target distribution of features/labels no longer identical.
What this means is that the marginal and conditional distributions of both domains are
different, i.e., Py(Xs) # P(Xp), and Py(yy x,) # P(v| x,) even though feature space and
label space for both source and target views are the same.

3.3 Low-level feature extraction and encoding

For the features, we choose the improved dense trajectories (iDTs) [43] approach which
provides us with trajectory shape, histogram of oriented gradient (HOG), histogram of optical
flow (HOF), and motion of boundary histogram (MBHx and MBHy) for feature extraction and
encoding. We follow [21, 53] in adopting the Locality-constrained Linear Coding (LLC) [40]
scheme to represent iDTs by multiple bases. The main reason is to reduce the quantization

Representation, Xs
with Label, Ys
-
Alignment New Source View
Low-level feature Bl 5 [| Representation, Zs
extraction and encoding alance:
Weighted 0PT1M ATION Eigenvector, with label, Ys Classifier for
e g e i T
—»|
New Taroe iew
LDA+LSDA| [ PCAIn | || R 2t
in source target with New Label, Yto
Target View view yeew
Representation, Xt

with no Label

%

Fig. 1 Architecture of our proposed method, BW-UDDA with three components: Subspace Alignment, Bal-
anced Weighted Distribution Alignment, and Discriminative Features Vector. Our aims were to find the
adaptation matrices, U and V and then the new source and target view representation Z; and Z;
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Table 1 Symbols and Description used in this paper

Symbols Description Symbols  Description

Dy, D, source/target view Xy Xt source/target view input data

ngn, number of samples in source/target s, ) source/target view input labels

w balanced weighted factor uv adaptation matrix

G nearest neighbor graph M MMD matrix

SysSh within-class-scatter matrix/ W weight matrix of G
between-class-scatter-matrix

PyX,), P(X) marginal distributions source Z, 7, new representation of
and target view source/ target views

Py(vyx,), P(y]x)  conditional distributions Zz low-dimensional data for LDA/LSDA

source and target view
o By A n ¢ parameters

error while preserving the local smooth sparsity. We follow [21] to choose the LLC scheme,
and the codebook size is set to 4000 for all training-testing partitions, meaning that the
encoded iDTs feature is 4000. Out of these, we only choose 200 local iDTs randomly as in
[53].

3.4 Balanced weighted unified discriminant and distribution alignment (BW-UDDA)

This sub-section presents the local discriminants and introduces balanced weighted factors in
feature transformation into our proposed joint domain adaptation framework. We aim to find a
pair of projections, U for the source view and V for the target view, to obtain new represen-
tations Z, and Z,, before we feed them into the linear classifier for classification.

The BW-UDDA has four goals: (a) Adapting local discriminant into dimensionality
reduction strategy, (b) Obtaining a pair of projections between the source and target views.
This is achieved by minimizing and balancing the distribution divergence and subspace
divergence, (c) Preserving the neighborhood structure of the dataset, and (d) Concatenating
all the objectives functions and finding the optimal classifier, iteratively.

3.4.1 Dimensionality reduction

The main purpose of dimensionality reduction is to convert a high-dimensional space into a
low-dimensional space so that the data can be compactly but meaningfully represented. The
standard dimensionality technique used in unsupervised domain adaptation is the principal
component analysis (PCA) since no class information is required. Another dimensionality
reduction technique that has also been used extensively is the linear discriminant analysis
(LDA) method. Not only that LDA reduces the high-dimensional space, but it also maximizes
the variance between classes and minimizes the variance within a class. With these benefits,
LDA is also suitable for unsupervised domain adaptation by leveraging the class information
already available in the source view. However, we identified that LDA has some drawbacks,
particularly it is unadaptable since it is a global discriminant and its sensitiveness to outliers
and noise. Due to these limitations, we introduce locality-sensitive discriminant analysis
(LSDA) along with LDA to highlight the importance of the global and local discriminants,
and in that respect, we improve the accuracy performance.
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First, we form the nearest neighbor graph, G, and its weight matrix is given as follows:

1, x;eknn(x;)or x€knn(x;

Wi = {0, otherwis(ej) ' ) (1)
where knn(x;) is the set of k-NN corresponding to x;. The obtained nearest neighbors’ graph, G
will be divided into two subgraphs: the within-class subgraph, G,,, and the between-class
subgraph, G, Let 7=G , 22, --.Zm)T be such a low-dimension data in the g-dimensional space,
Zi = UTx;, and {W,, W} be the weight matrices for {G,, G}, respectively. The objective
functions can be defined as follows:

2
min’y z—sz W 2)
ij
~ 2 b
max ) |\zi—zj|| Wy (3)

i

Equation (2) will incur a heavy penalty if neighboring points x; and x; are mapped far apart
while they are actually in the same class, likewise with Eq. (3), will incur a heavy penalty if the
neighboring point x; and x; are mapped close together while they are actually in the different
classes. By minimizing Eq. (2), if x; and x; are close and sharing the same label, then y; and y;
will be close as well. Likewise, by maximizing Eq. (3), if x; and x; are close but in a different
label, then y; and y; will be far apart. Hence, Eq. (2) and (3) can be represented as

minTr (UT,U) (4)
max Tr (U TyU) (5)

where T, = X YT L, X;and Ty, =X YT Ly X;. L,, and L, are the Laplacian matrix of G,, and G,
respectively. It is defined as L,, = D¥- W*, L, = D>~ WP. The D¥ and D? are the diagonal
matrices with diagonal entries D} =}, ; W} and Dh=Y% r WZ, respectively. We define the global
discriminant LDA as follows:

m&'nTr (U' s,U) (6)

max Tr (U” $3U) (7)

v%here S, = i XE,C)H§”>(X£,C))T is within-class scatter matrix and S,=
> 1,9 (uO=pf Tl =) Tis the between-class scatter matrix. () is the centering matrix
6f'data within a class, 7,© is a number of class samples in class ¢, j is the total sample mean
vector and (@ is the average vector belong to class c.

We unified the global and local discriminants to optimize the discriminative source
information by adding Egs. (4), (5), (6), and (7), as Eq. (8) and (9) below:
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min Tt (UT (S +47Ty) U) (8)
mLt/szr (UT(S;,—i—'yTb)U) )

where -y is the balance parameter that merges global and discriminant matrices. For the target
view, we only use PCA, as in Eq. (10), to maximize the variance since there is no-label
information is available.

m‘z/szr (VI 8,v) (10)

where S= X, H X tT is the target view scatter matrix, while H, = / F,% 1tl,T is the centering
matrix.

3.4.2 Distribution and subspace divergence minimization

Unsupervised domain adaptation frameworks usually involve two transformation techniques:
(a) Distribution divergence minimization, and (b) Source discriminative information preser-
vation. We consider both methods in our joint objective function. In this sub-section, we learn
two projections (both from source and target views) into respective subspaces so that the
marginal and conditional distribution divergences are minimized and preserved, and the
divergence of two projections is constrained to be geometrically small. We achieved this by
introducing a balance factor in the process of minimizing the distribution divergence. By
balancing the contribution of marginal and conditional distributions, we believe that the
accuracy performance can be optimized. This is because for similar dataset, the conditional
distribution becomes more dominant, and for dissimilar dataset, the marginal distribution
becomes more dominant.

First, we employed maximum mean discrepancy (MMD), which computes the distance
between the sample mean of source and target data in the Reproducing Kernel Hilbert Space
(RKHS). The MMD computation for marginal and conditional distributions is as follows:

2

1 1
min|l— ¥ Ulxg=— ¥ Vi, (11)
UV || ng X €Xs ny XXy H
C 1 2
min Y, o > UTxS,-*T > VTx,J (12)
UV o=t {|15 pex, M yex, o "

From Eq. (11) and (12), we can combine the marginal and conditional distribution shift
minimization to get the distribution divergence term:

minU_,VTr<[UT dl [I;is I;ﬂ [ﬂ) (13)

where Ry = Xs MssX%, Ry=Xs M X!, R=X, M,sX% and R, = X, M;X”. M is the MMD
matrix involving marginal and conditional distributions for both marginal and conditional
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distributions. We proposed to introduce a balance factor, w inside the MMD matrix compu-
tational as follows:

C
Mg = (lfw)Mss =+ WZMss<c>

c=1

! x(© (14)
where, M, = 1S15T7 (Mff)) = {M X, X;€X,
s Y 0 otherwise
. c
My = (1-w)Mg + WZMSI(C)
c=1
_ (15)
1 . X xex©
where, My, = — 11}, (Mg))“ = { 20 x;eX\”, x;€X;
o ! 0 otherwise
. c
Mg, = (liw)Mss + WZMSS(C>
c=1
-1 (©) , (16)
I exle : X<L>
where, M, = 117, (ME:’)) = { nﬁ")n§°’> XjEX; T, Xi€X
e Y 0 otherwise
~ c
Mg = (1-w)Mg + WZMSS(C)
c=1
! © L xex (17)
Wheretht - nn 1[13‘, (Mlt ) = nt(L)ngc) v
o Y 0 otherwise

where 1€ R™ and 1,e R™ are a column vector with all ones. From Egs. (14), (15), (16), and
(17), the balanced weighted factor, w acts as a trade-off parameter and its value is in between
{0,0.1,0.2...1}, meaning that the distance matrix between domains can be optimized if we
manually apply this balanced weighted factor.

Similarly, the subspace divergence can be minimized by shifting the adaptation matrices U
and V to be close to one another. In our work, we employed the Frobenius norm, ||z, since it
ensures information features data in both the source and target views to be preserved besides
acting as a regularizer. The subspace divergence term can be formed as follows:

. o2 AT rr
’U’Zf\’} 1U-VF = ’U7’f\’,1 Tr ((L V) (U=V )) (18)
Eq. (18) can be represented as Eq. (19) as follows:

sl [ 714
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where / is an identity matrix. U and V are the transformation matrices, and once we define U
and V through joint objective function (section 3.4.4), we obtain the new representations for
the source and target views, i.e., Z, = UTX; and Z, = VX,

3.4.3 Manifold regularization

We followed the works in [35, 19, 39, 43] in adding the Laplacian regularization term. This is to
take advantage of similar geometry resulting from the nearest neighbor graph, G. Note that,
manifold regularization is different from the local discriminant that was elaborated earlier (Egs.
(1)—(5)). Previously, local discriminant deals with structure in the source data, X, while
manifold regularization acts as an additional regularizer and is added to the final view-
invariant classifier (see section 4.4.4). Under the geodesic smoothness and matrix tricks, the
manifold regularization is implemented in the new representation, Z = [Z,, Z;], and is
computed as follows:

ng+n; 2~
=2 1 (ATz=ATz) Wy
T L]=

Mf (PmPT) =Tr (ATZ(D_V)ZTA)
=Tr(A"ZLZ" A)

(20)

where £ is graph Laplacian matrix for manifold regularization, D is a diagonal matrix with

n ~
eachitem D; = ) Vyand A = (a; ,az)TeR“’*’") x1 is the coefficients vector, Z. The Wj; is
=1

a graph affinity matrix for new representation and is defined as:

S cos(zi,z), if z€knn(z;)or zjeknn(z;)
W, = i)y 1" 2 21
v { 0, otherwise 1)

3.4.4 Unified objective function and optimal classifier

In this last part, we included Egs. (8), (9), (10), (13), and (19) into the joint objective function
to obtain a new representation Z.

[ )

vy T T Rss + Y + B(SW + ’YTW) Rst_)\l U
Tr [U \% }|: Ry—M R,,—i—()\—l-a)] Vv

(22)

where , 3, and \ are trade-off parameters to balance the importance of each element for each
objective function, respectively. By rewriting [ U7 V! ]=JT, and through the optimization
process, we set dL/0J = 0, and the following equation is derived:
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ﬁ(Sb_F"/Tb) 0 :|J: |:Rss+M+ﬂ(Sw+’yTw) RslfM
t

0 asS R\ R+ N+ )l S (23)

We need to solve for the eigenvector J, and once J is computed, it is easy to define the
transformation matrices, U and V, and thus the new representation Z = [Z;, Z;]. Next, for the
classifier, instead of using 1-NN as a standard classifier such as in [24, 38, 47], we followed
[39] to learn our adaptive classifier, £, on labeled source view, D, and then to predict labels in
the target view, D,. To learn f, we summarized the structural risk minimization over Dy
represented as follows:

f=arg min 3 (1~ (2))" + 1l (24)

Using the representer theorem in [2], f'admits the expansion:

n+m
f(2)= _Zl aiK(Z,Z) (25)
fa
where K(Z,') is the kernel function, a; as in Eq. (20). We reformulated Egs. (24) and (25) and
also adding manifold regularization in Eq. (20), and as a result, the new objective function of /'
is defined as follows:

f=arg min 1(Y=AK)0|3 + nTr(A"KA) + (Tr(ATKLKT A) (26)

where 7 and ( are the regularized parameter, 6 is the diagonal domain indicator matrix with
each element 6;; = 1,if i € Dy,otherwise 6; = 0. We set the derivative Jf /9.A = 0, and obtain
the solution of A as follows:

A= (0+CLOK +nl) ' oyT (27)

Once we obtain A4, we can calculate /' = A*K (Eq. (25)) and predict the class label for D,. We
use classification accuracy on the test data as the evaluation metric.

2t ZzEIDt/\j;(Zt) = y(xt)
Accuracy =

28
|z : z€Dy| (28)

where D; is the target view for the new representation of target data, Z,, y(x,) is the actual label
of the target view and (z;) is predicted label by the adaptive classifier, /. The complete
procedural steps for our BW-UDDA model are summarized in Algorithm 1.
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Algorithm 1: Balanced Weight Unified Discriminant and Distribution Alignment (BW-UDDA)
Input: Low-level feature data and source labels: X, X;, Y ;
Parameters: @, 8, v, 4,1, { and neighbor-p.
Adaptive Factor: w = {0, 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}.
Output: Classifier, f.
1 Construct Twa Tba Swy Sba St ’ RSS' Rsta RtS'Rttﬂ L according to Eq (4)7 (5)5 (6)5 (7)5 (10),

(13), (19);
Initiate pseudo label, J; using a classifier training on Dy.
2 repeat
3 Solve the generalized eigen decomposition problem in Eq. (23) and obtain
adaptation matrices, U and V;
4 Map the original data to respective, U and V' to get the new

representations: Z; = UTXg and Z, = UTX,;
Compute A using Eq. (27) and get representer theorem in Eq. (25);
Update the soft labels of Dy: .= f(Z;).

until Convergence,

Obtain the final adaptive classifier, f.

[cBEN Ee WV

4 Experiments

In this section, we evaluated our proposed technique with two different datasets. First, in
solving the open-view HAR problem, we evaluated our proposed approach with the MCAD
dataset. This dataset has less correlation between views and is designed to simulate closely
with the real-world surveillance scenarios. Then, to benchmark our work with a more
commonly used dataset, we applied our method to the IXMAS dataset. This dataset is
categorized as a constrained dataset. Although it is not characterized as an open-view dataset,
this dataset has been used as a baseline for new multi-cameras action recognition methods.
From these two datasets, we observed that the MCAD dataset is more challenging than that of
the IXMAS dataset, and we also observed that our proposed method successfully responded to
these two different datasets.

The evaluation protocol was performed in a standard cross-view validation. To the best of
our knowledge, there are two methods for cross-view validation. First, the classifier is trained
on one view (source view) and then tested on another view (target view) [14, 21, 51]. Second,
the target view samples are split into two. The first half will be trained along with the source
view, and the second half is used for testing. The second approached has been adopted in [18,
22,27, 33]. To verify the efficacy of our method, we considered both evaluation methods and
refer to them as the 1st and the 2nd cross-view evaluation method. As with other works, we
adopted the leave-one-action-class-out training strategy which meant that only one action class
was used for testing the target view. We noted that the classification accuracy reported here is
based on the average of all action class accuracies. All conducted experiments were performed
on Intel (R) CoreTM i7 system with 20GB RAM using MATLAB programming language.

4.1 MCAD dataset for open-view human action recognition
The MCAD dataset has 14,298 action samples recorded by two kinds of cameras: 3 Static
cameras and 2 Pan-Tilt-Zoom (PTZ) cameras. All of the static cameras have a resolution of

1280 x 960 pixels with the fisheye effect while the PTZ cameras have a resolution of 704 x
576 pixels with a smaller field of view. The MCAD dataset complies with the open-view
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action recognition criteria such as the illumination, background, day and night, field-of-view,
and different split time recorded action recorded for each view [33]. The MCAD dataset has 18
action classes in total. These actions are ‘point’, ‘wave’, ‘jump’, ‘crouch’, ‘sneeze’, ‘sit-down’,
‘stand-up’, ‘walk’, ‘person-run’, ‘cell-to-ear’, ‘use-cell-phone’, ‘drinking-water’, ‘take-pic-
ture’, ‘object-get’, ‘object-put’, ‘object-left’, ‘object-carry’, and ‘object-throw’. Figure 2 shows
some example frames from the MCAD dataset.

We fixed the dimension, d = 100 for our method as well as for all the state-of-the-art
methods. Others parameters needed for BW-UDDA were =0.01,A = 1.0, =09, =09,
1n=0.2, (=0.9, and maximum iteration numbers, T = 10. The dimensionality of the MCAD
dataset was high, so we, therefore, utilized additional PCA in the pre-processing stage. All the
experiments were implemented using the RBF kernel.

4.1.1 1st cross-view validation experiment

In this experiment, we evaluated our BW-UDDA and other several state-of-the-art methods
using an unsupervised domain adaptation approach. We implemented a 1-NN classifier as the
baseline. The state-of-the-art methods used were JDA [24], JGSA [47], MEDA [39], and
JPDA [48]. We reported our recognition results in Table 2. The following are the observations
we derived:

(1) Generally, results are considered poor for all methods with our proposed method
achieved the highest average accuracy at 13.38%. The poor performance was due to
the fact that there were no overlapping views between the training and testing data. As
stated previously, the MCAD data is designed to have little correlation between views.
The highest accuracy achieved for BW-UDDA technique is for PTZ06 vs. PTZ04 with

Cam05 CamO06 PTZ0 PTZ06

Point

Cell-to-ear

Use-c/lI-phone Wave

Fig. 2 Samples of the MCAD dataset from five different cameras. Each scene is different with respect to the
actors, backgrounds, and views, and they are recorded in different resolutions, times, both during the day and

night
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an average accuracy of 19.20% while the lowest is for PTZ06 vs. Cam06 with an average
0f9.29%. in the former, both cameras are of the same type with PTZ06 has a small field
of view (see comment three under 2nd cross-view validation experiment). Hence, the
effect of data shift is minimal. In contrast to the latter, Cam06 has a wide and distant field
of view. This contrasting views between the two cameras causing the data shift to be
worsen.

(2) Applying the unsupervised domain adaptation methods increased the accuracies in
general. The result shows that the average accuracy for feature data without unsupervised
domain adaptation is 11.32%. On the contrary, all of the unsupervised domain adaptation
methods have an average accuracy higher than 11.32%.

(3) BW-UDDA outperformed the other methods in10 out of 20 experiments. The overall
average for BW-UDDA, 13.38%, is higher than other state-of-the-art methods (JGSA-
12.93% and JDA-12.73%). This can be explained by JGSA improving JDA in consid-
ering split adaptation matrix calculation for the dataset with very large differences for
each view. While our work improves JGSA by considering the balanced weighted and
local discrimination,

(4) These results confirmed that open-view action recognition is a very challenging problem
and has tremendous room for improvement. With an average result of around 12% for all
the evaluations, it signifies that the current research is still far from solving the real-world
situation.

4.1.2 2nd cross-view validation experiment

In this experiment, we tried to observe the influence of the second half of the target view
during the classification. We compared our result with SA [8], JDA [24], JGSA [47], and
JPDA [48]. Results are reported in Table 3 and the followings are the observations:

(1) The overall accuracies are much better than those of the 1st experiment. This should not
be a surprise since half of the target data with labels was used for training the classifier.
The average accuracy for all evaluations involving all views is around 60%.

(2) The proposed technique achieved the highest performance with an average accuracy of
61.45%. It outperformed 11 out of 20 cross-view evaluations. Moreover, we also
observed that our technique managed to close the accuracy variance between views
while increasing the accuracy for each view. For instance, in the 1-NN baseline, the
accuracy for Cam04 vs PTZ04 is 57.92%, and the accuracy for Cam04 vs PTZ06 is
63.61%. The difference between these two evaluation pairs is 5.69%. With the BW-
UDDA technique, not only that the accuracy for these two pairs increases to 64.86% and
64.58%, respectively, the accuracy difference between these two evaluations decreases to
only 0.28%.

(3) The PTZ06 camera always got the highest result when it acted as the target view for all
methods. The reason being is that PTZ06 is physically closest to the actor compared to
other cameras and thus, it has a relatively smaller field of view. This shows that different
fields of view affect the accuracy performance, making MCAD a challenging dataset.
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4.1.3 Confusion matrix

We next analyzed the performance of BW-UDDA for individual classes based on both the 1st
and 2nd cross-view validation methods using the confusion matrices as illustrated in Fig. 3.
Without loss of generality, we chose to display the results for Cam 04 vs Cam 05 in the
confusion matrices. The average accuracy of the 1st cross-view was 16.13%, and the average
accuracy of the 2nd cross-view was 61.39%. Here also we a saw similar observation that the
accuracy of the 1st cross-view is much poorer than the accuracy of the 2nd cross-view
experiments. Regardless, we found that action classes ‘sit-down’ and ‘object thrown’ obtained
the highest scores in both experiments.

There were also confusing arm movements found in both confusion matrices. Examples of
action classes involving arm movements are ‘point’, ‘wave’, ‘cell-to-ear’, ‘use-cell-phone’,
‘drinking water’, and ‘take pictures’. Due to their similarity, these classes are easily confused
and thus, difficult to classify. Examples of small action movements involving ‘point’, ‘waves’,
‘cells to the ear’, and ‘use-cell-phone’ from all five cameras are shown in Fig. 2.

4.2 IXMAS dataset for multi-camera constrained dataset

As mentioned earlier, we also applied our method to a standard and popular multi-
camera human action recognition IXMAS dataset [42]. This dataset has 1650 action
samples with 11 actions classes recorded by 4 side view cameras and 1 top-view
camera. The actions involved are ‘check-watch’, ‘cross-arms’, ‘get-up’, ‘kick’, ‘pick-
up’, ‘punch’, ‘scratch-head’, ‘sit-down’, ‘turn-around’, ‘walk’ and ‘wave’. Following
similar experimental setups as we did with the MCAD dataset, we evaluated the
IXMAS dataset with Ist cross-view and 2nd cross-view validation experiments.
Sample frames of the IXMAS dataset are illustrated in Fig. 4.

4.2.1 1st cross-view validation experiment

Once again, we used 1-NN as the baseline. We compared our results with TIM [25], TCA
[28], SA [8], JDA [24], MEDA [39], and JPDA [48]. Table 4 shows all of the results and the
followings are our observations:

(1) As expected, the results of the Ist cross-view evaluation for IXMAS are much better
compared to those of the MCAD dataset. The highest accuracy obtained is 58.18% using
the JDA technique which is for Cam1 vs. Cam0. For Camera 4 (either source view or
target view), the BW-UDDA method performed constantly with the highest accuracy.
Unlike other cameras, camera 4 is the only camera that provides top view. The average
results for all the evaluations are 27.4%. This accuracy explained that the IXMAS dataset
is less challenging compared to the MCAD dataset.

(2) BW-UDDA did not perform well as expected. Our proposed method
outperformed only seven out of 20 evaluations. Nonetheless, we observed that
all of the seven evaluations involved Cam4 either as a source view or a target
view. This indicates that our proposed technique is not affected even when the
field of view is different between the cameras.
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(b) Confusion matrix of the 2" cross-view evaluation experiment

Fig. 3 Analysis of BW-UDDA using confusion matrices based on the 1st cross-view evaluation and the 2nd
cross-view evaluation experiments taken from Cam04 vs Cam05. Both cases are for the MCAD dataset involving
18-classes. (a) Confusion matrix of the 1st cross-view evaluation experiment. (b) Confusion matrix of the 2nd
cross-view evaluation experiment

4.2.2 2nd cross-view validation experiment

Similarly, we compared our proposed technique with SDA [34], TIM [25], TCA [28], SA [8],
JDA [24], JGSA [47], and JPDA [48], and all of the results are tabulated in Table 5 with the
following observations:

(1) Similar to the MCAD dataset performance, 2nd cross-view validation experiment

showed much better results. The overall average accuracy is around 85%. This value is
higher than that of the MCAD because the IXMAS dataset is less challenging.
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Fig. 4 Samples of IXMAS multi-view dataset. Each row shows action viewed across five different cameras

(2) BW-UDDA showed the highest performance with an average accuracy of 90.91%. As
can be seen, BW-UDDA outperformed in 17 out of 20 evaluations. This result confirms
the potential of the proposed method in unsupervised domain adaptation.

4.2.3 Confusion matrix

We further analyzed each class from both evaluations of the IXMAS dataset in a form of a
confusion matrix. Figure 5 shows the confusion matrix for Cam4 vs Cam3. The average
accuracy for the 1st cross-view evaluation was 20% while the average accuracy for the 2nd
cross-view evaluation was 95.15%. From both matrices, class-action ‘pick-up’ and ‘sit-down’
were consistently well classified. However, from Fig. 5(b), ‘punch’ and ‘wave’ were easily
confused with the ‘kick’ action. This may be explained that even in a ‘kick’ action the arm
movement is still involved, and the confusion is exacerbated by the low-resolution frames of
the IXMAS dataset.

4.3 Balanced weighted factor analysis
As stated in section 4.3, BW-UDDA depends on the balanced weighted factor, w, to obtain the
optimum accuracy. To show its influence on the accuracy performance we analyzed several

values of w. Specifically, we use w in range = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and
1.0}. For the analysis, we selected the 2nd cross-view evaluation in MCAD dataset. We chose
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(a) Confusion matrix of the 1% cross-view evaluation (b) Confusion matrix of the 2" cross-view evaluation
experiment experiment

Fig. 5 Analysis of BW-UDDA using confusion matrices based on the 1st cross-view evaluation and the 2nd
cross-view evaluation experiments taken from Cam04 vs Cam03. Both cases used the IXMAS dataset involving
11-classes. (a) Confusion matrix of the 1st cross-view evaluation experiment. (b) Confusion matrix of the 2nd
cross-view evaluation experiment

Cam04 as the source view and the rest as target views. The results are plotted and shown in
Fig. 6.

Traditionally, it has been assumed that the marginal and conditional distribution are equally
important. This scenario is similar to setting the balanced weighted factor, w = 0.5. However,
as can be seen in Fig. 6, this value of w did not perform satisfactorily. On one extreme, if the
value of w is set to 0, the overall performance drops dramatically. This indicates that both the
conditional and marginal distributions cannot be ignored in the BW-UDDA settings. On the
other extreme, when the value of w is set to 1, most of the cross-view evaluations reached their

Different Balanced Weighted Factors for BW-UDDA
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Fig. 6 Balanced weighted factor w with different values, and the optimal accuracy for BW-UDDA using the
MCAD dataset
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A total of 20 evaluations for MCAD dataset from Cam04 vs Cam 05 until PTZ 06 vs PTZ04

Fig. 7 Visualization comparison of BW-UDDA between with and without LSDA

optimum accuracy. This is a situation in which the conditional distribution contributes more to
the overall performance than that of the marginal distribution. However, this scenario is not
uniform throughout all evaluations. As an example, in Cam 04 vs PTZ 06 evaluation, the
accuracy performance is optimal when the value of w is set to 0.4, and the accuracy decreases
as we increase the value of w to 1.

4.4 Local discriminant effectiveness analysis

Finally, we analyzed the effectiveness and advantages of the LSDA. First, we assessed the
BW-UDDA with and without LSDA. To perform the analysis, we fixed the balanced weighted
factor, w, to 0.5. Again, we selected the 2nd cross-view evaluation using the MCAD dataset for
the analysis. We recorded the results in Table 6 and plotted the comparison results in Fig. 7.
From Table 6 and Fig. 7, we observed that BW-UDDA with LSDA showed a significant
influence in the accuracy compared to BW-UDDA without LSDA. Out of 20, BW-UDDA
outperformed in 15 evaluations and has the highest average accuracy of 60.08%. These results
established the importance of incorporating LSDA into our proposed technique and confirmed
the work of [23] that combining LDA with LSDA improves accuracy.

5 Conclusion
This paper deals with how to improve the human action recognition (HAR) field that suffers
from data shifts problem due to the large differences between data distributions of the target

and source views. Such a problem degrades significantly the performance accuracy particu-
larly in an unconstrained dataset for open view HAR case. To alleviate this problem, we
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leveraged the unsupervised domain adaptation method to reduce the data shift problem and to
increase the accuracy performance. Specifically, we proposed Balanced Weighted-Unified
Discriminant and Distribution Alignment (BW-UDDA) to improve the unsupervised domain
adaptation technique for open-view HAR. The outcomes of experiments we conducted proved
that our proposed method outperformed most of the state-of-the-art unsupervised domain
adaptation methods when applied to open-view HAR. The results also indicated that the
open-view HAR remains to be a challenging problem. Therefore, ongoing efforts to further
improve and enhance the performance will continue as HAR places more useful applications
in our daily lives.
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