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A B S T R A C T   

The increasing demand for cooling and refrigeration poses an urgent need in designing efficient and low-cost 
thermal energy storage systems for future energy systems. While multiple effects may affect the heat transfer 
behaviors during thermal energy storage, these effects can be lumped into one parameter, the effective thermal 
conductivity. Effective thermal conductivity provides a simple and reliable solution for accurate numerical 
simulations in designing a thermal energy storage system. In this study, a novel experimental, numerical and 
Bayesian optimization-based method is developed and validated that allows for fast and accurate measurement 
of the effective thermal conductivities over a wide temperature range. The method can also be applied to other 
bulky and heterogeneous structures that cannot be considered as continuous media. An experimental setup and a 
3D numerical model were developed for the plate-type thermal energy storage. After a thorough algorithm 
comparison, Bayesian optimization using Gaussian process was selected to search for the effective thermal 
conductivities with high accuracy (root mean square error < 2 K and R-squared between 0.975 and 0.992). The 
effective thermal conductivities measured using deionized water as the phase change material were validated by 
a COMSOL simulation. With the accurate effective thermal conductivity results, we revealed that neglecting the 
effective thermal conductivity for the solid phase while still using conduction models will lead to significant 
errors in the simulation. A duo arch-shaped graphite sheet-based macrofiller is designed and inserted into the 
plate-type thermal energy storage, which increased the effective thermal conductivities by around 20% and 
suppressed the subcooling effect.   

1. Introduction 

The demand for heating and cooling currently accounts for around 
50% of global final energy consumption and more than 40% of energy- 
related CO2 emissions [1]. These numbers are still growing rapidly as a 
result of economic growth, urbanization, and climate change [1–3]. In 
this context, thermal energy storage (TES) is playing an increasingly 
important role in the energy industry by decoupling the heat and cold 
consumptions from their productions, which is subjected to the spatial 
and temporal availability of the energy supply, especially from the 
renewable sources [4]. The worldwide TES capacity is expected to triple 
in the next decade and reach over 800 GWh in 2030 [4,5], posing an 

urgent need in designing efficient and affordable TES units with the most 
suitable heat transfer enhancement techniques for future energy 
systems. 

Numerical simulation is one of the first and most vital steps in 
designing a TES unit [2,6]. However, the highly complex conjugate heat 
transfer by both conduction and convection during the TES operation 
adds to the complexity of the numerical models and impedes accuracy. 
The process becomes even more complex if heat transfer enhancement 
techniques are applied. Taking latent heat TES using phase change 
materials (PCMs) as an example, several mechanisms have significant 
impacts on the heat transfer and the overall performance of a TES unit: 
natural convection [7–9] and free movements of solid PCM in uncon-
strained melting [8,10,11] can enhance the heat transfer, whereas 
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subcooling [12,13] and thermal contact resistance [14–16] deteriorate 
the TES unit's performance. Considering these mechanisms in a nu-
merical model will make the simulation process considerably compli-
cated. As a result, despite their influence on the accuracy, most studies 
ignore at least one of these effects [14,17–19]. 

A simple yet accurate method for TES simulation, on the other hand, 
is widely adopted to avoid these issues. Incorporating the effects of all 
the complex heat transfer mechanisms into one parameter: the effective 
thermal conductivity, or keff, can simplify the heat transfer of a TES unit to 
a heat conduction process [20,21]. Henceforth, the complexity of the 
simulation can be significantly reduced while still providing reliable 
approximations of the TES performance for the system design [21,22]. 

Moreover, keff is essential to evaluating TES systems using macro-
fillers to enhance heat transfer. Due to the generally low thermal con-
ductivity of the TES materials, heat transfer enhancement techniques are 
commonly used to improve the performance of the TES units. These 
techniques mainly include 1) adding microfillers (such as nucleating and 
thickening agents [2,23]) to the TES materials; and 2) inserting macro-
fillers (such as metal foams [24], metal plates [25], metal pins [26], 
graphite matrix [7,27], metal wool [28], carbon fiber cloths and brushes 
[29]) into the TES material enclosures. Compared to microfillers, 
inserting macrofillers, or fixed high-conductivity inserts [30], provide 
several advantages such as no particle precipitation problem, ease of 
manufacturing, and can be engineered to reduce the thermal contact 
resistance. However, the TES material domain will also become het-
erogeneous, as it contains both the TES material and the macrofiller. The 
thermal conductivity of such a domain cannot be directly measured by 
material-level experimental instruments, such as modulated differential 
scanning calorimetry (mDSC) [31] and laser flash [32]; or methods for 
homogeneous and isotropic medium, such as hot-wire method [33,34] 
and probe method [32]. As a result, a keff representing the overall heat 
conduction properties of the TES unit with macrofillers can be used to 
evaluate its performance. 

Previous research mentioned two types of methods to determine the 
keff of a TES unit with bulky and heterogeneous structures: the direct and 
indirect methods. 

Direct methods compute the keff directly from measured variables 
using specific equations. As described by Yüksel [32] and Palacios et al. 

[35], direct methods can be either steady-state or transient. For 
example, the steady-state heat flow meter method guards the material 
sample between a hot plate and a cold plate to generate one-directional 
heat conduction. A heat flux sensor is used to detect the heat flow, and 
adequate insulation is needed to avoid heat leakage. The keff can then be 
calculated from Fourier's Law. This method is widely applied to the 
measurement of keff values, including PCMs with two distinctive phases 
[36] and copper foam fillers [30]. On the other hand, Prieto et al. [37] 
used the transient plane source hot-disk technique to measure the keff of 
metal wool-resin compounds. In this method, the keff is calculated from 
an equation involving the sensor power input, sensor geometry, time, 
and temperature increase. In general, direct methods are simple in terms 
of the calculation of the keff values and can produce reliable results as 
long as the heat flux sensors can be precisely calibrated, or the electric 
heat input can be accurately quantified. However, direct methods have 
some drawbacks. Firstly, they cannot evaluate the overall behavior of 
the TES materials during a complete charging/discharging process 
within one measurement. Steady-state can be difficult to reach and 
maintain if extra heat or cold is supplied during the measurement while 
the phase change is ongoing, and transient methods can only measure 
the keff of an instant. To obtain the relationship between the steady-state 
keff and the mean temperature, Yang et al. [36] had to assume a quasi- 
steady-state phase change and conduct a series of measurements at 
various different temperatures. Secondly, direct methods require a well- 
controlled environment to minimize the effect of heat leakage on the 
measured heat/cold flow, which becomes challenging if the measuring 
temperature deviates far from the ambient. To minimize the heat 
leakage, Feng et al.'s [30] experiments (using water as the PCM) were 
carried out in the cold winter with a room temperature of − 12 ◦C. Last 
but not least, thermal contact resistance between the samples and the 
sensors affects the measuring accuracy. Pressure is usually applied to 
decrease but not eliminate the thermal contact resistance, which may 
affect the reliability of the measured keff results. 

On the contrary, indirect methods can cover the whole charging/ 
discharging process, function over a considerably wider temperature 
range, and incorporate the effect of thermal contact resistance into the 
keff. This type of method uses computational fluid dynamics (CFD) 
models to generate numerical simulation results, which will be 

Nomenclature 

CFD Computational Fluid Dynamics 
DI Deionized 
DSC Differential Scanning Calorimetry 
EI Negative expected improvement 
HTF Heat Transfer Fluid 
LCB Lower confidence bound 
PCM Phase Change Material 
PI Negative probability of improvement 
RTD Resistance temperature detector 
TES Thermal Energy Storage 

Subscripts 
exp. experimental 
filler Filler 
k Number of the boundary conditions 
l Liquid 
m Number of the initial conditions 
mel Melting 
n Number of the measuring points 
PC Phase change 
s Solid 
sol Solidification 

w Wall 

Symbols 
cp Specific heat capacity [J kg− 1 K− 1] 
d Depth or distance [m] 
h Height [m] 
k Thermal conductivity [W m− 1 K− 1] 
L Latent heat of fusion [J kg− 1] 
LF Liquid fraction [− ] 
MSE Mean squared error [K2] 
N Total number of samples [− ] 
q Heat flow [W m− 2] 
R Thermal resistance [m2 K W− 1] 
RMSE Rooted mean squared error [K] 
T Temperature [K] 
t Time [s] 
w Width [m] 

Greek symbols 
ΔTPC Phase transition range [K] 
δ Thickness [m] 
Φ Macrofiller volumetric fraction [− ] 
ρ Density [kg m− 3]  
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compared with the experimental results. Through the comparison, the 
keff values that make the numerical data fit the best with the experi-
mental data will be output as the measuring results. Facilities like 
thermal baths, which are widely used in indirect methods, are easier for 
heat leakage control. Hence, indirect methods can provide a more 
extensive temperature range. The experiments can be carried out at 
temperature conditions similar to those in which the TES will be used in 
real applications. Using indirect methods, Bédécarrats et al. [22], Amin 
et al. [38], Tay et al. [39], and Aziz et al. [26] developed complex CFD 
models to obtain the keff values for liquid PCMs encapsulated in spheres 
and shell-and-tube TES units. However, compared to direct methods, the 
existing indirect methods are either less accurate or more time- 
consuming because considerable rounds of CFD iterations are required 
to determine the most appropriate keff value. Searching for the keff value 
manually is inefficient, can fall into a local optimum, and can only offer 
low-precision results. The difficulty of manual searching also increases 
exponentially if more than one keff values – for example, the effective 
thermal conductivities for both liquid and solid phases of the PCMs (keff, l 
and keff, s) – are required. As can be seen in the studies of Borri et al. [13], 
Bédécarrats et al. [22], and Aziz et al. [26], adopting the concept of 
effective thermal conductivity only for the liquid phase, while neglect-
ing the effects of thermal contact resistance and subcooling to the solid 
phase, led to a faster increase and decrease of the solid temperature 
during the melting and solidification process. In order to obtain the most 
accurate values for both keff, l and keff, s, Waser et al. [40] developed an 
fast-computing 1D CFD model and applied the grid search method – 
scanning a wide range of possible combinations by uniform sampling of 
keff, l and keff, s values – to ensure the global optimum is reached. The 
accuracy of such a method is limited by the sampling density and the 
quality of the CFD model, but high sampling density and sophisticated 
CFD models consume significantly more computing time. Therefore, 
despite of the various advantages over the direct methods, the applica-
tion of indirect methods is constrained by the inefficient and inaccurate 
keff searching process. 

To overcome the shortcomings of the existing methods, a novel 
experimental, numerical, and Bayesian optimization-based indirect 
method that is accurate and fast with simple experimental facilities is 
presented in this study. Compared to existing indirect methods, a ma-
chine learning-based Bayesian Optimization algorithm is employed to 
quickly and accurately search for the most accurate values for more than 
one keff value simultaneously, including the keff of solid and liquid 
during both melting and solidification processes (keff, l, mel, keff, l, sol, keff, 

s, mel, and keff, s, sol). Due to the high efficiency of the algorithm, much 
fewer rounds of CFD iterations are needed to achieve an adequate level 
of accuracy. Therefore, more sophisticated CFD models, such as 2D and 
3D models, or models with complex geometries, can be employed to 
generate more accurate simulation results. Moreover, this method is not 
only suitable for the TES systems but also for the other bulky and het-
erogeneous constructions. In this research, a 3D numerical model was 
developed to accurately simulate the behavior of a test cell designed for 
plate-type TES keff measurement. The 3D model also allows for 
comparing the CFD and experimental temperature profiles of more than 
one measuring point at various locations in the PCM domain, further 
increasing the accuracy of the keff measurements. The obtained keff re-
sults are discussed and validated by commercial software against the 
experimental data. In the last part of the paper, the method is demon-
strated by measuring the keff values of TES with a novel graphite-based 
macrofiller design. The inserted macrofiller increased the keff by around 
20% and eliminated the subcooling. 

The novelties of this research are:  

1) proposed a novel experimental, numerical, and Bayesian 
optimization-based method that enabled fast and accurate mea-
surement of the keff values of bulky and heterogenous materials over 
a wide temperature range during the entire operation process;  

2) accurately obtained four keff values for both liquid and solid phases 
during melting and solidification processes simultaneously for PCMs 
using the highly efficient searching algorithm;  

3) provided new insights into the water used as a PCM and pointed out 
that neglecting the effects of thermal contact resistance and air 
bubble formation may lead to an overestimation of the solidification 
and melting speed;  

4) demonstrated the usage of this method in measuring the heat transfer 
enhancement performance of a new macrofiller design. 

2. Methodology 

As illustrated in Fig. 1, the numerical and machine learning-based 
method proposed in this study contains three interactive parts:  

a) An experimental setup that mimics a targeted TES unit's operation. 
The TES material sample is contained in a test cell. The temperature 
profiles Texp(t) of more than one measuring point (from 1 to n) inside 
the test cell are measured and recorded in the data logger. 

Texp(t) =
[
Texp,1(t) ⋯ Texp,n(t)

]
(1) 

The initial and boundary conditions (TIC and TBC(t)), such as the 
initial TES material temperature and wall temperatures, are also 
measured and recorded to be input to the CFD model. 

TIC = [TIC,1 ⋯ TIC,m ] (2)  

TBC(t) = [TBC,1(t) ⋯ TBC,k(t) ] (3)    

b) A CFD model to simulate the operation of the TES. With the TIC and 
TBC(t) from the measuring experiment, the CFD model generates the 
local temperature profiles of the measuring points based on the 
effective thermal conductivity input from the keff updating model. 

TCFD
(
keff , t

)
= [TCFD,1(t) ⋯ TCFD,n(t) ] (4) 

Initial guess of the keff

TCFD matches the Texp

Simulated 
temperature profiles

TCFD

3D CFD model

Final results of the keff

Yes

Temperature profiles
 of the measuring

 points Texp

Initial and boundary 
Conditions TIC, TBC

Measuring 
experiment

keff updating 
model

No

Updated guess 
of the keff

Fig. 1. The working principle of the numerical and machine learning-based 
method to measure the effective thermal conductivity. 
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c) An optimization algorithm-based keff updating model to look for the 
most accurate keff values. The model generates the guessed keff values 
for each iteration until the final keff is found that creates the best fit 
between TCFD(keff, t) and Texp(t). For sensible TES materials and other 
materials that do not go through phase transitions during the oper-
ation, only one keff covering the operation temperature range is 
needed: 

keff =
[
keff

]
(5)  

for PCMs, the keff values of both solidification and melting processes will 
be generated: 

keff,sol = [ keff,l,sol keff,s,sol ] (6)  

keff,mel = [ keff,l,mel keff,s,mel ] (7) 

Details of the three parts implemented in this study are provided as 
follows. 

2.1. Experimental setup 

The experimental setup should provide accurate measurement of the 
temperature profiles during the TES operation. To demonstrate the 
method, this study used a simple setup for the design of the macro-filler 
for plate-type TES using PCMs. The setup comprises of two parts: a keff 
test cell containing the TES material and macrofiller (Fig. 2a and b), and 
a thermal bath that holds the test cell (Fig. 2c and d). 

To ensure the results measured can be directly used in the TES 
design, the keff test cell should guarantee the effects of natural convec-
tion, solid movements, thermal contact resistance, and subcooling are at 

(a) (b)

(c) (d)

h

Tside Tfront/back

Tbottom

Tcenter

Tcorner

Tair gap

Sample

Air gap

Tside

Tbottom

Tfront/back

Insulation layer

To data logger
Thermal bath

HTF

keff test cell

Insulation lid

Test cell 
stand

Insulation lid
(opened)

Test cell stand

HTF

keff test cell

Fig. 2. Schematics and photographs of the test cell setup. (a) and (b): the keff test cell; (c) and (d) the test cell inserted into the chamber of the thermal bath. The RTDs 
are inserted through dedicated opening on the insulation lid, which is used to maintain the temperature inside the thermal bath chamber. The level of the HTF is kept 
above the level of the sample in the test cell to ensure isothermal temperature boundary conditions. 
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the same scale as the real-sized TES unit. As illustrated in Fig. 3, the size 
of the test cell was selected to be the smallest repeating structure of a 
macro-scale TES unit in real applications. The test cell was made with 
the same enclosure material and exposed to the same cooling and 
heating rate since the cooling rate affects the degree of subcooling [17]. 
In this study, the thermal bath offered controllable uniform temperature 
boundary conditions to the test cell by circulating the heat transfer fluid 
(HTF) at a high speed. 3M™ Novec™ 7100 was chosen to be the HTF 
due to its low viscosity compared to other HTFs at low temperatures 
(around 1 mm2 s− 1 at − 20 ◦C). 

As illustrated in Fig. 2a, six resistance temperature detectors (RTDs, 
Omega™ PT-100 with the maximum deviation of less than ±0.40 ◦C in 
the experimental range) were attached to the walls or inserted into the 
test cell to measure the boundary conditions (Tbottom, Tfront/back and 
Tside), the TES material temperatures (Tcenter and Tcorner), and the air gap 
temperature (Tair gap). The shielded RTDs (Tcenter, Tcorner, and Tair gap) 
were inserted through dedicated grooves in the insulation lid that covers 
the bath chamber (Fig. 2c). The insulation lid minimizes the interaction 
between the bath and the ambient environment and fixes the positions of 
the test cell RTDs together with the test cell stand. 

Parameters of the test cell and thermal bath are listed in Table 1. The 
setup was assembled and the tests were carried out at the Thermal En-
ergy Systems Lab at Nanyang Technological University (TESLAB@NTU) 
[41]. 

2.2. 3D CFD model 

A heat conduction-based 3D finite volume CFD model was devel-
oped. Compared to 1D or 2D models used in previous studies with in- 
house developed codes, the 3D model is more accurate and not con-
strained to specific geometries of the TES units. 

The key assumptions of the CFD model are listed below:  

1. Both solidification and melting start from a uniform temperature 
distribution within the test cell. Tair gap(t) is used to indicate the 
uniform temperature distribution is reached if it is the same as 
Tcenter(t) and Tcorner(t).  

2. Temperature boundary conditions for the bottom surface, the front 
and back surfaces, and the two side surfaces are measured by Tbot-

tom(t), Tfront/back(t) and Tside(t), respectively. The top surface is 

assumed to be adiabatic since the thermal conductivity of air is 
significantly smaller than most solid or liquid TES materials [2]. 
From the experimentally validated simulation of Calvet et al. [19] for 
a sphere filled with water as the PCM, no noticeable temperature 
difference is seen above and beneath the PCM-air gap interface, 
indicating the heat transfer between the air gap and the PCM can be 
neglected.  

3. The influence of the temperature sensors on the heat transfer inside 
and outside the test cell is neglected. Thermal contact resistance 
between the surface temperature sensors and the stainless steel 
surfaces is also neglected since they are closely attached to the test 
cell walls with welded clips.  

4. The volume change of the PCM is neglected during the phase 
transition. 

By considering only heat conduction, the energy conservation of the 
heat transfer is 

(
Φρfillercp,filler +(1 − Φ)ρPCMcp,PCM

) ∂T(t)
∂t

= keff

(
∂2T(t)

∂x2 +
∂2T(t)

∂y2 +
∂2T(t)

∂z2

)

(8)  

where Φ is the ratio of the macrofiller volume Vfiller in the TES material 
structure VPCM + Vfiller, 

Φ =
Vfiller

VPCM + Vfiller
(9) 

ρfiller and cp, filler are the density and specific heat capacity of the 
macrofiller material, ρPCM is the density of the PCM given by 

ρPCM = LFρPCM,l +(1 − LF)ρPCM,s (10)  

where ρPCM, l and ρPCM, s are the densities of the PCM in liquid and solid 
phases. LF is the liquid fraction defined by 

LF =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, when T ≥ TPC +
1
2
ΔTPC

T − TPC +
1
2
ΔTPC

ΔTPC
, when TPC −

1
2

ΔTPC < T < TPC +
1
2

ΔTPC

0, when T ≤ TPC −
1
2
ΔTPC

(11) 

TPC is the phase change temperature, and ΔTPC is an assumed tem-
perature range where the phase change takes place. Similarly, the 
effective thermal conductivity keff is calculated as 

keff = LFkeff,l +(1 − LF)keff,s (12) 

The specific heat capacity of the PCM, cp, PCM, is defined as 

TES material 
enclosures

HTF

Size of a 
test cell

Fig. 3. Size of a keff test cell (shown in pink color) for a plate-type TES unit with 
the duo arch-shaped macrofillers. The size of the test cell is selected to be the 
smallest repeating structure of the macro-scale TES unit in real applications. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Table 1 
Specifications of the experimental setup.  

Variables/items Values/names 

Test cell 
Width, w 100.4 [mm] 
Height, h 110.0 [mm] 
Depth, d 25.0 [mm] 
Test cell material Stainless Steel 304 
Wall thickness, δ 1.5 [mm] 
Wall thermal conductivity, kw 14.0 [W m− 1 K− 1] 
Temperature sensor Omega™ PT 100 (< ± 0.40 ◦C)  

Thermal bath 
Heat transfer fluid 3M™ Novec™ 7100 
Temperature range − 120 ◦C to 30 ◦C 
Chamber material Stainless Steel 304 
Chamber diameter 210 [mm] 
Chamber depth 250 [mm]  
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where cp, PCM, l and cp, PCM, s are the specific heat capacity of the PCM in 
liquid and solid phases and L is the latent heat of the PCM. 

Since the effect of the thermal contact resistance between the TES 
material and the walls is considered as part of keff, the thermal resistance 
of the test cell walls, Rw, is the only thermal resistance considered in the 
model, 

Rw =
δ

kw
(14)  

where δ and kw are the thickness and thermal conductivity of the walls. 
The 3D CFD model was developed with C++ [42] for fast computing 

(modified based on an open-sourced code [43]). Grid independence test 
showed that the 3D CFD model could generate reliable TCFD(t) results 
with less than 10 s on a commercial laptop with an Intel Core i7-10750H 
central processing unit (CPU) @ 2.60GHz and a random-access memory 
(RAM) of 16 GB. With the temperature profiles of all measuring points 
Texp(t) obtained from the experiments, and the other variables, Φ, ρPCM, 
ρfiller, cp, PCM, and cp, filler being either known or measurable, keff is the 
only unknown variable in Eq. (8). Analytically solving Eq. (8) for keff is 
challenging. However, the keff can be estimated with high accuracy after 
a certain number of iterations between the 3D CFD model and the keff 
updating model until a TCFD(t) closest to Texp(t) is found. 

2.3. Optimization algorithm-based keff updating model 

The goal of the keff updating model is to find out the best keff based on 
the previous iterations. The mean squared error (MSE) between the CFD 
and experimental temperature profiles is used as the objective function: 

minMSE
(
keff

)
=

1
nN

∑N

j=1

∑n

i=1

(
TCFD,i

(
keff , j

)
− Texp,i(j)

)2 (15)  

where i denotes a measuring point (Tcenter and Tcorner in this study) and n 
is the total number of the measuring points; j represents a sample in TCFD, 

i(t) or Texp, i(t) and N is the total number of Texp, i samples for each 
measuring point during the solidification or melting processes. Hence, 
the task of searching for the best keff is converted to an optimization 
problem, and an optimization algorithm can be used to look for the 
global optimum of Eq. (15). 

The optimization algorithm should be able to conduct fast and ac-
curate predictions from a black-box process without knowing the details 
inside the process except for the inputs and outputs. Therefore, in this 
study, we tested and compared the performance of six commonly used 
optimization algorithms for hyperparameter optimization, which is a 
well-studied black-box problem [44] similar to the keff searching prob-
lem. As a result, the widely applied Bayesian Optimization using 
Gaussian Process, which is a machine learning-based tool suitable for 
problems with objective functions that are expensive to evaluate (takes 
minutes or hours) [45,46], delivered the best overall performance. 

In the algorithm comparison test, an artificially assumed keff and 
other parameters were input to the 3D CFD model to generate a hypo-
thetical T′

exp(t) for the algorithm performance comparison. We 
compared the accuracy and execution time of four machine learning- 
based optimization algorithms [45]: Bayesian optimization using 

Gaussian process, sequential optimization using extra decision trees, random 
forest, and gradient boosted trees. The performance of random search by 
uniform sampling [45] and the commonly used genetic algorithm [47] are 
also employed for reference in the comparison. 

The accuracies of the algorithms are expressed in terms of root mean 
squared errors (RMSE), which is defined as: 

RMSE =
̅̅̅̅̅̅̅̅̅̅
MSE

√
(16) 

During the algorithm comparison test, the execution time of the 
genetic algorithm was significantly longer than the other algorithms 
(can be even ten times longer). At the same time, its results were not 
consistent regardless of the population sizes: increasing the number of 
calls will not always increase the accuracy. Therefore, only the results of 

cp,PCM =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

L
ΔTPC

+

cp,PCM,l, when T ≥ TPC +
1
2

ΔTPC

LFcp,PCM,l + (1 − LF)cp,PCM,s when TPC −
1
2
ΔTPC < T < TPC +

1
2
ΔTPC

cp,PCM,s when T ≤ TPC −
1
2
ΔTPC

(13)   

Fig. 4. Performance comparison of the algorithms for keff searching. Bayesian 
optimization using Gaussian process with LCB as the acquisition function 
delivered the best performance. (Types of acquisition functions used to compare 
the algorithms: LCB – lower confidence bound; EI – negative expected 
improvement; PI – negative probability of improvement). 
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the other five algorithms are summarized in Fig. 4. 
During the test, we found no significant difference in the execution 

time for all of the algorithms except for the genetic algorithm. In terms 
of accuracy, Bayesian optimization using Gaussian process and lower 
confidence bound (LCB) as the acquisition function achieved an RMSE of 
0.02 K after only 10 calls (or iterations between the 3D CFD model and 
the keff updating model). The other algorithms failed to attain this level 
even after 20 calls, except for sequential optimization using gradient 
boosted trees and LCB, which obtained an error of 0.003 K. However, its 
error after 10 calls is around 10 times of Bayesian optimization using 
Gaussian process and LCB. Hence, the latter demonstrated the best 
overall performance in terms of both accuracy and speed, proving itself 
more suitable for the keff searching task. The result is similar to the 
conclusion drawn by Turner et al. [44]. After analyzing the outcomes of 
a black-box optimization competition, they found that Bayesian opti-
mization demonstrated decisively better performance than random 
search, and all of the top-performing teams in the competition used 
some forms of Bayesian optimization for the machine learning hyper-
parameter optimization tasks. 

Therefore, Bayesian optimization using Gaussian process and LCB 
was selected as the algorithm of the keff updating model for this study. 
The model was developed in Python [48]. The stopping criteria of the 
iteration between the 3D CFD model and the keff updating model was set 
to be less than 0.1% of improvement in MSE compared to the previous 
call, ensuring the most accurate keff values were found. 

3. Results and discussion 

3.1. Testing with DI water and validation of the algorithm generated keff 

To validate the method's functionality, we used deionized (DI) water 
as the PCM for the validation tests. The measurements were carried out 
between 20 ◦C and − 20 ◦C with the temperature of the HTF circulating 

around the test cell controlled by the thermal bath. 
The experimentally measured temperature profiles Texp(t) =

[
Texp,center(t) Texp,corner(t)

]
are shown in solid lines in Fig. 5. During the 

solidification process, Tcenter and Tcorner shifted due to the water density 
change at around 4 ◦C, the same phenomenon as explained by Calvet 
et al. [19]. The subcooling degrees of the bottom and center measuring 
points were 1.1 and 2.2 ◦C, indicating that subcooling is not uniform 
across the whole PCM domain. During the melting process, the unmelt 
ice moves both horizontally and vertically due to the buoyancy within 
the test cell, causing the temperature profiles to fluctuate. Moreover, the 
average difference between the test cell surface temperatures (Tbottom(t), 
Tfront/back(t), and Tside(t)) was found to be below 0.5 ◦C, suggesting that 
the temperature uniformity within the HTF was well controlled and 
[
Tbottom(t) Tfront/back(t) Tside(t)

]
can be used as the boundary condi-

tion TBC(t). 
The measured initial and boundary conditions were hence fed into the 

3D CFD model to generate the TCFD(t) = [TCFD,center(t) TCFD,corner(t) ]. 
Table 2 lists the properties of the DI water used in the 3D CFD model. On 
the other hand, the measured TES material temperatures Texp(t) were input 
to the keff updating model for the searching of the effective thermal con-
ductivities for solid and liquid during the solidification and melting pro-
cesses: keff,sol =

[
keff,l,sol keff,s,sol

]
and keff,mel =

[
keff,l,mel keff,s,mel

]
. 

With around 10 to 15 calls, as listed in Table 3, the Bayesian opti-
mization algorithm using Gaussian process was able to reach the stop-
ping criteria and achieve the R2 values of 0.983 and 0.992 for keff, sol and 
keff, mel respectively, significantly more efficient than manual search or 
grid search methods used in previous research. The RMSE were as low as 
1.60 and 1.26 K. Considering the effects of water density shift, sub-
cooling, and ice movements, the RSME could not reach the level of 0.02 
K in the algorithm comparison test. The TCFD(t) generated by the 3D CFD 
model using the keff values found are plotted in Fig. 5 in dotted lines, 
matching well with the Texp(t) profiles. 

To validate the algorithm generated keff results, a COMSOL Multi-
physics model with the Phase Change Material subnode was employed. 
The default settings were adopted by just changing the material prop-
erties according to Table 2 and using the keff values obtained from the 
algorithm. Due to simulation convergence reasons, a larger ΔTPC of 1.2 K 
was adopted in the COMSOL model compared to 0.1 K in the 3D CFD 
model. The temperature profiles obtained from the COMSOL simulation 
are plotted in Fig. 5 with dashed lines, and they matched the experi-
mental and 3D CFD profiles quite well. Therefore, the results success-
fully validated the numerical and machine learning-based method, 
indicating that the algorithm generated keff values can be used in other 
CFD tools to accurately predict the TES material's performance by just 
considering heat conduction in the models. Therefore, this measuring 
method can be used for TES system design and other applications. 

Moreover, the keff found in this study provided new insights into 
water being used as the PCM for TES in real applications. 

In general, the keff values during the melting process are higher than 
that of the solidification process. The difference might be attributed to 
two factors: 1) As described by Tan [11], the constant movements of the 

Tside Tfront/back

Tbottom

Tcenter

Tcorner

Fig. 5. Comparison of the temperature profiles from the experiment, COMSOL 
validation, and the best results from the 3D CFD model of DI water as the 
TES material. 

Table 2 
Parameters of the PCM (DI water) used in the 3D CFD model and the COMSOL 
validation model.  

Variable Value 

Volume, VPCM 151.3 [mL] 
Specific heat (liquid), cp, PCM, l 4200 [J kg− 1 K− 1] 
Specific heat (solid), cp, PCM, s 2000 [J kg− 1 K− 1] 
Density (liquid), ρPCM, l 1000 [kg m− 3] 
Density (solid), ρPCM, s 919 [kg m− 3] 
Phase change temperature, TPC 273.15 [K] 
Phase transition range, ΔTPC 0.1 [K] in the 3D CFD model 

1.2 [K] in the COMSOL model 
Latent heat, L 334.0 [kJ kg− 1]  
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unmelt ice during the melting process due to buoyancy introduces extra 
natural convection, that can enhance the heat transfer and mainly in-
crease the keff, l value compared to the solidification process. 2) The 
subcooling effect during the solidification can delay the crystallization 
[22], which mainly reduces the keff, s value. 

For the liquid phase, the keff, l, sol value of 1.21 W m− 1 K− 1 and keff, l, 

mel of 1.26 W m− 1 K− 1 are in good agreement with the previous studies in 
the literature as listed in Table 4. It is worth noting that these studies did 
not distinguish between the keff, l during the solidification and melting 
processes, while the machine learning-based algorithms in this study 
enabled such a function with higher accuracy. 

For the solid phase, nonetheless, the concept of effective thermal 
conductivity is adopted in much fewer studies than the liquid phase. The 
value of keff, s, sol = 1.39 W m− 1 K− 1 and keff, s, mel = 1.48 W m− 1 K− 1 are 
found to be lower than the material thermal conductivity ks values of ice 
(from 2.16 at 0 ◦C to 2.38 at − 20 ◦C W m− 1 K− 1 [49–51]), similar to 
what has also been found in the research of Feng et al. [30] and Waser 
et al. [40] who also considered both keff, l and keff, s. In Feng et al.'s study, 
the effective thermal conductivity of liquid water and copper foam filler 
keff, l reached 1.95 W m− 1 K− 1 with a porosity of 0.98, which is more 

than three times the material thermal conductivity kl (around 0.6 W 
m− 1 K− 1); whereas the effective thermal conductivity of ice and copper 
foam keff, s is only 2.24 W m− 1 K− 1, equivalent to the material thermal 
conductivity value without adding the copper foam. Waser et al. tested 
the keff, s of two commercial PCMs, SU34 and SU58. They discovered that 
the measured keff, l value differed 5% from an analytical model, while 
the keff, s value was only 1/3 of the analytical value. 

The deviation between the measured solid phase effective thermal 
conductivity keff, s values and the material thermal conductivity values ks 
might be attributed to two factors: the 1) thermal contact resistance 
caused by the gaps between the solid PCM and the enclosure walls, as 
well as the cracks between various layers in the solid structure, and 2) 
the air bubbles formed during solidification. 

During the solidification process, the solidified PCM may shrink due 
to increased density, and hence detach from the enclosure walls, causing 
a non-negligible thermal contact resistance. Waser et al. [40] ascribed 
their decrease of keff, s from the therotical values to this explanation. In 
this study, by using the model developed by Weigand and Lipnicki [14], 
we calculated the width of the gaps between the ice and the test cell 
walls, which ranged between 1.6 and 7.0 × 10− 5 m for different walls. 
Such small widths are difficult to observe while it may still exist. Ac-
cording to Lipnicki and Małolepszy [52], the contact layer between the 
cooled wall and the solidified layer has a significant impact on the so-
lidification process. For composite PCMs, thermal contact resistance can 
even account for up to 50% of total thermal resistance [16]. Further-
more, various layers of ice may form during the solidification process, 
resulting in visible cracks between the ice frozen at different stages of 
solidification. Several layers of cracks were observed (as shown in the 
left part of Fig. 6a) in this study using a camera with a macro and fixed 
focal length lens. 

On the other hand, the ice formed in this study is far from perfect or 
uniform crystal. According to Maeno [53], McClane et al. [54], Yakhno 
and Yakhno [55], during the solidification process, air, being the main 
impurity in the distilled water, may nucleate accompanying the phase 
transition. Due to the sudden decrease of the air dissolvability in the 
water during the solidification, the released air might be trapped in the 
ice formation and form spherical or needle-shaped bubbles. Since the 
experiments were conducted with an air gap on top of the test cell 
mimicking the air cushion in real TES installations, many air bubbles 
were observed in the ice formation under the camera (Fig. 6b and the 
right part of Fig. 6a). These air bubbles can reduce the keff, s. According 
to Huang et al. [56], the keff, s of reservoir freshwater ice filled with air 
bubbles can be as low as around 0.6 W m− 1 K− 1, significantly lower than 

Table 3 
Algorithm generated keff for DI water as the PCM.   

keff, l 

[W m− 1 K− 1] 
keff, s 

[W m− 1 K− 1] 
RMSE 
[K] 

R2 

Solidification 1.21 1.39 1.60 0.983 
Melting 1.26 1.48 1.26 0.992  

Table 4 
Comparison between the keff, l values obtained in this study with values in 
various studies (the keff, s values are not compared since they are not considered 
in these studies).   

TES material 
enclosure type 

Liquid phase effective thermal 
conductivity of water, keff, l [W m− 1 K− 1] 

Bédécarrats et al. 
[22] 

Sphere 1.1 

Amin et al. [38] Sphere 1.1, 1.21, 1.3, 1.9 (based on the inlet HTF 
temperature) 

Tay et al. [39] Shell side of shell- 
and-tube 

0.93 

Borri et al. [13] Tube 0.98 
This study Plate 1.21 (for solidification) 

1.26 (for melting)  

(a)  (b) 

Fig. 6. Possible effects that reduced the keff of ice: (a) cracks formed and air bubbles trapped in the ice during the solidification; (b) air bubble release during the 
melting process. 
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the material thermal conductivity ks. 
Moreover, both the thermal contact resistance [15] and the effective 

thermal conductivity of ice with air bubbles [56] increase when the 
temperature decreases. Therefore, similar to the approach adopted by 
Waser et al. [40], time and temperature-independent constant keff, s, sol 
and keff, s, mel values are used for this study. 

3.2. Testing of a graphite sheet-based macrofiller design 

To demonstrate the method for measuring the keff of heterogeneous 
structures, we designed a duo arch-shaped graphite sheet-based mac-
rofiller for the plate-type TES heat transfer enhancement (Fig. 7a) and 
measured its keff values using the test cell (Fig. 7b). The graphite sheet- 
based macrofiller avoided the precipitation and complex manufacturing 
processes encountered in some other heat transfer enhancement tech-
niques. Moreover, to further reduce the thermal contact resistance, the 
width of the filler structure is engineered to be larger than that of the 
PCM enclosure (Fig. 7c). After insertion, the arch-shaped parts bend and 
press the other parts of the filler structure against the walls using the 
tensile force. During the volume change of the PCM, better contact be-
tween the graphite sheet and the test cell walls may therefore be ach-
ieved. Furthermore, the design of the macrofiller is scalable. Rows and 

columns of the same structure can be installed in a full-sized plate-type 
TES unit, as illustrated in Fig. 3. The keff values measured by the test cell 
can directly be used for the design of a real-sized plate-type TES unit 
using such a filler. 

A piece of graphite sheet with the dimensions of 85.0 mm (height) ×
150.0 mm (width) × 0.5 mm (thickness) and the porosity of around 50% 
was used as the macrofiller. The properties of the graphite sheet are 
listed in Table 5. 150.0 mL of DI water is used as the base PCM. 

As shown in solid lines in Fig. 8, the experimentally measured tem-
perature profiles Texp(t) =

[
Texp,center(t) Texp,corner(t)

]
showed no sub-

cooling during the solidification process. This could be because of the 
high porosity of the graphite material used in this study. The graphite 
porous microstructures might have acted as nucleating agents and 
suppressed the subcooling. 

With around 30 calls, the best keff values could be obtained as listed 
in Table 6 and summarized in Fig. 9. The RMSE values are slightly higher 
than the keff results in Table 4 but still less than 2 K, and the R2 values are 
close to 0.98, indicating good accuracy. The 3D CFD model-generated 
TCFD(t) profiles based on the keff values are plotted in dotted lines in 
Fig. 8, which agree well with the experimental profiles. 

Table 6 and Fig. 9 clearly demonstrated the increase in keff values by 
inserting the macrofiller into the DI water. Compared to the keff values 
without the macrofiller, the effective thermal conductivities rose by 
17.9% on average. The difference between keff, s, sol and keff, s, mel values 
was reduced, possibly due to the suppression of subcooling significantly 
increased the keff, s, sol. The keff, l, mel value increased greater than keff, l, 

mel (24.6% and 11.8% respectively), possibly because the filler structure 
divided the PCM domain into three segments (as shown in Fig. 7). 
Hence, during the melting process, three smaller ice bulks formed and 
kept on moving in the test cell instead of one large piece of ice without 
the macrofiller. Smaller bulks melted faster due to larger heat transfer 
area between the unmelt ice and melt water flowing around them. 
Hence, the segmentation further enhanced the heat transfer by intro-
ducing extra natural convection effect during the melting process. 

(a) (b) (c) 

Fig. 7. The duo arch-shaped graphite sheet-based macrofiller (a) before, (b) after, being inserted into the test cell and (c) the deformation after the insertion: the 
dashed grey line represents the original shape of the filler, and the solid grey line presents its shape after being inserted into the test cell. The bent parts provide the 
supporting forces allowing for good thermal contact between the filler and the enclosure walls or the adjacent fillers as demonstrated in Fig. 3. 

Table 5 
Properties of the graphite-based macrofiller used in the 3D CFD 
model.  

Variable Value 

Purity >99.95% 
Apparent density, ρf 1194.1 [kg m− 3] 
Porosity 47.2% 
Specific heat, cp, f 638.9 [J kg− 1 K− 1] 
Thickness 0.5 [mm] 
Width 150.0 [mm] 
Height 85.0 [mm]  
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Therefore, the macrofiller enhanced the heat transfer in three ways: 
increase the heat transfer area, suppress the subcooling, and divide the 
TES unit into smaller segments. The measurement results demonstrated 
that the macrofiller designed in this study offered an effective, afford-
able, easy-to-operate, and scalable (as shown in Fig. 3) solution to 
enhance the heat transfer of PCMs. 

Moreover, compared to the phase transition time, the results also 
showed that keff is a more general and clearer indicator for the effec-
tiveness of heat transfer enhancement techniques. Phase transition time 
varies with the boundary conditions (such as the cooling and heating 
rates). Precisely defining the phase transition time period is also not 

always easy, especially for PCMs with broad phase change temperature 
ranges, such as various organic PCMs. keff, on the contrary, is much less 
affected by the different boundary conditions and phase transition 
temperature ranges. Henceforth, keff allows for direct comparison be-
tween different heat transfer enhancement techniques without requiring 
strictly identical experimental conditions, and it is more suitable for 
PCMs without clear phase transition temperatures. 

4. Conclusion 

In this paper, a novel numerical and machine learning optimization- 
based method to measure the effective thermal conductivities of thermal 
energy storage is developed and validated. 

Traditional indirect methods for effective thermal conductivity 
measurement suffer from slow and inaccurate problems. This study 
overcomes these drawbacks by using a machine learning-based Bayesian 
optimization algorithm to quickly search for the most accurate effective 
thermal conductivity results. An experimental setup and 3D CFD model 
were developed to measure the effective thermal conductivities (keff) 
together with the algorithm based keff updating model. The measured 
effective thermal conductivities of using DI water as the PCM are vali-
dated by COMSOL simulation. The measured results can directly be used 
in designing a plate-type thermal energy storage unit in real applica-
tions. The method can also be applied to other types of TES units, as well 
as other bulky and heterogeneous structures that cannot be considered 
as continuous media. Insights were provided to the usage of water as the 
PCM. Thermal contact resistance and air bubble formation during the 
solidification may decrease the keff values. Simulations neglecting these 
factors will lead to an overestimation of the solidification and melting 
speed of solid PCMs. The method is demonstrated by measuring the keff 
values of a duo arch-shaped graphite sheet-based macrofiller inserted in 
DI water. The designed macrofiller increased the keff by around 20% and 
suppressed subcooling. The study also demonstrated keff as an ideal in-
dicator for the effectiveness of heat transfer enhancement techniques. 

Future studies can be carried out by applying the proposed meth-
odology to more TES types, materials, and macrofillers, as well as 
quantify the effects of subcooling, unmelt PCM movements, thermal 
contact resistance, and air bubble formation on the effective thermal 
conductivities. 
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Fig. 8. Comparison of the temperature profiles from the experiment and the 
best results from the 3D CFD model of DI water with macrofiller. 

Table 6 
Algorithm generated keff after inserting the macrofiller and the improvement 
from DI water without the macrofiller.   

keff, l and 
improvement from 
without the 
macrofiller 
[W m− 1 K− 1] (%) 

keff, s and 
improvement from 
without the 
macrofiller 
[W m− 1 K− 1] (%) 

RMSE 
[K] 

R2 

Solidification 1.35 (11.8%) 1.68 (21.1%) 1.98 0.975 
Melting 1.57 (24.6%) 1.69 (14.1%) 1.67 0.979  

Fig. 9. Comparison of the keff values with and without the macrofiller.  
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