Mohammad Zainol, Muzakkir and Mohd. Asmadi, Mohd. Asmadi and Saidina Amin, Nor Aishah (2022) Bio-fuel additive synthesized from levulinic acid using ionic liquid-furfural based carbon catalyst: Kinetic, thermodynamic and mechanism studies. Chemical Engineering Science, 247 (NA). pp. 1-15. ISSN 0009-2509
Full text not available from this repository.
Official URL: http://dx.doi.org/10.1016/j.ces.2021.117079
Abstract
The ethyl levulinate is one of promising platform chemical from biomass and commonly involved the esterification reaction of levulinic acid. The reactions are extensively focussed on the catalytic performance by various catalysts and presented limited work on the kinetic, thermodynamic and mechanism study for heterogeneous catalyst reaction. To fill this gap, the reaction analysis over a new ionic liquid-furfural carbon catalyst has been investigated in this work. The mathematical equations were derived to determine the kinetic-thermodynamic parameters, and proposed suitable mechanism for the reaction. Pseudo-first order model presents high correlation coefficient and accuracy with the reaction rate constant of 0.0037–0.0127 min-1 and Ea = 17.3 kJ/mol. The reaction is endothermic and non-spontaneous with ordered system at transition state. The proposed combined nucleophilic substitution and Eley-Rideal mechanism is comprised of SN2 steps and heterogeneous catalytic reaction. The results provide insights on the reaction for future designing and scaling-up the esterification process.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Esterification, Ethyl levulinate, Kinetic and thermodynamic, Levulinic acid, Mechanism model |
Subjects: | T Technology > TP Chemical technology |
Divisions: | Chemical and Energy Engineering |
ID Code: | 103077 |
Deposited By: | Widya Wahid |
Deposited On: | 12 Oct 2023 09:20 |
Last Modified: | 13 Nov 2023 05:05 |
Repository Staff Only: item control page