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In order to improve the effect of special decomposition and recognition of English speech, based on the idea of neutrosophic set
fuzzy control, this paper uses Bayesian method as the basic algorithm of speech recognition to improve the algorithm in
combination with English waveform characteristics. Moreover, this paper uses a semi-supervised learning method to process
English speech waveform data, collects relevant data through the English speech input system, and then labels the data and obtains
a new English speech data set through training and learning. In addition, this paper uses multiple iterations of labeling to obtain
the ideal output data, uses neutrosophic set fuzzy control algorithms and machine learning algorithms to perform English speech
feature decomposition and recognition, and uses feature parameter extraction methods to perform signal feature extraction.
Finally, this article combines the needs of English speech recognition to build a systemmodel and uses simulation tests to perform
performance analysis of English speech feature decomposition and recognition model. �e results of the research show that the
improved algorithm and system model proposed in this paper have relatively good effects.

1. Introduction

English feature decomposition and recognition is the basic
technology of intelligent translation system, and it is also a
necessary technical means under the background of world
economic integration. Moreover, through English feature
decomposition and recognition, the accuracy of English
translation can be effectively improved. �erefore, it is
necessary to effectively develop speech recognition tech-
nology to improve technical reliability.

Feature extraction refers to the processing of the feature
parameters of the sound signal by the recognizer, and the
feature parameters should have the following characteristics.
First of all, the feature parameters are better distinguished,
and the sound unit can be accurately modeled. Second, the
feature parameters must be robust and can minimize the
influence of speakers, channels, and other components to

prevent noise interference. Finally, it is necessary to include
enough effective information, and the feature dimension is
as low as possible to reduce the data size and improve the
efficiency of the system. Dimension reduction can be used to
remove redundant features to solve multi-space problems.
For example, we have two variables: “time spent on the
treadmill over a period of time” and “calorie consumption,”
which are highly correlated.

At present, the general acoustic characteristics of speech
recognition are Mel Frequency Cepstral Coefficient (MFCC)
and Perceptual Linear Prediction Coefficient (PLP) [1].
MFCC features are filtered using a special set of “Mel filter
groups” in the extraction process and are matched according
to the auditory characteristics of human ears. �e charac-
teristics of PLP are based on the parameters of the auditory
perception model and adapt to the noise environment.
Taking into account the dynamic characteristics of the sound
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signal, it is usually based on its characteristics and its first-
order and second-order differences to obtain better per-
formance. In a low-resource environment, traditional
shallow features such as MFCC and PLP lack stability and
cannot meet the requirements of system modeling. +ere-
fore, in order to obtain more robust feature parameters,
traditional shallow features are usually nonlinearly trans-
formed to extract deep features. Since this deep feature has
less uncertainty in different environments and different
speaker conditions, less training data can be used to build a
more robust acoustic model. Nowadays, it is widely used to
extract deep features using multi-layer sensors (MLP) or
deep neural networks (DN). Currently, the commonly used
deep features are tandem features and bottleneck (BN)
features [2], which are extracted from the output layer and
implicit layer of MLP or DN, respectively. Moreover, tan-
dem features use principal component analysis (PCA) or
Karhunen–Loeve transform (KLT) technology to correlate
and protect the linear output value or logarithmic detection
probability of theMLP or DN output layer, and connect with
the original shallow features. +e characteristics of BN are
extracted through a neural network with a special structure.
+e network has many hidden layers with a relatively small
number of nodes, and the output of the hidden layer is the
BN feature. In addition, the tandem feature uses the com-
puting power of the neural network to enhance the differ-
ence between the original features, and the BN feature is a
powerful nonlinear degradation. Compared with the tra-
ditional feature parameters, the experiment proves that the
feature parameters of neural network are more discrimi-
native and robust, and show a certain degree of language
dependence. +e sound signal is a complex time-varying
signal with complex and diverse correlations in different
time ranges. GMM, SGMM, and DN models are limited to
the length of a fixed window and can only model limited
time data in the window. However, the recurrent neural
network (RNN) has a feedback network structure, the output
of the past time is used as a part of the current input, and the
current network output result is obtained together with the
current input.+is mechanism allows the RNNmodel to use
past time information to balance the data correlation of
different time ranges. +erefore, compared with the con-
ventional GMM, SGMM, and feed-forward DN, the RNN
model can better describe the speech signal. In particular, a
new RNN with a long-term storage (long short-term
memory, LSTM) structure [3] can effectively overcome
problems such as the disappearance of gradients in con-
ventional RNNs and can effectively model long-term sound
information.

Based on neutrosophic set fuzzy control technology, this
article explores the intelligent technology that can be used
for English speech feature decomposition and constructs a
corresponding intelligent model.

2. Related Work

Traditional speech recognition acoustic modeling usually
adopts an HMM model that estimates the probability dis-
tribution of observations in GMM, that is, the GMM-HMM

model. However, the GMM-HMM model is independent
between each state, and because the parameters are not
shared with each other, many training samples are needed to
obtain large-scale, accurate, and robust model parameter
estimates. +erefore, in a low-resource environment, the
GMM-HMM model has a problem of data sparseness, and
the estimation of model parameters becomes inaccurate. On
the other hand, assisting modeling training with other
language data is one of the common methods in low-re-
source speech recognition, but the GMM model is not
enough to distinguish multi-language modeling. +erefore,
the GMM model has been widely used and good results in
the field of speech recognition, but it is difficult to achieve
ideal recognition performance in a low-resource environ-
ment [4]. +ree levels of natural language understanding are
as follows: 1 at the grammatical level, the structure of
sentences and phrases is analyzed to find out the relationship
between words and phrases and their roles in sentences. 2.
Semantic level: find out word meaning, structural meaning,
and their combined meaning through analysis, so as to
determine the real (actual) meaning or concept expressed by
the language. 3. Pragmatic level studies the impact of the
external environment where the language is located on
language use. It describes the environmental knowledge of
language and the relationship between language and lan-
guage users in a given language environment.

+e literature [5] improved the GMM model with a
parameter sharing strategy, proposed a subspace Gaussian
mixture model, and constructed an SGMM-HMM acoustic
model. Unlike traditional acoustic models, the state model
parameters in SGMM are located in a parameter subspace,
and each state is represented by one or several low-di-
mensional vectors. In low-resource speech recognition,
global parameters can be trained in combination with other
language data, and limited target language training data are
used to estimate state-related parameters to obtain a more
robust acoustic model. When the traditional GMM is di-
rectly regularized, the parameter amount of themodel can be
reduced and a more compact acoustic model can be ob-
tained. For example, the sparse precision matrix modeling
method directly imposes sparse restrictions on the inverse
matrix of the Gaussian covariance matrix in the model and
obtains a bend between the number of parameters and the
modeling accuracy, thereby obtaining a better acoustic
model in a low-resource environment [6]. +e DN model
has strong segmentation and robustness. In [7], the use of
DN instead of GMM to estimate the posterior probability of
observations is proposed. +e results show that the recog-
nition rate of the DN-HMM acoustic model system con-
structed for acoustic modeling is significantly higher than
that of the traditional GMM-HMM acoustic model system.
+e literature [8] used the clustered state (the coupled tri-
phone state) to replace the monophone state as the output
unit of the neural network and called the improved model
the context-dependent DN-HMM. In addition to DN, other
neural network structures are also used for acoustic mod-
eling.+e literature [9] used CNN instead of DN for acoustic
modeling, which is successfully applied to low-resource
speech recognition. +e literature [10] used the recurrent
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neural network structure to construct the RNN-HMM
acoustic model. However, its system recognition rate is
lower than that of the DN-HMM system.

For low-resource speech recognition features, HMMalso
has research and improvement. +e literature [11] proposed
an HMM model based on Kullback–Leibler distance. +is
model uses KL distance timing to dynamically match the
posterior probability of each state and the HMMmodel unit.
+e experimental results show that the KL-HMMmodel can
be applied to low-resource speech recognition tasks. On this
basis, the literature [12] also combined the DN model with
KL-HMM to perform multilingual sound data training,
which achieved good recognition performance even when
the data resources of the target language were extremely low.

+e literature [13] proposed to perform voice conversion
based on Gaussian mixture model. +is method uses Gaussian
mixture model to fit the speaker’s spectral envelope vector and
uses continuous parameter function to represent the parameters
of the training data optimized by the least square method.
However, the estimation of the GMM component is not based
on the coupled feature vector, but based on the source feature
vector. +e literature [14] proposed a method called coupled
density Gaussianmixturemodel, which can consider the source
space and target space at the same time during training. In
addition, the parameters of the transfer function can be directly
estimated by the combined GMM to avoid the calculation of
large matrix inferences. However, the method based on GMM
has the shortcomings that the spectrum is too smooth and the
details are not good. +e reason is that the parameter rela-
tionship between the source speaker and the target conversation
is inconsistent.+erefore, the sound quality and similarity of the
converted voice are not enough.+e literature [15] suggested to
use frequency bending to achieve voice conversion, and the
frequency bending can obtain a high sound similar to the sound
quality of the sound.+en, the literature [16] suggested to use a
combination of GMM and least squares to realize speech
conversion, which can overcome the over-fitting problem of
GMM. In the literature [17], the combined technology of GMM
and dynamic frequency folding realizes voice conversion and
overcomes the over-fitting problem of traditional GMM.
Moreover, it used an adaptive weighted spectral interpolation
speech analysis/synthesis model to extract the vowel frequency
and spectral envelope of the sound, and it suggested to use
weighted residual compensation to improve the personality
similarity of the converted speech. +e literature [18] also
proposed a Gaussian mixture model method based on maxi-
mum likelihood estimation.+is method uses static feature and
dynamic feature statistics as the spectrum conversion sequence
to introduce global dispersion characteristics, which reduces the
over-smoothing effect and significantly improves the conver-
sion performance.

3. Uncertainty Calculation in Bayesian Modal
Parameter Identification Method

Text is composed of every word. When it comes to word
vectors, one hot is the simplest word vector, but there are
problems such as dimension disaster and semantic gap. By
constructing co-occurrence matrix and using SVD to solve

construction word vector, the computational complexity is
high. Nnlm’s so-called distributed hypothesis can be
expressed in one sentence. Words in the same context have
similar meanings. +is leads to word2vec and fastText. Al-
though their essence is still the language model, their goal is
not the language model itself, but the word vector. A series of
optimizations are made to get word vectors faster and better.
+e Bayesian method is to quantify the uncertainty of the
recognition result through the post-covariance matrix based
on the model parameters, and to estimate the inverse of the
Hessian matrix of NLFF. When the number of degrees of
freedom is n and the number of modes is m, the Hessian
matrix is a np � (m + 1)2 +mn-dimensional square matrix,
and the elements in thematrix consist of the second derivative
of NLFF with respect to each modal parameter, including [19]

fi, ξi: i � 1, · · · , m􏼈 􏼉,
Sii: i � 1, · · · , m􏼈 􏼉,
Uij, Vij: i � 1, · · · , m; j< i􏽮 􏽯, Se,
Φij: i � 1, · · · , n; j � 1, · · · , m􏽮 􏽯.

(1)

Among them, Uij and Vij represent the real and
imaginary parts of Sij(j< i), respectively.􏽢HL ∈ Rnp×np is the Hessian matrix of the modal pa-

rameters at MPV, κ1, κ2, · · · , κnp􏼚 􏼛 is the eigenvalues of 􏽢HL

in ascending order, and the corresponding eigenvector is

b1, b2, · · · , bnp􏼚 􏼛. Since NLFF has achieved the minimum

value at MPV, the eigenvalues of 􏽢HL are all non-negative
numbers. In addition, since the mode shapes are all pro-
cessed as unit vectors in the recognition process, that is,
NLFF has nothing to do with the size of the mode shape, if

the curvature of 􏽢HL in the mode shape direction is zero, the
first m eigenvalues of the matrix must be zero, that is,
κi � 0; i � 1, 2, · · · , m. +e eigenvectors corresponding to
these eigenvalues are

b1 � 0(m+1)
2

;Φ(1); 0n; · · · ; 0n􏼔 􏼕,
b2 � 0(m+1)

2

; 0n;Φ(2); 0n; · · · ; 0n􏼔 􏼕,
⋮

bm � 0(m+1)
2

; 0n; · · · ; 0n;Φ(m)􏼔 􏼕.
(2)

Among them, 0n ∈ Rn represents a zero vector of length
n. +en, 􏽢HL and its inverse matrix can be expressed in the
following form:

􏽢HL �􏽘m
i�1

0 × bib
T
i + 􏽘np

j�m+1

κjbjb
T
j ,

􏽢H−1

L �􏽘m
i�1

0− 1 × bib
T
i + 􏽘np

j�m+1

κ−1j bjb
T
j .

(3)

Among them, the posterior covariance matrix of
[ fi􏼈 􏼉; ξi􏼈 􏼉; Sii􏼈 􏼉; Uij, Vij􏽮 􏽯; Se] corresponds to the part of
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(m + 1)2 × (m + 1)2 in the upper left corner of 􏽢H−1

L . +e first
m singular terms of the above formula are meaningless for
this part of the calculation, because [20]

􏽘m
i�1

bib
T
i �

0(m+1)2×(m+1)2 0(m+1)2×(m+1)2

Φ(1)Φ(1)T

⋱
0mn×(m+1)2 Φ(m)Φ(m)

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

+e posterior covariance matrix 􏽥C of the modal pa-
rameters can be expressed as

􏽥C � 􏽘np
j�m+1

κ−1j bjb
T
j . (5)

It can be seen that the first m singular items with no
computational significance have been eliminated. When the
English speech features are framed, the result is shown in
Figure 1

κij ≥ 0; j � 1, 2, · · · , n􏽮 􏽯 represents the eigenvalue of the
posterior covariance matrix corresponding to the ith mode
shape. Since the mode shape subspace has been excluded by
the above formula, κt1 � 0. +e global posterior covariance
of the mode shape can be evaluated with a scalar similar to
the modal assurance criterion (MAC) [21]:

ρi � 1 +􏽘n
j�2

κij⎛⎝ ⎞⎠−1/2

. (6)

Obviously, ρi is a decreasing function of κij, 0≤ ρi ≤ 1,
and if and only if all κij is equal to 0, ρi � 1. +is property
makes ρi an effective measure tomeasure the quality of mode
shape recognition. +e larger ρi is, the smaller the uncer-
tainty of the mode shape.

+e standardized form EASI program of adaptive blind
source separation is

Bt+1 � Bt − λt
yty

T
t − I

1 + λty
T
t yt

+
g yt( 􏼁yTt − yt( 􏼁g yt( 􏼁T

1 + λt y
T
t g yt( 􏼁􏼌􏼌􏼌􏼌􏼌 􏼌􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠Bt.

(7)
It can be seen from the update formula of EASI that the

choice of step size has a great impact on the separation
performance and stability of the algorithm, so it needs to
be selected carefully. Generally, in the case of incomplete
signal separation, the steps should be increased to speed
up the update speed of the separation matrix, so that the
mixing matrix of the signal can be adapted more quickly.
If the separation signal points to the original signal, the
step size should be reduced to prevent a few time ab-
normal signals from having a greater impact on the
separation matrix, so as to improve the stability of the
algorithm. +erefore, the determination of the signal
separation status is to adjust the key of the EASI update
step. For the time-varying blind source separation of
hybrid systems, the online algorithm is generally used for
tracking. +e time-varying ability of the tracking system is
improved by accelerating the convergence speed of the

algorithm. In order to speed up the convergence of the
algorithm, the idea of variable step size is proposed. +e
cost function is used to update the step size adaptively, and
a variable step size blind source separation algorithm is
proposed. +e stability of natural gradient algorithm can
be improved by introducing momentum into the learning
process of natural gradient. At the same time, an esti-
mation function is used to adjust the step size and mo-
mentum factor, which greatly improves the convergence
speed of the algorithm.

When any serial update algorithm reaches a stable point,
the separation matrix should make the mathematical ex-
pectation of the objective function equal to zero. Corre-
sponding to the EASI algorithm, this condition can
decompose two parts of symmetry and oblique symmetry,
namely [22],

E yyT􏽮 􏽯 � I, (8)

E f′ yt( 􏼁yTt − ytf′ yt( 􏼁T􏽮 􏽯 � 0. (9)

+e matrix is defined as

S �􏽘w
t�1

f′ yt( 􏼁yTt − ytf′ yt( 􏼁T􏼐 􏼑
w

. (10)

Among them, S is an approximation to equation (10),
and w is the selected data length, which is mainly used to
estimate mathematical expectations. After calculating S, the
modulus of each element of the matrix is calculated sepa-
rately, and the largest modulus is selected as the separation
index of this segment of signal, namely,

SI � max(abs(S)). (11)

Among them, SI is the separation index. In an ideal
situation, S should be a zero matrix, and the greater the
difference from the zero matrix, the more incomplete the
separation. +erefore, the maximum value of each element
pattern of the matrix can reflect the signal separation status
and serve as a separation index. In the initial stage of
program operation, the degree of separation of mixed signals

Figure 1: English speech frame processing.
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is still very low, so the separation index is also very large.
However, as the action of the program continues, the sep-
arated signal approaches the source signal.+at is, the higher
the degree of signal separation, the smaller the value of the
separation index. +erefore, as a whole, as the separation
process progresses, the separation index gradually decreases
and shows a stable trend. In the above iterative update al-
gorithm, the update step size has a great impact on the
results. If the step size is too large, it is easy to produce
oscillation or even divergence; if the step size is too small, the
convergence will be too slow. It requires too many samples
and requires a large amount of calculation. +e simulated
annealing strategy is very simple, but it can effectively
combine the advantages of the above two steps, rapidly
decline in the initial stage, and accurately converge in the
later stage. +e results show that it is simple and effective to
use simulated annealing strategy to adjust the learning rate
in this experiment.

+e step size selection strategy of the EASI program is an
important parameter that controls the size of each update of
the separation matrix. If the step is too large, the conver-
gence speed of the program will of course become faster, but
the stability error will also become larger, which will also
cause the program to diverge. On the contrary, if the step size
is small, the update of the separation matrix is too slow, and
the program will lose the role of real-time monitoring of
input data. +erefore, in order to better balance the con-
vergence speed and the stability error, the step size should be
adjusted adaptively according to the separation index. In this
article, we use the nonlinear mapping relationship to adjust
the step size according to the separation index [23]:

λ(t) � β tanh α[SI(t) − δ]{ } + c. (12)

Among them, tanh represents the hyperbolic tangent
function, α is the shape parameter, β is the scale parameter,
and δ represents the information of SI and should be equal
to half of the maximum value of SI under ideal circum-
stances. c is a supplementary parameter to ensure that when
SI � 0, λ(t) � 0. +erefore, the expression of c can be ob-
tained as

c � −β tanh(−α · δ). (13)

+rough the above algorithm, the waveform signal
processing of English speech is performed. +e result before
processing is shown in Figure 2 and the result after pro-
cessing is shown in Figure 3.

+e significance of using the mapping relationship based
on the hyperbolic tangent function is firstly a monotonically
increasing nonlinear function, and the larger the separation
index, the more suitable the steps are. Second, the adjust-
ment of the function curve shape is very convenient, and it
only needs to change the relevant parameters. +ird, the
hyperbolic tangent function has boundaries. Sometimes,
even if the separation index is too large, the steps are always
limited to a certain range to prevent calculation divergence.
+e final result can be obtained through the membership
degree of different language attributes (which cannot be
directly divided by numerical values). For example, there are

different methods for different people to control language
pronunciation, which cannot be indicated by certain data,
but can only be expressed by investigating and determining a
function.

With the action of the EASI program, new output signals
continue to occur, and the separation matrix is constantly
updated. If the input signal changes from a certain point in
time, after a certain period of update, the change is reflected
in the separation matrix. +is is the theoretical basis for
using EASI to detect structural changes.

EASI has a global matrix Ct, which is equal to the
multiplication of the mixing matrix A and the separating
matrix Bt:

Ct � BtA. (14)

In an ideal situation, the global matrix should converge
to the identity matrix. In the structural modal recognition
area based on blind source separation, the hybrid matrix A is
the modal vibration type of the structure. +erefore, only by
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Figure 2: English speech waveform before processing.
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Figure 3: English speech waveform after processing.
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multiplying the real-time updated separation matrix with
the structural oscillator matrix, the difference between the
unit matrix and the unit matrix can be re-examined to obtain
performance indicators for quickly judging the real-time
structural condition. However, because the true vibration
shape of the structure is not known, it is assumed here that
the vibration type obtained by the fast Bans FFT pattern
recognition method is the true vibration shape of the
structure, namely,

Ct � BtΦ. (15)

At this time, the performance index is defined as

PI �􏽘
i

􏽘
j

Cij

􏼌􏼌􏼌􏼌􏼌 􏼌􏼌􏼌􏼌􏼌
maxk Cik

􏼌􏼌􏼌􏼌 􏼌􏼌􏼌􏼌 − 1⎛⎝ ⎞⎠ +􏽘
j

􏽘
i

Cij

􏼌􏼌􏼌􏼌􏼌 􏼌􏼌􏼌􏼌􏼌
maxk Ckj

􏼌􏼌􏼌􏼌􏼌 􏼌􏼌􏼌􏼌􏼌 − 1⎛⎝ ⎞⎠.
(16)

Among them, Cij is the (i, j)th element of the global
matrix, and maxk|Cik| represents the maximum absolute
value of the ith row element in C. Similarly, maxk|Ckj|
represents the maximum absolute value of the element in the
jth column of C. Obviously, the closer the PI is to 0, the
closer the global matrix C is to the identity matrix, that is, the
better the separation effect.

Figure 4 shows an example of the word graph structure
generated by the speech “he likes this hat.”

After running for a certain period of time, the EASI
program converges, the PI is close to 0, and the value
changes are stable. When the structural parameters change
suddenly, the original convergence point cannot meet the
stability conditions of EASI, and the global matrix is not an
approximation of the identity matrix, but a continuous
abnormal rise in the value of PI. +erefore, the change status
of PI can reflect the structural status, and when the PI value
exceeds the threshold, a more comprehensive system
identification method (i.e., FFTpattern recognition method)

needs to be used for in-depth analysis of the structural
response data.

+e main idea of the multi-scale online mode analysis
method based on blind source separation and Bayes is to use
EASI tomonitor the structural response in real time. If the PI
value is not abnormal, no additional operations are required.
When the PI value becomes abnormally high and exceeds
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Figure 4: Decomposition diagram of English speech features.
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the limit value, the high-speed Bans FFTpattern recognition
method is used to identify the structure frequency, atten-
uation, vibration type, and corresponding uncertainty. +is
method generally only performs conventional monitoring
and obtains a small amount of information such as structural
vibration type or mode response. When monitoring possible
changes in the structure, it is called a multi-scale online
mode analysis method due to the in-depth evaluation of
structural mode parameter information. +e implementa-
tion steps of this method are as follows.

(1) +e structural response in the environmental stim-
ulus is measured.

(2) +e selected frequency band is executed by Bayes’
fast FFT pattern recognition algorithm, and the
pattern parameters accompanying the uncertainty
estimation are obtained.

(3) +e EASI program is executed, the structure re-
sponse data are processed in real time, and the
separation matrix is updated.

(4) +e mode calculated in step (2) is set as the true
vibration mode of the system, and it is multiplied by
the separation matrix updated in real time in step (3)
to obtain a global matrix to calculate PI.

(5) When the PI value exceeds the set threshold, the
algorithm returns to step (2). Otherwise, the algo-
rithm will return to step (3).

4. English Speech Feature Recognition Model
Based on Neutrosophic Set Fuzzy Control

On the basis of the above analysis, the English speech
feature recognition model is carried out, and the

decomposition algorithm mentioned above is used as the
system fitting algorithm. +e basic structure of the English
speech keyword retrieval system constructed is shown in
Figure 5.

In this paper, the learning and training of English speech
recognition is realized through semi-supervised learning,
and semi-supervised training is also carried out through
iterative methods. After collecting relevant data through the
English speech input system, the data are labeled, and a new
English voice data set is obtained through training and
learning. After multiple iterations of labeling, the ideal
output data are finally obtained. +e process is shown in
Figure 6.

When using neutrosophic set fuzzy control algorithm
and machine learning algorithm for English speech feature
decomposition and recognition, signal feature extraction is
mainly performed by feature parameter extraction. After
extracting the features of the speech signal, the corre-
sponding iterative processing is performed to obtain a
digitized signal that can be recognized by the system. +en,
through conversion, the recognized signal becomes the
output result that people can intuitively observe and hear.
+e English speech feature decomposition and extraction
process is shown in Figure 7.

+rough the above analysis, an English speech feature
decomposition and recognition system based on neu-
trosophic set fuzzy control is constructed. On this basis,
system performance verification analysis can be carried out.
In the process of recognizing English speech features, the
system first needs to digitize the speech signal and de-
compose the speech signal to make the signal a recognizable
result of the system.+erefore, in the experimental research,
the effect of system speech signal decomposition is studied
through simulation research. A total of 78 sets of

Voice data preprocessing

Read sample points

Call feature subroutine

Sample point data processing

Is it the last sample point

End of operation

Read the next
sample point

No

Yes

Figure 7: Flowchart of feature decomposition and recognition of English speech.
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experiments are carried out to calculate the accuracy of
speech digitization decomposition. +e results are shown in
Table 1 and Figure 8.

From the above experimental statistical results, the
English speech feature recognition system based on neu-
trosophic set fuzzy control constructed in this paper has a
good effect of English speech digitization. +e system

digitizes and decomposes English speech and then recog-
nizes its features, which is also the core technology of in-
telligent translation. +is paper uses simulation research to
analyze the system’s speech feature recognition effect, and
the results are shown in Table 2 and Figure 9.

From the above statistical analysis, it can be seen that the
English speech feature decomposition and recognition

Table 1: Statistical table of the accuracy rate of English speech digitization decomposition.

Num Speech decomposition(%) Num Speech decomposition(%) Num Speech decomposition(%)

1 93.83 27 94.15 53 91.81
2 93.77 28 95.97 54 92.64
3 91.35 29 95.49 55 94.49
4 95.13 30 94.40 56 93.68
5 91.69 31 95.48 57 91.79
6 93.10 32 93.28 58 92.08
7 93.29 33 93.62 59 93.75
8 94.68 34 93.00 60 92.60
9 95.90 35 92.36 61 92.01
10 93.17 36 91.09 62 95.11
11 93.35 37 94.55 63 93.98
12 92.80 38 92.87 64 95.81
13 94.91 39 93.06 65 91.87
14 94.85 40 94.07 66 93.53
15 91.48 41 94.54 67 94.72
16 94.00 42 92.09 68 93.35
17 91.82 43 95.02 69 93.59
18 94.33 44 94.05 70 94.23
19 95.77 45 94.13 71 92.18
20 92.03 46 91.31 72 93.11
21 91.66 47 93.73 73 95.72
22 94.81 48 93.91 74 92.05
23 94.96 49 93.30 75 93.73
24 93.41 50 93.27 76 94.82
25 95.01 51 94.41 77 92.38
26 94.48 52 92.64 78 94.88
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Figure 8: Statistical diagram of the accuracy rate of English speech digitization decomposition.
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system based on neutrosophic set fuzzy control constructed
in this paper has a certain effect.

5. Conclusion

Based on neutrosophic set fuzzy control technology, this
article explores the intelligent technology that can be used
for English speech feature decomposition and constructs a

corresponding intelligent model. +e learning and training
of English speech recognition is realized through semi-su-
pervised learning, and semi-supervised training is also
carried out through iterative methods. Moreover, after
collecting relevant data through the English voice input
system, the data are labeled, and a new English voice data set
is obtained through training and learning. After multiple
iterations of labeling, the ideal output data are finally

Table 2: Statistical table of the recognition effect of English speech features.

Num Speech recognition(&) Num Speech recognition(&) Num Speech recognition(&)

1 85.98 27 88.66 53 91.83
2 85.92 28 84.23 54 90.10
3 88.62 29 91.07 55 89.33
4 84.83 30 89.95 56 86.08
5 89.51 31 88.97 57 88.55
6 89.00 32 92.76 58 84.30
7 90.04 33 86.54 59 89.94
8 88.26 34 90.19 60 87.15
9 90.29 35 85.90 61 85.16
10 90.06 36 91.28 62 89.00
11 92.58 37 86.04 63 85.02
12 88.82 38 91.06 64 90.08
13 86.03 39 86.13 65 91.21
14 86.33 40 86.43 66 89.72
15 84.55 41 88.75 67 91.39
16 88.13 42 92.51 68 84.31
17 90.17 43 91.69 69 88.58
18 84.37 44 92.99 70 87.87
19 88.87 45 87.11 71 87.79
20 91.65 46 89.30 72 91.01
21 90.41 47 89.93 73 91.38
22 90.03 48 84.34 74 89.48
23 86.63 49 91.94 75 85.34
24 90.43 50 85.77 76 90.57
25 89.36 51 87.12 77 85.83
26 89.86 52 90.28 78 84.61
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Figure 9: Statistical diagram of the recognition effect of English speech features.
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obtained. In the process of English speech feature recog-
nition, the system constructed in this paper first needs to
digitize the speech signal and decompose the speech signal to
make the signal a recognizable result of the system. Com-
pared with the traditional feature parameters, the feature
parameters of the neural network proposed in this paper
have better recognition and robustness, and show certain
language dependence. Sound signal is a complex time-
varying signal, which has complex and diverse correlations
in different time ranges. GMM, sgmm, and DN models are
limited to fixed window lengths and can only model limited
time data in windows. +erefore, the new RNN with long-
term storage (long short-term memory, LSTM) structure
can effectively overcome the problems of gradient disap-
pearance in traditional RNN and can effectively model long-
term sound information. +e performance of the system is
verified and analyzed through experimental research. From
the results of experimental research, it can be seen that the
English speech feature recognition system based on neu-
trosophic set fuzzy control constructed in this paper has a
good effect of English speech digitization decomposition and
speech feature recognition.
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