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The Szegö kernel has many applications to problems in conformal mapping and satisfies the Kerzman-Stein integral equation. The
Szegö kernel for an annulus can be expressed as a bilateral series and has a unique zero. In this paper, we show how to represent
the Szegö kernel for an annulus as a basic bilateral series (also known as q-bilateral series). This leads to an infinite product
representation through the application of Ramanujan’s sum. The infinite product clearly exhibits the unique zero of the Szegö
kernel for an annulus. Its connection with the basic gamma function and modified Jacobi theta function is also presented. The
results are extended to the Szegö kernel for general annulus and weighted Szegö kernel. Numerical comparisons on computing
the Szegö kernel for an annulus based on the Kerzman-Stein integral equation, the bilateral series, and the infinite product are
also presented.

1. Introduction

The Ahlfors map is a branching n-to-one map from an n
-connected region onto the unit disk. It is intimately tied
to the Szegö kernel of an n-connected region [1]. The
boundary values of the Szegö kernel satisfy the Kerzman-
Stein integral equation, which is a Fredholm integral equa-
tion of the second kind for a region with a smooth boundary
[2]. The boundary values of the Alhfors map are completely
determined from the boundary values of the Szegö kernel
[1–3]. For an annulus region Ω, the Szegö kernel can be
expressed as a bilateral series from which the zero can be
determined analytically [4]. The Kerzman-Stein integral
equation has been solved using the Adomian decomposition
method in [5] to give another bilateral series form for the
Szegö kernel for Ω that converges faster. There are various
special functions in the form of bilateral and basic bilateral
series [6–8]. For example, the bilateral basic hypergeometric
series contain, as special cases, many interesting identities
related to infinite products, theta functions, and Ramanu-

jan's identities. It is therefore natural to ask if the bilateral
series for the Szegö kernel for Ω can be summed as special
functions or an infinite product that exhibits clearly its zero.

In this paper, we show how to express the bilateral series
for the Szegö kernel for Ω as a basic bilateral series (also
known as q-bilateral series). Ramanujan’s sum is then
applied to obtain the infinite product representation for the
Szegö kernel for Ω. The product clearly exhibits the zero of
the Szegö kernel for Ω, and its connection with the q
-gamma function and the modified Jacobi theta function is
shown. Using the symmetry of Ramanujan’s sum, we show
how to easily transform the bilateral series for the Szegö ker-
nel for Ω in [4] to the bilateral series in [5].

The plan of the paper is as follows: After the presentation
of some preliminaries in Section 2, we derive the basic bilat-
eral series and infinite product representations for the Szegö
kernel for Ω in Section 3. We then derive a closed form of
the Szegö for Ω in terms of q-gamma function and the mod-
ified Jacobi theta function. In Section 4, we show how to
extend the representations in Section 3 to the general
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annulus using the transformation formula for the Szegö ker-
nel under conformal mappings. Similar q-analysis for the
weighted Szegö kernel for Ω is presented in Section 5. In
Section 6, we give numerical comparisons for computing
the Szegö kernel for Ω using bilateral series, infinite product,
and integral equation formulations.

2. Preliminaries

Let Ω = fz : ρ < jzj < 1g be an annulus with 0 < ρ < 1 and a
point a ∈Ω. The boundary Γ of Ω consists of two smooth
Jordan curves with the outer curve Γ0 oriented counter-
clockwise and the inner curve Γ1 oriented clockwise. The
positive direction of the contour Γ = Γ0 ∪ Γ1 is usually that
for which the region is on the left as one traces the boundary.

Let fφnðzÞg∞n=1 be an orthonormal basis for the Hardy
spaces H2ðΓÞ. Since the Szegö kernel Sðz, aÞ is the reproduc-
ing kernel for H2ðΓÞ, it can be written as [4]

S z, að Þ = 〠
∞

n=0
φn zð Þ �φn að Þ, a ∈Ω, ð1Þ

with absolute and uniform convergence on compact subsets
of Ω. An orthogonal basis for H2ðΓÞ is fzng∞n=−∞. Thus

znk k2 =
ð
Γ

zj j2n dzj j = 2π 1 + ρ2n+1
� �

, ð2Þ

where jdzj is the arc length measure. Therefore, an ortho-
normal basis for H2ðΓÞ is [3, 4]

znffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π 1 + ρ2n+1ð Þ

p
( )∞

n=−∞

: ð3Þ

Using (1) and (3), the series representation for the Szegö
kernel for Ω is given by [4]

S z, að Þ = 1
2π 〠

∞

n=−∞

z�að Þn
1 + ρ2n+1

, a ∈Ω, z ∈Ω ∪ Γ: ð4Þ

Series (4) is a bilateral series. It has a zero at z = −ρ/�a [4].
Another bilateral series representation for the Szegö

kernel for Ω is given by [5] (in an equivalent form)

S z, að Þ = 1
2π 〠

∞

n=−∞

−1ð Þnρn
ρ2n − z�a

, z ∈Ω ∪ Γ, a ∈Ω, ð5Þ

which is initially obtained by solving the Kerzman-Stein
integral equation using the Adomian decomposition
method. It is also shown in [5] how to derive (5) directly
from (4) using geometric series. It is illustrated in [5] that
series (5) converges faster than (4).

More generally, if Ω1 is any doubly connected region
with the smooth boundary Γ1, and f ðzÞ is a biholomorphic
map of Ω1 onto Ω, then the Szegö kernel for Ω1 can be
obtained via the transformation formula as [1]

S1 z, að Þ =
ffiffiffiffiffiffiffiffiffiffiffi
f ′ zð Þ

q
S f zð Þ, f að Þð Þ

�ffiffiffiffiffiffiffiffiffiffiffi
f ′ að Þ

q

=

ffiffiffiffiffiffiffiffiffiffiffi
f ′ zð Þ

q ffiffiffiffiffiffiffiffiffiffiffi
f ′ að Þ

q
2π 〠

∞

n=−∞

f zð Þ �f að Þ� �n
1 + ρ2n+1

, a ∈Ω1, z ∈Ω1 ∪ Γ1,

ð6Þ

where ρ is unknown but can be computed.
The Szegö kernel S1ðz, aÞ can also be computed without

using conformal mapping. The boundary values of the Szegö
kernel S1ðz, aÞ on Γ1 satisfy the Kerzman-Stein integral
equation [2, 4],

S1 z, að Þ +
ð
Γ

A z,wð ÞS1 w, að Þ dwj j = g zð Þ, z ∈ Γ1, ð7Þ

where

A z,wð Þ =
1
2π

T wð Þ
z −w

−
�T zð Þ

�z − �w

� �
, z ≠w ∈ Γ1,

0, z =w ∈ Γ1,

8><
>:

g zð Þ = −
1
2πi

�T zð Þ
�z − �a

, z ∈ Γ1,

T zð Þ = z′ tð Þ
∣z′ tð Þ ∣

, z ∈ Γ1,

ð8Þ

and zðtÞ is a parametrization of Γ1. The function Aðz,wÞ is
known as the Kerzman-Stein kernel, and it is continuous
on the boundary of Ω1 [9, 10]. In fact, the integral equation
(7) is also valid for an n-connected region.

Since bilateral series and basic bilateral series will be used
throughout this paper, we recall some facts about q-series
notations and results.

Let 0 < q < 1 and α ∈ℂ. The q-shifted factorial is defined
as [7]

qα ; qð Þn =

1, n = 0,
1 − qαð Þ 1 − qα+1

� �
⋯ 1 − qα+n−1

� �
, n = 1, 2,… ,

1
1 − qα−1ð Þ 1 − qα−2ð Þ⋯ 1 − qα−nð Þ , n = −1,−2,… :

8>>>><
>>>>:

ð9Þ

This notation yields the shifted factorial as a special case
through

lim
q⟶1

qα ; qð Þn
q ; qð Þn

= α α + 1ð Þ⋯ α + n − 1ð Þ, n = 1, 2,… : ð10Þ
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If α is written in place of qα, then (9) becomes

α ; qð Þn =

1, n = 0,
1 − αð Þ 1 − αqð Þ⋯ 1 − αqn−1

� �
, n = 1, 2,… ,

1
1 − αq−1ð Þ 1 − αq−2ð Þ⋯ 1 − αq−nð Þ , n = −1,−2,… :

8>>>><
>>>>:

ð11Þ

It can be shown that [7]

1 − α

1 − αqn
= α ; qð Þn

αq ; qð Þn
, n = 0,±1,±2,… : ð12Þ

If n⟶∞, it is standard to write

α ; qð Þ∞ =
Y∞
n=0

1 − αqnð Þ, ð13Þ

which is absolutely convergent for all finite values of α, real
or complex, when jqj < 1 [6]. This yields

α ; qð Þn =
α ; qð Þ∞
αqn ; qð Þ∞

: ð14Þ

Observe that ðα ; qÞ∞ would have zero as a factor if α = 1.
It would be zero also if α = q−1, q−2, q−3,… , but these are all
outside the circle jzj = 1 since jqj < 1 [8].

The bilateral basic hypergeometric series in base q with
one numerator and one denominator parameters is defined
by [6–8]

1ψ1 α ; β ; q ; zð Þ = 〠
∞

n=−∞

α ; qð Þn
β ; qð Þn

zn: ð15Þ

The series is convergent for jqj < 1 and jβ/αj < jzj < 1.
The classical Ramanujan’s 1ψ1 summation is given by [7, 8]

1ψ1 α ; β ; q ; zð Þ = αz ; qð Þ∞ q/αz ; qð Þ∞ β/α ; qð Þ∞ q ; qð Þ∞
z ; qð Þ∞ β/αz ; qð Þ∞ q/α ; qð Þ∞ β ; qð Þ∞

, β/αj j < zj j < 1:

ð16Þ

The special case β = αq of Ramanujan’s 1ψ1 summation
yields [8]

〠
∞

n=−∞

zn

1 − αqn
= αz ; qð Þ∞ q/αzð Þ ; qð Þ∞ q ; qð Þ2∞

z ; qð Þ∞ q/zð Þ ; qð Þ∞ α ; qð Þ∞ q/αð Þ ; qð Þ∞
,

ð17Þ

also known as Cauchy’s formula. Due to symmetry in α and z
on the right-hand side of (17), it implies [8]

〠
∞

n=−∞

zn

1 − αqn
= 〠

∞

n=−∞

αn

1 − zqn
: ð18Þ

The q-gamma function is defined as [7]

Γq xð Þ = q ; qð Þ∞
qx ; qð Þ∞

1 − qð Þ1−x, 0 < q < 1, x =ℂ − 0,−1,−2,…f g:

ð19Þ

Another important special function that is used in this
paper is the modified Jacobi theta function defined by [7]

θ x ; qð Þ = x ; qð Þ∞ q/x ; qð Þ∞, ð20Þ

where x ≠ 0 and jqj < 1. For a more detailed discussion on
q-series and historical perspectives, see, for example, [6–8]
and the references therein.

3. Szegö Kernel for an Annulus and Basic
Bilateral Series

In this section, we express the bilateral series (4) as a basic
bilateral series and derive the infinite product representation
of the Szegö kernel for Ω. It is given in the following
theorem.

Theorem 1. Let Ω be the annulus fz : ρ < jzj < 1g bounded
by Γ. For a ∈Ω, z ∈Ω ∪ Γ, the Szegö kernel for Ω can be rep-
resented by

S z, að Þ = 1
2π 1 + ρð Þ1

ψ1 −ρ;−ρ3 ; ρ2 ; �az
� �

, ð21Þ

= 1
2π

Y∞
n=0

1 + �azρ2n+1
� �

�az + ρ2n+1
� �

1 − ρ2n+2
� �2

1 − �azρ2nð Þ �az − ρ2n+2ð Þ 1 + ρ2n+1ð Þ2
: ð22Þ

The zero of Sðz, aÞ in Ω is the zero of the factor �az + ρ,
that is, z = −ρ/�a.

Proof. From (4), we have

S z, að Þ = 1
2π 〠

∞

n=−∞

�azð Þn
1 + ρ2n+1

= 1
2π 〠

∞

n=−∞

�azð Þn
1 − −ρð Þρ2n : ð23Þ

Letting α = −ρ and q = ρ2 yields

S z, að Þ = 1
2π 〠

∞

n=−∞

�azð Þn
1 − αqn

, ð24Þ

= 1
2π 1 − αð Þ 〠

∞

n=−∞

1 − α

1 − αqn
�azð Þn: ð25Þ

Applying (12) and (15) gives

S z, að Þ = 1
2π 1 − αð Þ 〠

∞

n=−∞

α, qð Þn
αq, qð Þn

�azð Þn

= 1
2π 1 − αð Þ1

ψ1 α ; αq ; q ; �azð Þ:
ð26Þ
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Note that the 1ψ1 series above is convergent because
jqj = ρ2 < 1 and jβ/αj = jαq/αj = jqj = ρ2 < j�azj < 1. Substitut-
ing α = −ρ and q = ρ2 into (26) gives (21).

Applying Ramanujan’s sum (16) to (26), gives

S z, að Þ = 1
2π 1 − αð Þ

α�az ; qð Þ∞ q/α�az ; qð Þ∞ q ; qð Þ2∞
�az ; qð Þ∞ q/�az ; qð Þ∞ q/α ; qð Þ∞ αq ; qð Þ∞

:

ð27Þ

But from (14), with n = 1, we have

1 − αð Þ αq ; qð Þ∞ = α ; qð Þ∞: ð28Þ

Thus, (27) becomes

S z, að Þ = 1
2π

α�az ; qð Þ∞ q/α�az ; qð Þ∞ q ; qð Þ2∞
�az ; qð Þ∞ q/�az ; qð Þ∞ q/α ; qð Þ∞ α ; qð Þ∞

, ð29Þ

= 1
2π

Y∞
n=0

1 − α�azqnð Þ 1 − qn+1/α�az
� �

1 − qn+1
� �2

1 − �azqnð Þ 1 − qn+1/�azð Þ 1 − qn+1/αð Þ 1 − αqnð Þ :

ð30Þ
Substituting α = −ρ and q = ρ2 into (30) gives (22).
The infinite product (22) would have poles if

1 − �azρ2n = 0 or �az − ρ2n+2 = 0, ð31Þ

which implies

z = 1
�aρ2n

or z = ρ2n+2

�a
: ð32Þ

But

1
aρ2nj j > 1, ρ

2n+2

�a

����
���� < ρ2n+1 < ρ: ð33Þ

Therefore, the poles are all outside Ω.
The infinite product (22) would have zeros if

1 + �azρ2n+1 = 0 or �az + ρ2n+1 = 0, ð34Þ

which implies

z = −
1

�aρ2n+1
or z = −

ρ2n+1

�a
: ð35Þ

For the first case

1
aρ2n+1j j >

1
ρ2n+1

> 1, ð36Þ

which is outside Ω. For the second case, observe that

ρ2n+1 < ρ2n+1

�a

����
���� = ρ2n+1

∣a ∣
< ρ2n, ð37Þ

which clearly has a zero inside Ω when n = 0. Thus, the infi-
nite product (22) for Sðz, aÞ has only one zero inside Ω at
z = −ρ/�a. This completes the proof.

We note that the series representation (21) for Sðz, aÞ is
valid only for ρ ≤ ∣z ∣ ≤1, while the infinite product represen-
tation (22) for Sðz, aÞ is meaningful for all z ∈ℂ except for
the infinitely many poles at z = 0, ρ−2n/�a, ρ2n+2/�a.

We next show that the Szegö kernel for Ω can also be
expressed in terms of the basic gamma function and modi-
fied Jacobi theta function. By applying (20) to (29) and
substituting α = −ρ and q = ρ2, we have

S z, að Þ = 1
2π

θ α�az ; qð Þ∞ q ; qð Þ2∞
θ �az ; qð Þ∞ q/α ; qð Þ∞ α ; qð Þ∞

= 1
2π

θ −ρ�az ; ρ2
� �

∞ ρ2 ; ρ2
� �2

∞

θ �az ; ρ2ð Þ∞ −ρ ; ρ2ð Þ2∞
:

ð38Þ

Applying (19) with q = ρ2, observe that

ρ2 ; ρ2
� �

∞
−ρ ; ρ2ð Þ∞

=
ρ2 ; ρ2
� �

∞
ρ2x ; ρ2ð Þ∞

=
Γρ2 xð Þ
1 − ρ2ð Þ1−x

, ð39Þ

where x satisfies ρ2x = −ρ. This equation may be written as

e 2x−1ð Þ ln ρ = eiπ, ð40Þ

which yields a solution

x = 1
2 + iπ

2 ln ρ
: ð41Þ

Thus, (38) becomes

S z, að Þ = Γρ2 λð Þ� 	2
2π 1 − ρ2ð Þ2 1−λð Þ

θ −ρ�az ; ρ2
� �

∞
θ �az ; ρ2ð Þ∞

, λ = 1
2 + iπ

2 ln ρ
:

ð42Þ

This can be regarded as a closed-form expression for the
Szegö kernel for Ω.

In the following, we show how to easily transform series
(4) to series (5) using (18). Letting α = −ρ and q = ρ2, (4)
becomes

S z, að Þ = 1
2π 〠

∞

n=−∞

�azð Þn
1 − αqn

= 1
2π 〠

∞

n=−∞

αn

1 − �azð Þqn , ð43Þ

where in the last step we have used (18). By replacing α = −ρ
and q = ρ2, we get

S z, að Þ = 1
2π 〠

∞

n=−∞

−1ð Þnρn
1 − �azð Þρ2n : ð44Þ
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Letting n = −m yields

S z, að Þ = 1
2π 〠

∞

m=−∞

−1ð Þ−mρ−m
1 − �azð Þρ−2m = 1

2π 〠
∞

m=−∞

−1ð Þmρm
ρ2m − �az

, ð45Þ

which is the same as (5).

4. Szegö Kernel for General Annulus

Consider the general annulus Ω2 = fz : r2 < jz − z0j < r1g
with boundary denoted by Γ2. The region Ω2 reduces to Ω
if z0 = 0, r2 = ρ, and r1 = 1:

Theorem 2. Let z0 ∈ℂ, z ∈Ω2 ∪ Γ2, and a ∈Ω2. The Szegö
kernel for Ω2 can be represented by the bilateral series as

S2 z, að Þ = 1
2π

〠
∞

n=−∞

�a − �z0ð Þn
r2n+11 + r2n+12

z − z0ð Þn, ð46Þ

= 1
2π

〠
∞

n=−∞

−1ð Þnrn+11 rn2
r2n2 r21 − r2n1 z − z0ð Þ �a − �z0ð Þ : ð47Þ

The zero of S2ðz, aÞ in Ω2 is z = z0 − r1r2/�a − �z0.

Proof. Observe that the function f ðzÞ = ðz − z0Þ/r1 maps Ω2
onto Ω with ρ = r2/r1.

Applying the transformation formula (6) yields

S2 z, að Þ =
ffiffiffiffiffiffiffiffiffiffiffi
f ′ zð Þ

q
S f zð Þ, f að Þð Þ

�ffiffiffiffiffiffiffiffiffiffiffi
f ′ að Þ

q

= 1ffiffiffiffi
r1

p S
z − z0
r1

, a − z0
r1

� � 1
�ffiffiffiffir1p

= 1
r1
S

z − z0
r1

, a − z0
r1

� �
:

ð48Þ

Applying (4) to (48) with z and a replaced by ðz − z0Þ/r1
and ða − z0Þ/r1, respectively, gives

S2 z, að Þ = 1
2πr1

〠
∞

n=−∞

z − z0ð Þ �az0ð Þ/r21
� �n
1 + r2/r1ð Þ2n+1 , ð49Þ

which simplifies to (46).
Applying (5) to (48) instead of z and a replaced by

ðz − z0Þ/r1 and ða − z0Þ/r1, respectively, gives

S2 z, að Þ = 1
2πr1

〠
∞

n=−∞

−1ð Þn r2/r1ð Þn
r2/r1ð Þ2n − z − z0ð Þ �az0ð Þ/r21

, ð50Þ

which simplifies to (47).
Using the fact that Sðz, aÞ has a zero at z = −ρ/�a for Ω,

the zero of S2ðz, aÞ for Ω2 is ðz − z0Þ/r1 = −ρ/ðð �az0Þ/r1Þ
which implies z = z0 − ðρr21/ð�a − �z0ÞÞ = z0 − ðr1r2/ðð�a − �z0ÞÞÞ.
This completes the proof.

Similarly, the infinite product representation of S2ðz, aÞ
for Ω2 can be obtained by applying (22) to (48) with z and
a replaced by ðz − z0Þ/r1 and ða − z0Þ/r1, respectively.

5. The Weighted Szegö Kernel for an Annulus
and Basic Bilateral Series

The weighted Szegö kernel is defined in [11] as

K̂
t
q z,wð Þ = 1

2π 〠
∞

n=−∞

�wzð Þn
1 + tq2n

, t > 0, q < zj j, wj j < 1: ð51Þ

To adopt the notations used in this paper, we change q to
ρ, w to a, and K̂

t
qðz,wÞ to Stρðz, aÞ in (51), which gives

Stρ z, að Þ = 1
2π 〠

∞

n=−∞

�azð Þn
1 + tρ2n

, t > 0, ρ < zj j, aj j < 1: ð52Þ

Note that Sρρðz, aÞ is exactly the kernel Sðz, aÞ for Ω dis-

cussed in Section 1. The zeros of the kernel Sρt ðz, aÞ are not
discussed in [11] but have expressed interest on the effect
of the weight on the location of its zeros. In the following
theorem, we express the weighted Szegö kernel Stρðz, aÞ as
a basic bilateral series and derive its associated infinite prod-
uct representation as well as its zeros.

Theorem 3. Let Ω be the annulus fz : ρ < jzj < 1g bounded
by Γ. For a ∈Ω, z ∈Ω ∪ Γ, and t > 0, the weighted Szegö ker-
nel Stρðz, aÞ for Ω can be represented by

Sρt z, að Þ = 1
2π 1 + tð Þ1

ψ1 −t;−tρ2 ; ρ2 ; �az
� �

, ð53Þ

= 1
2π

Y∞
n=0

1 + t�azρ2n
� �

�az + ρ2n+2/t
� �

1 − ρ2n+2
� �2

1 − �azρ2nð Þ �az − ρ2n+2ð Þ 1 + ρ2n+2/tð Þ 1 + tρ2nð Þ :

ð54Þ
The kernel Stρðz, aÞ has a zero in Ω only if t takes the form

t = ρ±ð2m+1Þ, m = 0, 1, 2,⋯. In both cases, the zero is z = −ρ/�a.

Proof. Observe that

Stρ z, að Þ = 1
2π 〠

∞

n=−∞

�azð Þn
1 − −tð Þρ2n : ð55Þ

Letting α = −t and q = ρ2, the above equation becomes

Stρ z, að Þ = 1
2π 〠

∞

n=−∞

�azð Þn
1 − αqn

, ð56Þ

which is exactly the same form as (24). Applying the result
(26) with α = −t, the above equation becomes

Stρ z, að Þ = 1
2π 1 + tð Þ1

ψ1 −t;−tq ; q ; �azð Þ: ð57Þ

Series (57) is convergent because jqj = ρ2 < 1 and
jβ/αj = j−tq/ð−tÞj = jqj < ρ2 < j�azj < 1. Substituting q = ρ2

gives (41).
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Applying the result (29) with α = −t to (57) yields

Stρ z, að Þ = 1
2π

−t�az ; qð Þ∞ q/ −tð Þ�az ; qð Þ∞ q ; qð Þ2∞
�az ; qð Þ∞ q/�az ; qð Þ∞ q/ −tð Þ ; qð Þ∞ −t ; qð Þ∞

:

ð58Þ

Replacing q = ρ2 and applying (13) give (54).
In the proof of Theorem 1, we have shown that the fac-

tors ð1 − �azρ2nÞð�az − ρ2n+2Þ have no zeros in Ω. The factors
ð1 + ρ2n+2/tÞð1 + tρ2nÞ would have zeros if

ρ2n+2/t = −1 or tρ2n = −1: ð59Þ

Since t > 0, we conclude that the kernel Stρðz, aÞ has no
poles in Ω for any t > 0. The factors ð1 + t�azρ2nÞð�az + ρ2n+2

/tÞ would have zeros if

1 + t�azρ2n = 0 or �az + ρ2n+2/t = 0, ð60Þ

which implies

z = −
1

t�aρ2n
or z = −

ρ2n+2

t�a
: ð61Þ

For the first case, observe that

1
tρ2n

< 1
t�aρ2nj j <

1
tρ2n+1

: ð62Þ

To have a zero in Ω, we must have the condition

ρ ≤
1

tρ2n
< 1

t�aρ2nj j <
1

tρ2n+1
≤ 1, ð63Þ

which means

t ≤
1

ρ2n+1
and t ≥ 1

ρ2n+1
: ð64Þ

Hence, we must have t = ρ−ð2n+1Þ. In this case, the zero of
Stρðz, aÞ in Ω is z = −ρ/�a.

For the second case, observe that

ρ2n+2

t
< ρ2n+2

t�aj j < ρ2n+1

t
: ð65Þ

To have a zero in Ω, we must have the condition

ρ ≤
ρ2n+2

t
< ρ2n+2

t�aj j < ρ2n+1

t
≤ 1, ð66Þ

which means

t ≤ ρ2n+1 and t ≥ ρ2n+1: ð67Þ

Hence, we must have t = ρ2n+1. In this case, the zero of Stρ
ðz, aÞ in Ω is also z = −ρ/�a. This completes the proof.

The weighted Szegö kernel can also be expressed in
terms of the basic gamma function and the modified Jacobi
theta function. By applying (20) to (58) with q = ρ2, we have

Stρ z, að Þ = 1
2π

θ −t�az ; ρ2
� �

∞ ρ2 ; ρ2
� �2

∞
θ �az ; ρ2ð Þ∞ ρ2/ −tð Þ ; ρ2ð Þ∞ −t ; ρ2ð Þ∞

: ð68Þ

Observe that

ρ2 ; ρ2
� �

∞
−t ; ρ2ð Þ∞

=
ρ2 ; ρ2
� �

∞
ρ2x ; ρ2ð Þ∞

=
Γρ2 xð Þ
1 − ρ2ð Þ1−x

, ð69Þ

where x satisfies ρ2x = −t. This equation may be written as

2x ln ρ = ln −tð Þ = ln −tj j + i arg −tð Þ = ln t + iπ, ð70Þ

which yields a solution

x = ln t + iπ
2 ln ρ

: ð71Þ

Observe also that

ρ2 ; ρ2
� �

∞
−ρ2/t ; ρ2ð Þ∞

=
ρ2 ; ρ2
� �

∞
ρ2y ; ρ2ð Þ∞

=
Γρ2 yð Þ
1 − ρ2ð Þ1−y

, ð72Þ

where y satisfies ρ2y = −ρ2/t. This equation may be written as

2y − 2ð Þ ln ρ = ln −
1
t

� �
= ln −

1
t

����
���� + i arg −

1
t

� �
= − ln t + iπ,

ð73Þ

which yields a solution

y = 1 + −ln t + iπ
2 ln ρ

: ð74Þ

Thus, (68) becomes

Stρ z, að Þ = Γρ2 μð ÞΓρ2 νð Þθ −t�az ; ρ2
� �

∞

2π 1 − ρ2ð Þ2−μ−νθ �az ; ρ2ð Þ∞
, μ

= ln t + iπ
2 ln ρ

, ν

= 1 + −ln t + iπ
2 ln ρ

:

ð75Þ

This can be regarded as a closed-form expression for the
weighted Szegö kernel for an annulus Ω. Observe that (75)
reduces to (42) when t = ρ.
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6. Numerical Computation of the Szegö
Kernel for an Annulus

In this section, we compare the speed of convergence of the
three formulas for computing the Szegö kernel for Ω based
on the two bilateral series (4) and (5) and the infinite prod-
uct (22).

To approximate (4) numerically, we calculate

S z, að Þ ≈ S10 z, að Þ = 1
2π 〠

10

k=−10

z�að Þk
1 + ρ2k+1

, ð76Þ

and S50 and S100.
To approximate (5) numerically, we calculate

S z, að Þ ≈ S∗10 z, að Þ = 1
2π 〠

10

k=−10

−1ð Þkρk
ρ2k − z�a

, ð77Þ

and S∗50.
To approximate (22) numerically, we compute

S z, að Þ ≈ S∗∗15 z, að Þ = 1
2π

Y15
k=0

1 + �azρ2k+1
� �

z�a + ρ2k+1
� �

1 − ρ2k+2
� �2

1 − z�aρ2k
� �

z�a − ρ2k+2
� �

1 + ρ2k+1
� �2 ,

ð78Þ

and S∗∗20 and S∗∗25 .
The approximations are then compared with the numer-

ical solution of the Kerzman-Stein Equation (7). To solve
(7), we used the Nyström method [5] with the trapezoidal
rule with n selected nodes on each boundary component
Γ0 and Γ1. The approximate solution is represented by ~Sn
where n is the number of nodes. All the computations were
done using MATHEMATICA 12.3. Four numerical exam-
ples are given for different values of a and ρ. The results
for the error norms are presented for each example.

We consider an annulus Ω bounded by

Γ0 : z0 tð Þ = eit ,
Γ1 : z1 tð Þ = ρe−it ,

ð79Þ

with 0 ≤ t ≤ 2π.

Table 1: Error norms between S10 and ~Sn, S50 and ~Sn, and S100 and
~Sn:

n S10 − ~Sn


 



∞ S50 − ~Sn


 



∞ S100 − ~Sn


 



∞

16 2.4536 (-02) 2.97754 (-03) 2.97758 (-03)

32 2.75019 (-02) 1.15906 (-05) 1.16299 (-05)

64 2.75136 (-02) 3.91113 (-08) 1.88349 (-10)

128 2.75136 (-02) 3.92996 (-08) 2.28878 (-15)

Table 2: Error norms between S∗10 and ~Sn and S∗50 and ~Sn.

n S∗10 − ~Sn


 



∞ S∗50 − ~Sn


 



∞

16 2.94797 (-03) 2.97758 (-03)

32 1.78995 (-02) 1.16299 (-05)

64 1.77628 (-04) 1.88351 (-10)

128 1.77628 (-04) 1.81497 (-15)

Table 3: Error norms between S∗∗15 and ~Sn, S
∗∗
20 and ~Sn, and S∗∗25 and

~Sn.

n S∗∗15 − ~Sn


 



∞ S∗∗20 − ~Sn


 



∞ S∗∗25 − ~Sn


 



∞

16 2.97758 (-03) 2.97758 (-03) 2.97758 (-03)

32 1.16296 (-05) 1.16299 (-05) 1.16299 (-05)

64 1.44308 (-10) 1.88038 (-10) 1.8835 (-10)

128 3.1999 (-10) 3.1275 (-13) 1.82618 (-15)

Table 4: Error norms between S10 and ~Sn, S50 and ~Sn, and S100 and
~Sn.

n S10 − ~Sn


 



∞ S50 − ~Sn


 



∞ S100 − ~Sn


 



∞

16 1.29695 (-02) 1.46732 (-03) 1.46732 (-03)

32 1.56432 (-02) 7.88666 (-06) 7.88666 (-06)

64 1.5646 (-02) 3.26124 (-08) 2.2539 (-10)

128 1.5646 (-02) 3.26942 (-08) 2.85127 (-15)

Table 5: Error norms between S∗10 and ~Sn and S∗50 and ~Sn.

n S∗10 − ~Sn


 



∞ S∗50 − ~Sn


 



∞

16 1.46686 (-03) 1.46732 (-03)

32 8.4009 (-06) 7.88666 (-06)

64 1.02367 (-06) 2.2539 (-10)

128 1.02367 (-06) 1.25883 (-15)

Table 6: Error norms between S∗∗5 and ~Sn, S
∗∗
10 and ~Sn, and S∗∗15 and

~Sn.

n S∗∗5 − ~Sn


 



∞ S∗∗10 − ~Sn


 



∞ S∗∗15 − ~Sn


 



∞

16 1.4675 (-03) 1.46732 (-03) 1.46732 (-03)

32 7.70793 (-06) 7.88666 (-06) 7.88666 (-06)

64 3.72977 (-07) 2.2434 (-10) 2.2539 (-10)

128 3.73107 (-07) 2.2023 (-12) 1.41308 (-15)

Table 7: Error norms between S10 and ~Sn, S50 and ~Sn, and S100 and
~Sn.

n S10 − ~Sn


 



∞ S50 − ~Sn


 



∞ S100 − ~Sn


 



∞

16 6.45804 (-02) 8.28061 (-03) 8.28061 (-03)

32 6.82534 (-02) 2.2673 (-04) 2.2673 (-04)

64 6.83565 (-02) 9.0045 (-06) 1.79491 (-07)

128 6.83565 (-02) 9.08614 (-06) 1.29631 (-10)
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Example 1. We consider an annulus Ω with a = 0:7i and
ρ = 0:5. The results for the error norms are presented in
Tables 1–3.

Example 2. We consider an annulus Ω with a = −0:4 − 0:6i
and ρ = 0:3. The results for the error norms are presented
in Tables 4–6.

Example 3. We consider an annulus Ω with a = −0:8 and
ρ = 0:4. The results for the error norms are presented in
Tables 7–9.

Example 4. We consider an annulus Ω with a = −0:4 − 0:5i
and ρ = 0:1. The results for the error norms are presented
in Tables 10–12.

The numerical results presented in Tables 1–12 show
that computations using the infinite product formula (22)
converge faster than the bilateral series formulas (4) and (5).

7. Conclusion

This paper has shown that the bilateral series for the Szegö
kernel forΩ is a disguised bilateral basic hypergeometric series

1ψ1. Ramanujan’s sum for 1ψ1 is then applied to obtain the
infinite product representation for the Szegö kernel for Ω.
The product clearly exhibits the zero of the Szegö kernel for
anΩ. The Szegö kernel can also be expressed as a closed form
in terms of the q-gamma function and the modified Jacobi
theta function. Similar q-analysis has also been conducted
for the Szegó kernel for general Ω and for the weighted Szegö
kernel forΩ. The numerical comparisons have shown that the
infinite product method converges faster than the bilateral
series methods for computing the Szegö kernel for Ω.

For future work, it is natural to devote further investigation
on the infinite product representation for the Szegö kernel for
doubly connected regions via the transformation formula (6)
and Theorem 1. This however requires knowledge of conformal
mapping of doubly connected regions to annulus [12–15]. For
some ideas on numerical methods for computing the zero of
the Szegö kernel for doubly connected regions, see [16]. Alter-
natively, perhaps some computational intelligence algorithms
can also be considered to compute the zero, like the monarch
butterfly optimization (MBO) [17], earthworm optimization
algorithm (EWA) [18], elephant herding optimization (EHO)
[19], moth search (MS) algorithm [20], slime mould algorithm
(SMA) [21], and Harris hawks optimization (HHO) [22].
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Table 8: Error norms between S∗10 and ~Sn and S∗50 and ~Sn.

n S∗10 − ~Sn


 



∞ S∗50 − ~Sn


 



∞

16 8.28737 (-03) 8.28061 (-03)

32 2.33562 (-04) 2.2673 (-04)

64 1.79806 (-05) 1.79491 (-07)

128 1.78806 (-05) 1.1287 (-15)

Table 9: Error norms between S∗∗5 and ~Sn, S
∗∗
10 and ~Sn, and S∗∗15 and

~Sn.

n S∗∗5 − ~Sn


 



∞ S∗∗10 − ~Sn


 



∞ S∗∗15 − ~Sn


 



∞

16 8.27577 (-03) 8.28061 (-03) 8.28061 (-03)

32 2.2189 (-04) 2.26729 (-04) 2.2673 (-04)

64 1.13437 (-05) 1.78984 (-07) 1.79491 (-07)

128 1.14253 (-05) 1.19798 (-09) 7.90864 (-14)

Table 10: Error norms between S10 and ~Sn, S50 and ~Sn, and S100 and
~Sn.

n S10 − ~Sn


 



∞ S50 − ~Sn


 



∞ S100 − ~Sn


 



∞

16 3.15879 (-03) 2.61429 (-04) 2.61429 (-04)

32 3.22447 (-03) 2.08805 (-07) 2.08805 (-07)

64 3.28124 (-03) 5.91022 (-11) 1.33153 (-13)

128 3.28124 (-03) 5.91168 (-11) 1.33233 (-15)

Table 11: Error norms between S∗10 and ~Sn and S∗50 and ~Sn.

n S∗10 − ~Sn


 



∞ S∗50 − ~Sn


 



∞

16 2.61429 (-04) 2.61429 (-04)

32 2.0879 (-07) 2.08805 (-07)

64 1.68217 (-11) 1.33183 (-13)

128 1.67281 (-11) 1.16606 (-15)

Table 12: Error norms between S∗∗5 and ~Sn, S
∗∗
10 and ~Sn, and S∗∗15

and ~Sn.

n S∗∗5 − ~Sn


 



∞ S∗∗10 − ~Sn


 



∞ S∗∗15 − ~Sn


 



∞

16 2.61429 (-04) 2.61429 (-04) 2.61429 (-04)

32 2.08805 (-07) 2.08805 (-07) 2.08805 (-07)

64 6.46416 (-13) 1.3313 (-13) 1.33121 (-13)

128 6.77069 (-13) 1.49882 (-15) 1.55654 (-15)
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