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Abstract: Polyvinyl alcohol (PVA) has been used in packaging applications due to its biocompatibility
and biodegradability. However, this non-toxic synthetic material belonging to a highly hydrophilic
polymer has poor resistance to wet environments, no antibacterial activity, and low tensile and ther-
mal properties. This study aims to prepare and characterize a PVA-based biocomposite film mixed
with antimicrobial white ginger nanocellulose (GCNF) and zinc oxide (ZnO) nanoparticles. The film
was processed using GCNF (0.1 g) or/and ZnO nanoparticles (0.5 g). The results confirm that the
GCNF/ZnO/PVA-based film presents the strongest antimicrobial activity and the highest thermal
resistance. This film also had the best value in tensile strength (19.7 MPa) and modulus (253.1 MPa);
63.9% and 117.9%, respectively higher than purce PVA. Its elongation at break was 56.6%, not statistically
significantly different from the pure PVA film. Thus, this PVA-based hybrid biocomposite film reinforced
by GCNF and ZnO has excellent potential for fresh food packaging in industrial applications.

Keywords: white ginger; Polyvinyl alcohol; zinc oxide; biocomposite; biofilm

1. Introduction

Recently, composite materials is preferable in many aspect [1–3]. It can be applied in
food packaging, which protects foods against deterioration because of microorganisms,
odors, and dust [4]. The most commonly used food packaging materials include petroleum
products [5]. The widespread use of this material leads to severe problems for environ-
mental impact because of poor biodegradability [6]. PVA has been used in food packaging
applications due to its biocompatibility and biodegradability [7]. However, this non-toxic
synthetic material belonging to a highly hydrophilic polymer has poor resistance to wet
environments [8]. PVA also presents no antibacterial activity and has low tensile and
thermal properties [9]. Many efforts have been conducted to minimize these weaknesses
by mixing PVA with fillers [10].

The nanocellulose used as reinforcement in these films lacks antimicrobial activity.
Some previous works have added zinc oxide (ZnO) nanoparticles to produce antibacterial
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PVA/cellulose-based biocomposite films [11]. It also provide corrosion resistance, and
strong mechanical properties [12,13]. However, ZnO, which is much more expensive than
natural fibers, increases the production cost of a PVA/ZnO/cellulose biocomposite film [14].
An antimicrobial nanocellulose can be obtained from white ginger tubers [15]. This plant is
abundantly available in tropical countries like Indonesia, one of the five largest producers
of ginger for the global market (228,707 metric tons in 2019) [16]. Ginger oil and oleoresin
are extracted from the tuber, leaving a large residual of discarded biomass [17]. Recently, we
successfully prepared a highly transparent cellulose film with good antimicrobial activity
from this source [18]. After adding ginger cellulose, the tensile strength improved by 65%
compared to pure PVA, and it also has high thermal resistance up to 350 ◦C [19]. Thus, it
could be expected that the addition of ginger nanocellulose along with ZnO nanoparticles
would produce a cheap PVA biocomposite film with strong mechanical properties, and
higher antimicrobial properties [20].

Numerous nanocellulose-based materials have been advanced for various applica-
tions [21–24]. However, the properties of an environmentally friendly film that consists of
PVA, ZnO, and white ginger nanocellulose (GCNF) have not yet been explored. Introducing
the GCNF into the biocomposite film would reduce the usage of inorganic ZnO, making the
product cheaper and more environmentally friendly. Therefore, this present study produced
and compared the properties of pure PVA and PVA-based biocomposite films mixed with
white ginger nanofiber or/and ZnO nanoparticles. Effects of these nanofillers on tensile and
thermal properties, resistance, and antimicrobial activity of the sample were investigated.

2. Materials and Methods
2.1. Materials

The GCNF was prepared using residue fibers isolated from white ginger (Zingiber
officinale var. Roscoe) roots from a local market, Padang, Indonesia. Isolation of the GCNF
was carried out using reagents including CH3COOH (density 1 g/cm3), toluene (99%),
NaClO2 80% (Sigma-Aldrich, Singapore), distilled water, ethanol 96% (Andeska Laboratory,
Padang, India), NaOH (Brataco, Padang, India), and HCL 37% (Merck KGaA, Darmstadt,
Germany). PVA powder (average molecular weight of 0.9 × 105 g/mol and a minimum
degree of hydrolysis of 87%) was bought from PT. Brataco, Padang, Indonesia.

2.2. Preparation of Nanocellulose and Hybrid Biocomposite Films

The detail of the preparation method, including the GCNF morphology, and the
crystallinity index used in this work, are available in our previous work [18]. The residue
ginger fibers were immersed in a solution (ethanol and toluene with a ratio of 1:2). Next, the
solution was heated using a Daihan Scientific MSH-200 magnetic stirrer at 50 ◦C, 500 rpm
for 48 h. The fibers were rinsed and screened through a filter (200T mesh) with distilled
water until pH 7. The wet fiber was dried with a drying apparatus (Oven Memmert UN-55)
at 50 ◦C for 20 h, then was treated with a 5% NaOH, and heated at 500 rpm, 50 ◦C for 4 h in
the stirrer. The suspension after neutralization (pH 7) with distilled water was screened
with a filter (200T mesh). Then the wet fibers were dried in a drying cabinet at 50 ◦C for
20 h. These dry fibers were ground and chopped with an electric mixer. Then they were
soaked with a mixture of CH3COOH and NaClO2 (a ratio of 1:4). Next, the mixture was
heated at 60 ◦C for 2 h, 500 rpm, with the hot stirrer. Then it was rinsed until it is neutral.
Next, a hydrolysis process using 5M HCl at 50 ◦C was conducted. This fiber (200 mL) was
treated with an ultrasonic probe sonicator (600 W, below 60 ◦C). The suspension was heated
at 50 ◦C for 20 h in the drying oven. The preparation of the PVA-based biocomposite film
was relatively similar to our previous work [19]. Table 1 displays the ratios of nanofillers
(GCNF and ZnO), PVA powder, and distilled water used in the studied films. The total
weight for each film was 100 g. The solution for each sample was heated by a Daihan
MS-H280-Pro. Next, the biocomposite gel was dried in a vacuum oven (0.6 MPa, 50 ◦C,
21 h). Then, all dried samples were stored in a closed desiccator (50% RH, 25 ◦C). Labeling
of the films was shown in Table 1.
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Table 1. The ratio of PVA powders, nanofillers (GCNF and ZnO nanoparticles), and distilled water.

Samples PVA (g) Distilled Water (mL) GCNF (g) ZnO (g)

PVA 10 90 - -

PVA/ZnO 10 89.5 - 0.5

PVA/GCNF 10 65.7 24.3 or 0.1 -

PVA/ZnO/GCNF 10 65.2 24.3 or 0.1 0.5

2.3. Sample’s Morphology Using SEM

The surface morphology of the sample’s fracture was observed using a SEM (JFIB 4610,
Tokyo, Japan). All specimens were coated with gold for 1 min to enhance the conductivity.
An accelerating voltage was regulated during testing. The detailed of this test is similar to
our prior published work [20]

2.4. Tensile Test

The standard method ASTM D638- type V was used for tensile testing (ASTM D638-V
2012). Tensile strength (TS), tensile modulus (TM), and elongation at break (EB) of the
sample were measured using a Com-Ten testing machine 95T. All samples before testing
were stored in a closed desiccator (50% RH, 25 ◦C) for 48 h. Tensile tests were repeated five
times for each film.

2.5. Fourier-Transform Infrared (FTIR) Spectroscopy

FTIR measurement of the functional groups of the films was carried out using PerkinElmer
equipment (PerkinElmer, Waltham, MA, USA).

2.6. X-ray Diffraction (XRD)

The X-ray diffraction testing was conducted using PANalytical Xpert PRO (Philips
Analytical, Almelo, The Netherlands). The Cu-Kα radiation source (λ = 0.1542 nm) was
applied. Specimens with a diameter of 10 mm were stored in a closed chamber (50% RH at
25 ◦C) for 48 h. It was placed on a specimen holder. The samples were scanned with a scan
step of 0.02 degree/s from 2θ = 10◦ to 50◦ [25].

2.7. Thermogravimetric Analysis (TGA)

A thermal resistance instrument (DTG-60, Shimadzu) was used to measure the sam-
ple’s TGA and DTG. A nitrogen flow rate of 50 mL/min and a heating rate of 10 ◦C/min
were used during testing the sample.

2.8. Antimicrobial Activity

Antimicrobial activity tests for each sample were carried out against Staphylococcus
aureus (SA), Bacillus substilis (BC), Escherichia coli (EC), Pseudomonas aeruginosa (PA), and
Candida albicans (CA) using the agar diffusion method [26]. The bacteria and fungi were
grown in nutrient agar (NA) and Sabouraud dextrose agar (SDA), respectively. The film
samples were prepared with a diameter of 6 mm, and put on the NA and SDA medium,
respectively. As positive controls, disks containing chloramphenicol and nystatin (Oxoid®)
in a concentration of 100 unit/disk (antifungal) were used. The antimicrobial effect was
assessed by measuring the diameter of the clear zone around the films after 24 h incubation
at 25–27 ◦C for fungi and at 37 ◦C for bacteria. Each test was done in triplicate.

3. Results and Discussions
3.1. FESEM Images of the Fractured Surface

The FESEM morphology of the fracture surfaces generated from the tensile tests on
all samples is shown in Figure 1. Pure PVA film presents the smooth fracture surface
(Figure 1a). This result indicates relatively unobstructed crack propagation passing through
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this film. The addition of the nanofiller, whether ZnO or GCNF, into the PVA matrix led
to a rougher fracture surface (Figure 1b). No filler agglomeration was seen owing to the
excellent mixing and dispersion from ultrasonication. The nano-sized fillers were evenly
dispersed in the matrix (white arrow). The fillers were firmly embedded in the PVA matrix.
Consequently, fracture paths take longer tortuous pathways via the weaker parts of the
sample. Due to the higher filler loadings, obstructions to this path yield more sections
with beach marks (brown arrow) on the fracture surface [19]. As shown in Figure 1c, the
nanofibers formed embedded loops in the PVA matrix (red arrow) which anchored the
polymer chains of PVA against the movement. This result demonstrates effective interfacial
adhesion between PVA and fillers due to the covalent crosslinking. The fracture surface
of the hybrid biocomposite film exhibits beach marks evenly distributed over the entire
surface, clarifying good nanofiller (ZnO and GCNF) dispersion.
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Figure 1. FESEM morphology of the fracture surface of tensile samples: (a) the smooth surface of
pure PVA, (b) good dispersion of individual filler (white arrow), and (c) a looped filler (red arrow)
and a beach mark (brown arrow) on the PVA/ZnO/GCNF biocomposite film surface.

3.2. FTIR Spectra

Figure 2a displays FTIR spectra showing all the characteristic peaks of pure PVA
and biocomposites with nanofillers ZnO or/and GCNF. Bands at about 3300, 2926, 1721,
1564, and 1082 cm−1 attributed to O-H stretching, C-H stretching, C-O stretching, N-H
bending, and C-O stretching vibrations, respectively [27,28]. All the samples display
similar patterns confirming that fillers did not alter the functional groups of the PVA.
However, different filler loadings did lead to changes in intensity (transmittance value),
wavenumber, and some peak shapes. For example, these changes are observed on the
band of about 3300 cm−1, which is correspond to O-H stretching vibration (Figure 2b).
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The wavenumber of the O-H stretching shifts to higher values with increasing the filler
loadings (Figure 2b). This finding corresponds to an increase in hydrogen bonds from PVA
and the nanofillers [29]. Furthermore, the weaker peak intensity indicated a reduction in
the number of free O-H groups leading to a more hydrophobic biocomposite [30]. The
weakest intensity was observed in the PVA/ZnO/GCNF-based film, attributable to the
lowest number of the free hydroxyl groups and the lowest degree of hydrophilicity [31].
Some previous work proved that ZnO could decrease the hydrophilicity of PVA. The water
contact angle is increased up to 79◦ compared with the pure PVA, which is enhanced by
125% [32]. The wavenumbers of peaks at around 1570 cm−1 (N-H bending) (Figure 2c) and
1082 cm−1 (C-O stretching) (Figure 2d) also changed with the addition of filler into the
matrix due to the formation of hydrogen bonds between these functional groups on the
PVA polymer and ZnO or/and GCNF [29].
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3.3. X-ray Diffraction

Figure 3 displays X-ray diffraction patterns for all samples. Pure PVA film had
crystalline diffraction peaks at 2θ = 12.2◦ and 19.6◦, which correspond to the (−110) and
(110) crystal planes [33]. The characteristic set of three main peaks for ZnO nanoparticles
was observed in the 2θ range of 31.8, 34.4, and 37.3◦ corresponding to crystal planes
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of (1 0 0), (0 0 2), and (1 0 1), respectively [34]. All the diffraction peaks at 2θ around
19.6◦ after adding the filler shifted to lower 2θ values due to an increased crystal plane
spacing [31]. As presented in Table 2, d-spacing at 2θ around 19.6◦ of pure PVA was
4.510 [Å] shifted to 4.614 [Å] for PVA/ZnO/GCNF film. This shift resulted from hydrogen
bonding interactions between these nanofillers and the PVA matrix [35]. Adding the fillers
into PVA also led to an increase in peak intensity and a decrease in FWHM (full width at
half-maximum) value indicating increased crystallinity index and crystal size (Table 2) [36].
The highest intensity diffraction peak was measured on PVA/ZnO/GCNF film, which
indicated an enhancement of the crystal size of about 33% compared to pure PVA.
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Table 2. d-spacing, FWHM, and the peak position at 2θ around 19.6◦ of films recorded from X-ray
diffraction testing from Figure 3, and Tm from Figure 4.

Samples

The Peak
Position at 2θ

around
19.6◦

Tm (◦C)
d-Spacing [Å] at

2θ
(19.6◦)

FWHM
(◦) of the Peak

at 2θ (19.6◦)

PVA 19.686 300 4.510 0.614

PVA/GCNF 19.667 301 4.514 0.614

PVA/ZnO 19.344 341 4.589 0.512

PVA/ZnO/GCNF 19.236 345 4.614 0.409
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3.4. Thermal Analysis

Figure 4 shows the TGA (a) and DTG (b) curves of all tested films. Initially, the sample
weight in the temperature range from 60 to 150 ◦C was slightly reduced due to absorbed
water evaporation [37]. The films displayed different weight losses due to the different
amounts of water available to evaporate. The PVA film had the highest evaporation
corresponding to its highest hydrophilic nature and the highest number of free hydroxyl
groups [8]. A sudden second weight loss (from 300 to 420 ◦C) occurs as a result of the
decomposition of cellulose and the PVA matrix [31]. During this second weight-loss period,
temperatures of the maximum rate of decomposition (Tm) of the films are presented in
Table 2. The addition of nanofillers into the PVA matrix led to an increase in Tm, the thermal
resistance of the film. The increased Tm relates to the increased fraction of nanofiller,
which has higher thermal resistance than pure PVA [11]. The highest thermal resistance
was measured on the PVA/ZnO/GCNF biocomposite film, which had Tm of 345 ◦C; 15%
higher than Tm of pure PVA film. The high Tm of this film corresponds to an increased
crystallinity index and crystal size from a decreased FWHM value (Table 2 and Figure 3).
An increased crystalline structure leads to a higher resistance to heat and a higher thermal
decomposition temperature [38]. This result agrees with previous research [39]. Strong
interfacial hydrogen bonding between PVA and nanofillers dispersed homogeneously in
the matrix also contributes to the thermal stability of the biocomposite films, consequently
reducing the weight loss in the sample [40]. For further heating of the films over 420 ◦C, a
third weight loss is detected due to the decomposition of ash [41].

3.5. Tensile Properties

Figure 5 displays tensile properties all films, including TS (Figure 5a), TM (Figure 5b),
and EB (Figure 5c). Some of the PVA composite film’s tensile strength for food packaging
applications reported in the literature are shown in Table 3. Pure PVA film presents the
lowest TS value (12.0 MPa) and TM (116.2 MPa), and a high EB of 65.3%. Adding ZnO
and/or GCNF fillers to the PVA matrix increased TS and TM without decreasing EB
significantly. The PVA/ZnO/GCNF biocomposite film had the highest TS (19.7 MPa) and
TM (253.1 MPa), increasing around 63.9% and 117.9%, respectively, in comparison with
pure PVA film. This increase is expected because ZnO and GCNF anchored the polymer
chains of PVA against the movement. As previously stated, homogeneous beach marks on
all fracture surfaces shown in the FESEM photograph (Figure 1c) indicate well-dispersed
fillers in the PVA matrix. These filler surfaces formed intermolecular hydrogen bonds to
the PVA matrix, as evidenced by the FTIR spectra (Figure 2). These anchoring bonds led to
an increase in TS and TM of the film. This result agrees with our prior study [19]. Though
tensile strength and modulus increased, EB (56.6%) did not decrease significantly with
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added filler loadings. This phenomenon is because the relatively longer tortuous path of
the crack propagates through a weaker section of the film.
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Table 3. The PVA composite film for food packaging applications reported in literature.

Author Material Tensile Strength (MPa)

Dieter et al. [This Work] PVA/ZnO/GCNF 19.7

Abral et al. [33] PVA/cassava starch 17.2

Sarwar et al. [37] PVA/nanocellulose/Ag 12.32

Jayakumar et al. [42] PVA/starch/nutmeg
oil/ZnO/jamun extract 26

Mustafa et al. [43] PVA/starch/propolis/anthocyanins
rosemary extract 6

Bazzi et al. [44] PVA/chitosan/graphene
nanoplatelets 11

Yang et al. [45] PVA/nanolignin 24.3

Amalraj et al. [46] PVA/gum arabic/chitosan 11.8

Cano et al. [47] PVA/neem oil 21.5

Francis et al. [48] PVA/starch/glycerol 18.05

3.6. Antimicrobial Activity

One weakness of the currently available PVA is that it is easy to overgrow with the
microbe. Figure 6 presents the antimicrobial activity of all samples against gram-negative
bacteria, gram-positive bacteria, and fungi. The inhibition zone (in millimeters) and
standard deviations were calculated and are presented in Table 4. This inhibition zone is
indicating that the sample stops the bacteria from growing or kills the bacteria.

Table 4. Antimicrobial properties of each sample.

Samples
The Inhibition Zone Diameter with Standard Deviation (mm)

SA BS EC PA CA

PVA 0 0 0 0 0

PVA/ZnO 5.5 ± 0.04 5.3 ± 0.2 5.1 ± 0.7 4.7 ± 0.1 9.6 ± 1.5

PVA/GCNF 8.8 ± 1.8 12.4 ± 0.5 11.9 ± 1.7 12.0 ± 1.6 10.1 ± 1.0

PVA/ZnO/GCNF 13.6 ± 0.3 13.0 ± 0.5 14.5 ± 0.3 12.5 ± 0.9 11.2 ± 1.0

Positive
Control 26.9 ± 0.2 25.6 ± 0.5 30.7 ± 0.4 26.5 ± 0.2 23.5 ± 0.5

It can be observed from the table that pure PVA does not have any antibacterial activity
against microbes. A red arrow in Figure 6e confirms the fact that the microbes occupied
the PVA sample. However, after adding the GCNF, the biocomposite shows a higher
antimicrobial resistance signed with a transparent circle (blue arrow in Figure 6e) declaring
the inhibition zone. This phenomenon is because the nano-materials disrupt bacterial cell
membrane proteins resulting in the death of microbes [49]. White ginger contains a range
of bioactive secondary metabolites like phenolic compounds, aldehydes, and ketones re-
sponsible for the broad antimicrobial spectrum [50]. Surprisingly, GCNF inhibited bacteria
growth more strongly than ZnO because it contributed a higher concentration of bioactive
compounds to the film. The PVA/GCNF biocomposite film displayed antifungal activity
against Candida Albicans, as shown in previous work [51]. The most robust antimicrobial
performance belongs to PVA/ZnO/GCNF biocomposite film (13 mm inhibition zone diam-
eter average), attributable to the presence of both bioactive compounds (ZnO and GCNF
fillers). Other published work stated that ZnO is biocompatible and safe for human and
animal health [52,53]. These results indicate that the use of PVA/ZnO/GCNF film could be
an eco-friendly, cost-effective food packaging to help preserve the freshness of food.
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Figure 6. Antimicrobial activity of PVA and biocomposite film against gram-positive SA (a), BS (b), PA (c),
EC (d), and CA (e). The more transparent area (blue and red arrows) is the inhibition zone diameter.

4. Conclusions

A PVA-based biocomposite film reinforced by ZnO nanoparticles and white ginger
cellulose nanofiber from residue ginger fibers was successfully prepared for the first time.
The PVA/ZnO/GCNF biocomposite film has demonstrated excellent performance with the
highest value of TS (19.7 MPa), TM (253.1 MPa), thermal resistance (345 ◦C), and inhibition
zone of antimicrobial activity(14.5 ± 0.3 mm). According to the antimicrobial test results, it
can be seen that the addition of ZnO and GCNF increased the inhibition zone diameter,
which indicated that it is more resistant to bacteria. It also increased the crystal size by
about 33% compared with the pure PVA sample. However, despite increased TS and
TM values, the PVA/ZnO/GCNF film still had a high EB value corresponding to high
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formability. Therefore, the PVA/ZnO/GCNF-based film prepared in the study might offer
a cheap potential material for food packaging.
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