

Contents lists available at ScienceDirect

Journal of CO2 Utilization

journal homepage: www.elsevier.com/locate/jcou

2D/2D V₂C mediated porous g-C₃N₄ heterojunction with the role of monolayer/multilayer MAX/MXene structures for stimulating photocatalytic CO₂ reduction to fuels

Mohamed Madi^a, Muhammad Tahir^{b,*}, Zaki Yamani Zakaria^a

^a School of Chemical and Energy Engineering, University Technologi Malaysia, 81310 Johor Bahru, Malaysia
^b Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates

ARTICLE INFO

Keywords: CO₂ photoreduction Vanadium carbide MXenes g-C₃N₄ Solar fuels

ABSTRACT

2D vanadium carbide (V₂C) MXene nanosheets coupled 2D porous g-C₃N₄ (PCN) was designed and tested for photocatalytic CO₂ reduction under visible light. Controlled coupling g-C₃N₄ with V₂C MXene resulted in higher visible light absorption and efficient charge separation. Comparatively, V₂C MXene found more favorable than V₂AlC MAX due to more proficient charge separation. Highest performance was achieved with optimized 15%-V₂C/g-C₃N₄, in which CO and CH₄ generation rates of 151 and 205 µmol g⁻¹, respectively, were attained. This enhancement was significantly higher than using V₂AlC/g-C₃N₄ and pure g-C₃N₄ composite was further examined under a variety of conditions such as pressure, catalyst loading, and reducing agents. With increasing pressure, higher yield of CO and CH₄ was attained due to increased reactant adhesion to the catalyst surface, whereas increasing catalyst loading has adverse effects. Water was the best reducing agent for CO evolution, while the methanol–water system enhanced CH₄ generation. Furthermore, the stability of composite lasted for several cycles without showing any obvious deterioration. The potential outcomes are assigned to a porous structure with intimate contact, effective charge carrier separation and porous 2D g-C₃N₄ transporting electrons towards MXene surface. This study shows that 2D V₂C MXene could be a potential carrier for constructing 2D/2D heterojunctions in photocatalytic CO₂ reduction to produce useful solar fuel.

1. Introduction

Fossil fuels emit carbon dioxide (CO₂) into the atmosphere, which is a main contributing factor to global warming and climate change. Therefore, solar energy is regarded as one of the most successful and promising alternatives for addressing existing environmental issues while also meeting rising energy demand [1,2]. Using photo-technology is a potential approach for turning solar energy into chemical energy [3]. The photocatalytic conversion of CO₂ permits the generation of valuable products such as carbon monoxide, methane and methanol, formaldehyde and formic acid in a single process step [4,5]. It was therefore necessary to presence light energy, a high-performance catalyst, and low-cost feedstock (CO₂ and water) in order to complete the process successfully [6]. Several research efforts have been conducted to develop efficient photocatalysts for the reduction of CO₂ such as TiO₂ [7], ZnV₂O₄ [8], WO₃, and CdS [9]. However, the efficiency of photocatalytic CO_2 reduction is still lagged far behind the requirement of practical applications [10].

Two-dimensional (2D) nanomaterials have sparked widespread interest in the photocatalysis field since their discovery [11]. This is due to their unique physicochemical properties, which include a large surface area, a higher carrier separation rate, a broad optical absorption spectrum, low cost, several surface-active spots, and so forth [12,13]. Finding efficient 2D materials with a suitable band gap and excellent photoelectric properties as ideal photocatalysts is critical from the standpoint of the photocatalytic process. A variety of 2D structured materials have been investigated in recent years [14]. Among them, graphitic carbon nitride (g-C₃N₄) as a noble metal-free material is a promising alternative due to its high stability with a low cost, ease of preparation, increased reduction potential, and good photocatalytic performance under visible light [15–17]. However, the photocatalytic activity of g-C₃N₄ is lower because it has a higher recombination rate

* Corresponding author. *E-mail addresses:* muhammad.tahir@uaeu.ac.ae, bttahir@yahoo.com (M. Tahir).

https://doi.org/10.1016/j.jcou.2022.102238

Received 28 May 2022; Received in revised form 14 September 2022; Accepted 17 September 2022 Available online 3 October 2022 2212-9820/© 2022 Elsevier Ltd. All rights reserved. and less specific surface area [18]. Several techniques for increasing $g-C_3N_4$ activity for selective CO_2 reduction have been investigated. This comprises surface modification, metal loading, O-doping, and interaction with other photocatalysts [19,20]. For example, Mg/g- C_3N_4 , $WO_3/g-C_3N_4$ and $Cu_2V_2O_7/g-C_3N_4$ have been used for CO_2 reduction to produce CO and CH_4 [21]. There have also been attempts to increase the activity of $g-C_3N_4$ by employing metal/semiconductor composite systems, but these systems are ineffective and uneconomical because of the high cost of metals [22]. Fortunately, the activity of $g-C_3N_4$ could also be increased when it is combined with noble metal-free materials as a co-catalyst and/or mediator with the layered structure [23].

MXenes, comprising transition metal carbides, nitrides, and carbonitrides, are a novel family of two-dimensional (2D) materials that have gained considerable attention in recent years [24]. MXenes, like vanadium carbide (V₂C) MXene are newly explored layered materials which have several distinctive properties such as excellent electrical conductivity, great structural stability, and efficient absorption of visible light [25,26]. Theoretically,V₂C MXene shows improved performance in different applications especially as electrode material (both of cathode and anode) [27], energy storage [10], batteries [28], magnetic shielding [29,30], and catalysis [31,32], and CO₂ capture [25,33]. As a result, it is possible to decorate V₂C MXene with semiconductors that could provide remarkable photocatalytic activity, which provides a new possibility for cost-effective alternatives to the noble metal [34–36]. Therefore, they are potential candidates to replace noble metal catalysts for photocatalytic CO₂ reduction reaction.

In order to create 2D/2D heterojunction photocatalysts based on g-C₃N₄, various research have concentrated on hybridizing g-C₃N₄ with other 2D materials. The intimate interaction contact in a 2D/2D heterojunction provides a significant contact area and a lot of pathways for the migration and separation of charge carriers produced by photons. Moreover, the 2D/2D heterojunction inherits the advantages of the 2D structure, such as high specific surface area, plentiful adsorption sites, and active sites [37]. More importantly, 2D V₂C MXene can be combined with other semiconductors materials to develop Schottky junction, which effectively promotes charge carrier separation. As a result, the utilization of V₂C in the photocatalysis field is predicted to increase the yield and selectivity [38]. Previously, several studies have been done to increase the photoactivity of CO_2 reduction using Ti_3C_2 MXene [26,39, 40]. For example, Tang et al. prepared alkalinized MXene Ti₃C₂ coupled g-C₃N₄ and observed an increase in photoactivity for CO/CH₄ synthesis during the CO₂ photoreduction process [23]. Likewise, a 2D/2D heterojunction of Ti_3C_2/g - C_3N_4 demonstrated improved photocatalytic hydrogen generation [41]. In another study, Lu et al. constructed a 2D/2D g-C₃N₄/BiVO₄ heterojunction for CO₂ reduction and reported that connecting g-C₃N₄ with BiVO₄ increases CO₂ reduction activity [42]. According to Zhu et al., loading Ti₃C₂ quantum dots improved the CO_2 reduction efficiency of the 2D/2D TiO₂/C₃N₄ composite [43]. As a result, Ti₃C₂ MXene offers new routes for constructing high efficiency nanocomposite systems for enhancing photocatalytic CO₂ reduction by employing solar light [44]. Although V₂C has more distinctive characteristics than Ti₃C₂, this is because vanadium surface layers of V₂C could potentially permit pseudocapacitive behavior compared to Ti₃C₂ MXene, which has numerous oxidation states of V ion [45]. Furthermore, vanadium can offer several oxidation states, which can render a broad range of redox reactions. This could enhance electrical conductivity, mechanical characteristics, and reactivity. More importantly, this can promote charge transfer between the adsorbate and V₂C support [46]. This could make V₂C MXene more appealing for photocatalysis when it is taken into consideration the good electrical conductivity and better performance [47,48]. It is also possible to hypothetically create a Schottky junction with the use of metals that have greater work functions than an n-type semiconductor. Thus, V₂C MXene can be considered more efficient than Ti₃C₂ MXene and other MXenes [25,33]. Moreover, due to the fact that the work function of the V2C MXene electrode material is greater than that of g-C₃N₄, it is possible to build a 2D/2D

 $V_2C/g-C_3N_4$ heterojunction composite by combining them. Thus, it would be able to achieve high light absorption and improved charge carrier separation [41,49]. More interestingly, there is no report available for the utilization of V_2C MXene in photocatalytic CO₂ reduction applications. A significant benefit of the creation of a 2D/2D heterojunction has the potential to improve catalytic activity for maximizing charge separation. Thus, it would be able to achieve high light absorption and improved charge carrier separation [41,49].

In the present study, newly designed 2D/2D V2C MXene coupled g-C₃N₄ nanosheet heterojunction with Schottky junction was successfully developed for efficient photocatalytic CO2 reduction to fuels under visible light with the enhanced interfacial transfer of photogenerated charges in the composite material. The best results were observed with 15%-V₂C/g-C₃N₄ composite and was favorable for boosting CO₂ methanation. Furthermore, considerable selectivity changes were found, with the addition of V₂C, which boosting the selectivity of the CH₄ formation. The role of different reforming systems such as CO₂ reduction with water, hydrogen and methanol was critically examined to understand their impacts on products yield and selectivity. The performance of the composite was further investigated under different operating parameters such as pressure, time and catalyst loading. The stability analysis was carried out in a series of cycles in order to monitor the life of the catalyst. Finally, the possible mechanism for the photocatalytic CO2 reduction over the V2C/g-C3N4 composite has been proposed. As far as we know, there is no report on the use of 2D/2D V₂C/g-C₃N₄ heterojunction material in photocatalytic CO₂ reduction to produce solar fuels under visible light irradiation. As a result, our research paves the way for the development of a highly efficient and sustainable 2D/2D heterojunction system capable of significantly increasing photocatalytic conversion of CO2 to solar fuels.

2. Experimental

2.1. Chemicals

The synthesis of graphitic carbon nitride was carried out using melamine (Sigma Aldrich, AR \geq 99%) while V_2AlC (>98%, 200 mesh, Famous Chem China) has been used to synthesize V_2C MXene. The chemicals used are Methanol (95%, Sigma Aldrich), Hydrofluoric acid (HF, 49%, Emplura) and Deionized water (DI).

2.2. Synthesis of $g-C_3N_4$ porous structure

The hydrothermal approach was used to synthesize $g-C_3N_4$ using melamine as a precursor [16,50]. First, (5 g) of melamine was placed in a ceramic crucible, covered with a lid, and heated in a furnace at 550°C for 2 h in an air atmosphere. The fine powder was obtained by grinding the bulk $g-C_3N_4$ in a mortar and pestle. The resultant $g-C_3N_4$ powder was distributed in 20 mL methanol and agitated for 24 h before being ultrasonically treated for 30 min to yield highly scattered $g-C_3N_4$ nanosheets. Lastly, 2D $g-C_3N_4$ nanosheets were obtained by drying samples in an oven at 80°C under air atmosphere.

2.3. Synthesis of V₂C MXene

The V₂C MXene nanosheets was synthesized through etching V₂AlC with HF solution (content \geq 49%) in a continuous stirred tank reactor to remove the Al atoms layers [26]. The main process of fabricating V₂C MXene is shown in Fig. 1. Firstly, (1 g) V₂AlC (powder) was added to a 20 mL HF solution (49% concentration) in Teflon-lined reactors and magnetically swirled for 48 h at room temperature. Subsequently, all MXenes suspension was transferred into a separate beaker and washed with deionized water, and centrifuged until the pH value of the supernatant reached ~6. The different etching times of V₂C (12, 24, and 48 h) was investigated for photocatalytic CO₂ reduction. The best etching time of V₂C MXene was at 48 h. Afterward, the product was dried at 100 C for

Fig. 1. Schematic illustration of V₂C/g-C₃N₄ nanocomposite preparation.

48 h in an oven with regulated airflow and was designated as V_2C MXenes nanosheets at the etching time (48 h).

2.4. Synthesis of 2D/2D V₂C/g-C₃N₄

For the construction of 2D/2D V₂C/g-C₃N₄ nanosheets composite, physical mixing followed by an ultrasonic approach was employed. Typically, a specific amount of g-C₃N₄ nanosheets (1 g) was dispersed in (20 mL) methanol solution and stirred for 6 h. Following that, specific amounts of V₂C MXene nanosheets (0.15 g) were dispersed into beaker of methanol (20 mL) and stirred for 6 h as well. Afterward, V₂C MXene nanosheets was gradually added to the g-C₃N₄ nanosheets dispersion and agitated for an additional 12 h to obtain a well-dispersed 2D/2D V₂C/g-C₃N₄ heterojunction composite. The final products were dried at 100°C overnight to obtain V₂C/g-C₃N₄ nanosheets composite. The different amounts of V₂C (5, 10, 15, and 20 wt%) were also coupled with g-C₃N₄. The scheme for the preparation of V₂C loaded g-C₃N₄ and their composites have been presented in Fig. 1.

2.5. Characterization of materials

The crystalline phase and structural of the photocatalysts were determined using X-ray diffraction (XRD); Diffraction was carried out utilizing Bruker Advance D8 diffractometer, which is capable of operating at 40 kV, 40 mA, and a Cu K radiation source. The Raman and Photo-luminance (PL) analyses were performed using a Raman Spectrometer (Lab RAM HR Evolution, HORIBA) with laser emission wavelengths of 532 and 325 nm, respectively. Raman analysis was utilized to determine rotational, vibrational, and other low-frequency patterns of photocatalysts, whereas, the effects of rate of recombination of the these photocatalysts were investigated using photoluminescence (PL). Microstructures and surfaces were examined using a Field Emission Scanning Electron Microscope (FE-SEM, Hitachi SU8020), while elemental composition and mapping investigations were carried out using Energy Dispersive X-ray spectroscopy (EDX). For light absorption and band gap estimates, diffuse reflectance spectra (DRS) in the ultraviolet-visible (UV-vis) range were acquired using UV-vis spectrophotometer (Perkin Elmer, LAMDA 365). Electrochemical experiments were made with 0.1 M Na₂SO₄ in an electrode system consisting of Pt wire, Ag/AgCl electrode, and sample electrode (reference electrode) using an electrochemical workstation (CHI660E).

2.6. Photocatalytic activity test

The efficiency of photocatalysts was examined using a photoreactor in the gaseous phase within the irradiation range of visible light. The photoreactor is made up of a stainless-steel cylindrical vessel with total volume 80 cm³ and a length of 5 cm. It was supplied with a 10 mm thick Pyrex glass for passing the light, as well as a parabolic-shaped reflector was utilized to direct light inside the photoreactor room. Visible light was used with a power output of (20 mW/cm²), which was a 35 W HID Xe lamp. Typically, a specific quantity of powder photocatalyst (50 mg) was spread uniformly throughout the reactor at a distance of roughly 6 cm, directly facing the lamp. The experiments were conducted using different catalyst loading: 25, 50, 100, and 150 mg to determine the impact of catalyst loading. The reactor was purged continuously by mixture of CO2/H2O to remove any unwanted gases prior to start the experiments. After that, at a steady flow rate of 20 mL min⁻¹, compressed high quality of carbon dioxide (99.9%) was bubbling via water at 25°C, causing the water vapor to be transferred into the photoreactor chamber together with the CO_2 gas. To begin the photocatalytic CO_2 reduction process, the input and output vents were sealed and the source of light was turned on, resulting in the creation of CO and CH₄ gases via a series of redox processes. In the end, gas products were collected at regular intervals after using a gastight syringe (Agilent, 1000 L) for offline analysis. A Gas Chromatograph was used to analyze the gas products (GC, 6890). Two detectors, a flame ionization detector (FID) and a thermal conductivity detector (TCD), as well as a Carboxen 1010 PLOT capillary column, were included in the gas chromatograph.

3. Results and discussion

3.1. Characterization of materials

3.1.1. X-ray diffraction (XRD)

The binary 15%-V₂C/g-C₃N₄ nanocomposite was analyzed using Xray diffraction to determine the crystalline structure and the presence of all catalyst components and the results are shown in Fig. 2(a). The bulk V₂AlC MAX were verified to have a hexagonal crystal structure. The diffraction peaks at 13.5[°], 27.2[°], 36.2[°], 41.4[°], 45.3[°], 55.6[°], 64[°], 76[°], and 79[°] were attributed to the crystal indices of the (002), (004), (101), (103), (104), (106), (110), (109), and (116) planes in hexagonal V₂AlC, where the MAX phase of V₂AlC is linked to the normal peak (JCPDS Card No.

Fig. 2. (a) XRD patterns of V₂AlC, V₂C, g-C₃N₄, 10%V₂AlC/g-C₃N₄ and 15%-V₂C/g-C₃N₄; (b) Raman spectra of V₂AlC, V₂C, g-C₃N₄, 10%V₂AlC/g-C₃N₄ and 15%-V₂C/g-C₃N₄ samples.

29–0101) [51–53]. After etching of V₂AlC with HF, V₂C MXene nanosheets were formed. A hexagonal crystal structure was found in the V₂C MXene after it was etched and exfoliated. The strongest peaks almost vanish completely after HF etching, showing that the V₂AlC to V₂C MXene structure was successfully converted. The diffraction angles at 13.4[°], 35.5[°], 41.4[°], 55.6[°], 63.7[°], 75[°], and 79 were assigned to the crystal indices of (002), (101), (103), (106), (110), (109), and (116) of the delaminated V₂C MXene [54]. For the exfoliated few-layer V₂C nanosheets, the peaks at 13.4 sand 41.4 are complete significantly disappeared, confirming the completely removal of Al atoms and an increase of c-lattice parameter of few-layer V₂C [46]. The peaks at 75 and 79 agreed well with the (109) and (116) crystal planes of V₂AlC respectively, which confirm the successful synthesis of V₂C nanosheet from bulk V₂AlC. An important distinctive peak of the g-C₃N₄ was observed at 20:13, which corresponds to (100) diffract plane, which indicates the graphitic carbon nitride aromatic systems interlayer structural packing. There is also a significant peak centered at 20:27.5 that corresponds to the plane (002) (JCPDS card No. 87–1526) [55], which is known as the distinctive interplanar stacking peak, and which has an interlayer distance of 0.326 nm [56]. It is worth mentioning that no impurity was observed in the primary peaks of either the V₂AlC MAX/g-C₃N₄ or the V₂C MXene/g-C₃N₄ samples. This demonstrates the efficient synthesis of both nanocomposite catalysts, as evidenced by their effective interaction.

3.1.2. Raman spectroscopy

The Raman spectroscopy have been used to identify interactions between the components in the composite sample, and the results are presented in Fig. 2(b). The formation of the polymeric structure of g- C_3N_4 was evident as peaks were found at 207,352, 478, 588, 707, 753,

977, 1233, and 1310 cm⁻¹, suggesting that the polymers pattern of g-C₃N₄ was generated, which is largely corresponds previously reported literature for pure g-C₃N₄ [18,57]. Vibration causes three Raman peaks in the tri-s-triazine ring (478, 707, and 1233 cm⁻¹). Furthermore, the presence of heptazine ring pattern was verified by the presence of observable peaks at 707 and 977 cm⁻¹. Graphitic carbon was also responsible for the C-N stretching vibration and the D and G bands. This could be identified by the presence of broad asymmetric peaks spanning 1300–1700 cm^{-1} [22]. As a result, thermal decomposition of melamine at 550°C is a preferred temperature for the entire poly-condensation process in order to obtain a pure $g-C_3N_4$ structure. The bulk V_2AlC MAX shows distinct Raman peaks at 158, 239, 258, and 360 cm⁻¹. The Raman vibrations at 158 and 239 cm^{-1} (E_{2 g}) are used to represent the in-plane vibrations of V and Al atoms, while the vibrations at 258 cm⁻¹ (E_{1g}) and 360 cm⁻¹ (A_{1g}) indicate the in-plane and out-of-plane vibrations of the V atom [58]. Contritely, the Raman spectra of V_2C powder contained a large peak at 141 cm⁻¹ and additional minor peaks at 195, 268, 404, and 985 cm⁻¹, all of which could be attributed to the Raman-active vibration modes ω_1 , ω_2 , ω_3 , ω_4 , and ω_5 , which corresponded to the previously studies V₂C vibration mode [33,59]. A partially un-etched V₂AlC area could be assigned to the Raman peak at 268 cm⁻¹. This proves the conversion to MXene and enables the monitoring of the Raman signature at a given location as a function of etching time [60]. Additionally, a new peak at the frequency (985 cm^{-1}) appears, which is most likely due to the enhanced interlayer spading in V₂C MXene compared to bulk V_2AIC . The peak at 404 cm⁻¹ has been attributed to the active vibration modes of the terminated V₂C MXene. In general, the Raman findings prove that V₂C MXene has been synthesized successfully and all these peaks begin to appear as a result of the increased etching time of bulk V_2AlC [27]. By comparing the two peaks of 195 and 286 cm⁻¹ in the composite of V_2C -g- C_3N_4 , it can be concluded that V₂C has been successfully integrated into the composite. Furthermore, the obvious V_2C peak at 985 cm⁻¹ further established the presence of V₂C in the V₂C-g-C₃N₄ composite. The strong interaction between V₂C and g-C₃N₄ results in a strong chemical coupling that enables the V₂C-g-C₃N₄ composites to have an extreme conductivity for the transfer of electron. All of these findings indicate that the V₂C-g-C₃N₄ composite was successfully synthesized with good components interaction to form a heterojunction.

3.1.3. Photoluminescence (PL) analysis

To identify the optical features of semiconductor nanomaterials, the use of Photoluminescence (PL) analysis is an efficient approach in particular, in obtaining information regarding surface oxygen vacancies and the separation of photogenerated charges. PL analysis can be used to assess the recombine of photoinduced electron-hole pairs and how the energy released to obtain PL emission peak. PL is commonly utilized to evaluate the segregation and transfer performance of photogenerated charge carriers. Stronger peaks in PL analysis are therefore unfavorable for reducing rates of recombination. Contritely, reduced peak intensity is assumed to imply, reduce the rate of recombination, and higher charge separation efficiency and, as a result, more photocatalytic activity. The wavelength of photocatalysts has been proved to have a significant impact on PL spectral emission. The peaks have been obtained with visual wavelengths between 450 and 550 nm for all the photocatalysts [61]. For V₂AlC MAX, there were PL intensities near to zero intensity because of its dark color, which reduced electron generation. When V₂AlC was coupled with g-C₃N₄, the PL emission rate of V₂AlC loaded g-C₃N₄ was obviously lowered. This implies that V₂AlC can effectively inhibit photorecombination e and h+ again. Furthermore, the capacity of the V₂AlC MAX phase to trap electrons in its ultrathin layered structure resulted in distinct optical and electronic properties that aided in the development of promising photocatalytic solar fuels. In comparison to V₂AlC MAX, V₂C MXene has relatively low PL emission peak, as seen in Fig. 3(a). This is most likely owing to MXene metallic composition, strong conductivity, and black color, and

Fig. 3. (a) PL spectra of V₂C an V₂AlC; (b) PL spectra of g-C₃N₄, $10\%V_2AlC/g-C_3N_4$ and $15\%-V_2C/g-C_3N_4$ samples.

comparable findings have been found in the literature [61,62]. It is also worth mentioning that the photoluminescence of V₂C nanosheets is excellent, owing to the creation of the direct energy band gap, which allows for radiative electronic transitions due to the reduction in system size [63]. The highest intensity peak in the PL spectrum of pure g-C₃N₄ was attributed to the band-band PL signal phenomenon, as illustrated in Fig. 3(b). The band-band PL signal is created by excitonic PL caused by $n-\pi$ * electronic transitions involving lone pairs of nitrogen atoms in g-C₃N₄, which results in a high rate of charge recombination. This demonstrates the presence of sub gap flaws in the g-C₃N₄ nanosheets, a phenomena that has been earlier observed [64]. More crucially, when compared to V2C, V2AlC, g-C3N4, and 10% V2AlC/g-C3N4 samples, the charges separation proficiency in V₂C loaded g-C₃N₄ composite sample was significantly greater. The $V_2C/g-C_3N_4$ composite illustrates the improvement in transfer of charge through the V₂C and g-C₃N₄ nanosheets when the addition of V₂C traps electrons, and results in the lowest PL intensity in the $V_2C/g-C_3N_4$ composite, signifying that the rate of recombination is decreased, facilitating charge transport over the interface between 2D V₂C nanosheets and 2D g-C₃N₄ nanosheets. The composites with a loading of 15%V₂C into g-C₃N₄ has the lowest excitation intensity due to the superior separation efficiency of photogenerated e⁻h⁺ pairs generated by the interfaces between the two materials. More importantly, the fluorescent lifetime of the 15%

 $V_2C/g\text{-}C_3N_4$ sample is significantly shorter than that of $V_2AlC, g\text{-}C_3N_4$, $V_2AlC/g\text{-}C_3N_4$ sample, implying that an additional nonradioactive decay channel may be opened via electron transfer from 2D g-C_3N_4 nanosheets to 2D V_2C MXene nanosheets due to the metal-like nature of V_2C, which can efficiently accelerate the separation of photogenerated charge carriers. This suggests that using V_2C MXene as a mediator, the photogenerated recombination e⁻h⁺ pairs in g-C_3N_4 can be effectively mitigated. As a result, a 2D/2D V_2C/g-C_3N_4 nanosheets with faster charge separation was successfully developed, which could be advantageous for boosting photocatalytic CO₂ conversion efficiency.

3.1.4. Transient photocurrent response

A variety of electrochemical tests were performed in order to study the separation of electron-hole pairs in the V₂C/g-C₃N₄ nanocomposite. The charge separation route in the heterostructure system was studied by measuring the EIS profiles of V₂C, g-C₃N₄, and 15 wt%- 48hV₂C/g-C₃N₄, and the results are shown in Fig. 4(a). The radius of each arc in EIS spectra was shown to be correlated with the efficiency of photogenerated carriers in the electrode/electrolyte interface layer resistance separation. Lower charge-transfer resistance may be achieved by reducing the arc radius, which in turn speeds up the separation of photogenerated carriers. Furthermore, on the EIS Nyquist plot, the arc radius of V₂C is less than that of g-C₃N₄, and 15 wt%- 48hV₂C/g-C₃N₄, indicating that V₂C MXene has a better charge carrier separation potential than pristine g-C₃N₄, and 15 wt%- 48 h V₂C/g-C₃N₄

nanocomposite. This is most likely owing to MXene metallic composition, which traps electrons and gives it a dark color, and similar observations have been reported in the literature [65]. The larger diameter of g-C₃N₄ indicates low electrical conductivity, which could prevent electron transmission. A smaller diameter of 15%-V2C/g-C3N4 is detected compared to g-C₃N₄ and V₂C, showing that modified porous g-C₃N₄ designs can effectively boost the electrical conductivity of the polymer matrix and enable charge transfer towards photocatalytic redox reactions. More surprisingly, as shown in Fig. 4(a), the 15%-V₂C/g-C₃N₄ heterojunction has a lower radius than pristine g-C₃N₄. This means that when V₂C MXene was added to pure g-C₃N₄, the efficiency of photogenerated carrier separation and the interfacial charge transfer potential of 15%-V₂C/g-C₃N₄ could be enhanced. These findings show that the development of this unique heterojunction, together with V₂C MXene has high charge separation capacity, significantly enhances the efficiency of electron/hole pair separation and transfer within V2C/g-C3N4 nanocomposite. As a result, 15%-V2C/g-C3N4 heterojunction photocatalyst is expected to have significant photocatalytic activity when exposed to visible light, and this result corresponds to the PL measurement.

The photo responses of V₂C, g-C₃N₄, and 15%- V₂C/g-C₃N₄ were also investigated using linear sweep voltammetry under visible light irradiation, and the findings are given in Fig. 4(b). When the LSV curves of the three electrodes in 0.5 M KCl electrolyte are compared, similar outcomes have been obtained. The overpotential of the 15%– 48 h V₂C/g-C₃N₄ sample was (-1.19 V), which is less than the overpotentials of g-C₃N₄ (-1.23 V) and V₂C (-1.29 V). In comparison to other electrodes, the (LSV) curve of a 15%– 48 h V₂C/g-C₃N₄ sample shows a dramatic transition from cathodic to anodic currents. As a result, this electrode has a higher charge collecting rate. Aside from the PL, and EIS data, this observation further supports the idea that loading V₂C on g-C₃N₄ increases electron migration and would speed up the catalytic activity.

3.1.5. Ultraviolet-visible (UV-Vis) spectroscopy

The light absorption efficiency of photocatalyst is commonly evaluated by UV-vis DRS analysis, which is strongly related to photocatalytic performance. Therefore, the characteristics of the absorption optical of pure g-C₃N₄, pristine V₂C, and 15%-V₂C-g-C₃N₄ composites have been studied using UV-Vis diffuse reflectance spectroscopy (DRS) analysis. The V₂C sample, as shown in Fig. 5(a), shows a broad absorption characteristic in the ultraviolet and visible ranges in the range 200-800 nm, which may be due to its dark color and metal-like nature [66]. Contritely, the spectrum of g-C₃N₄ exhibits a peak of absorption at 460 nm, which matches the absorption of observable light. There are many ways to modify and alter the band gap energy of graphitic carbon nitride, which is typically 2.70 eV, depending on the materials structure and surface treatment [67]. Clearly, prolonged stirring and subsequent sonication of g-C₃N₄ leads in an increased band gap toward visible light. The best optical absorption was produced by linking V₂C to g-C₃N₄ in order to form a 2D/2D V₂C/g-C₃N₄ heterojunction. This is because the change is intrinsically linked to the synergistic effects of 2D g-C₃N₄ on the surface of 2D V2C nanosheets. The addition of 15%-V2C increased the wavelengths of adjusted g-C₃N₄ nanocomposite to better values in the visible light spectrum, with wavelengths of 468 nm as shown in Fig. 5(a). This also implies that the addition of V₂C MXene can aid in the improvement of visible light harvesting, allowing for more efficient utilization of solar energy. This was most likely owing to increased development of g-C₃N₄ nanosheets, that resulted in increased absorption of light in the visible range. The Kubelka-Munk (K-M) function was used to calculate the band gap energies of g-C₃N₄ and 15%-48 h $V_2C/g-C_3N_4$ materials according to Eq. (1), and the results shown in Fig. 5(a-c) [41].

$$E_g = (\alpha h v)^{\frac{1}{n}} \tag{1}$$

The tauc plot is a curve of converted $(\alpha h\nu)^{1/n}$ versus $h\nu$ from the data

 $\label{eq:Fig. 5. (a) UV-vis spectrum of V_2C, g-C_3N_4, and 15\% V_2C / g-C_3N_4; (b) Tauc plot of g-C_3N_4, (c) Tauc plot 15\% wt\% V_2C / g-C_3N_4.$

of UV–vis spectra, where E_g , α , h and ν are energy band gap, absorption coefficient, Planck constant, and the frequency vibration, respectively. The value of n is well known to vary depending on the type of optical transition (n = 1/2 for direct transitions and n = 2 for indirect transitions). The value of n denotes the type of semiconductor used, which is selected to be 1/2 based on pure g-C₃N₄ material. The pure g-C₃N₄ and 15%-V₂C/g-C₃N₄ samples have band gap energies of 2.88 and 2.83 eV, respectively. It was demonstrated that by inserting V₂C, the g-C₃N₄ bang gap energy was somewhat altered, and the light absorption ability of 15%– 48 h V2C/g-C3N4 in the visible range was boosted due to the dark color of V₂C. Band gap energy somewhat increased towards higher wavelengths due to g-C₃N₄ shading on the V₂C surface and vanadium content in composite sample, which was clearly within visible light range. As a result, in the presence of V2C, enhanced visible light absorption of 15%- 48 h V₂C/g-C₃N₄ composite would be helpful for boosting photocatalytic activity. The predicted g-C₃N₄ band gap energy was also used to calculate the locations of the valence band (VB) and conduction band (CB) using well-established empirical formulae as demonstrated in Eqs. (2) and (3) to better comprehend charge transfer routes and propose a mechanism with clear demonstration.

$$E_{CB} = X - E^{e} - 0.5E_{g}$$
⁽²⁾

$$E_{VB} = E_{CB} + E_g \tag{3}$$

The conduction and valance band edges are denoted by E_{CB} and E_{VB} , respectively. χ is the geometric mean of a semiconductor's Mullikan electronegativity, which equals 4.73 eV in the case of g-C₃N₄, the hydrogen scale-free electron energy is referred to as E^e and equal to (4.5 eV), and the g-C₃N₄ band gap energy is E_g (2.88 eV). The conduction band of g-C₃N₄ was determined to be (-1.21 eV) using Eq. (2), whereas the valance band was determined to be 1.67 eV using Eq. (3). These results were consistent with previously stated VB and CB values of (1.67) and (-1.21) for pure g-C₃N₄, respectively [68]. All of these results demonstrate that the band gap energy of g-C₃N₄ can be changed by structural alteration and protonation. These findings also show the successful manufacture of a photocatalyst with good optical properties.

This could be effective for promoting selective CO_2 conversion to fuels under visible light.

3.1.6. FESEM and EDX analysis

The surface morphology of V2AlC, V2C, g-C3N4, and 15%-V2C/g-C₃N₄ nanocomposite have been illustrated in Fig. 6. The compact sheets structure of V₂AlC is shown in Fig. 6(a). V₂AlC is a dense layered structure composed of thick and compacted staked sheets with reduced interlayer spacing that are closely linked and packed together by a metallic bonding. V₂C sheets with two-dimensional structure were formed after etching V₂AlC MAX with HF for 48 h, as shown in Fig. 6(bc). Additionally, V₂C MXenes exhibit deformed and flexible MXene flakes, which could be a unique characteristic to increase the interaction between 2D V₂C and other 2D materials [13]. These favorable structural characteristics suggest that V₂C may be a potential candidate for flexible photocatalytic CO₂ reduction [45]. As illustrated in Fig. 6(d), g-C₃N₄ exhibits a characteristic nanosheet-like shape. This is because exfoliation of the g-C₃N₄ sheets that result in the 2D nanostructure. This demonstrates that melamine thermal processing using technique of ultrasonic has a noticeable impact on the formation of 2D nanostructures. The morphology of both two-dimensional V₂C MXene, and g-C₃N₄ graphitic carbon nitride layers is illustrated in Fig. 6(e-f). Intriguingly, ultrasonic-assisted contact between g-C₃N₄ and V₂C MXene has a clear effect on exfoliating nanosheets due to their good interaction with 2D V₂C layers. The successful synthesis of conventional stacked 2D/2D heterojunction of V2C and g-C3N4 nanosheets was demonstrated in a 15%-V₂C/g-C₃N₄ sample. More crucially, in the composite sample, the g-C₃N₄ nanosheets growing on V₂C nanosheets could be seen clearly. These results clearly demonstrate the feasibility of fabricating a 2D/2D heterojunction containing 15%- 48hV2C/g-C3N4, which can increase the interfacial contact area for charge carrier migration. More electron transport routes are projected to be created as a result of the contact between V₂C and g-C₃N₄, which is beneficial for electron transport and separation. As also shown in Fig. 7, an EDX mapping analysis was used to accurately investigate the distribution of elements in the composite sample. The EDX spectroscopy was performed on a 15%-V2C/g-C3N4

Fig. 6. V_2AIC FESEM analysis, V_2C , $g-C_3N_4$, $V_2C/g-C_3N_4$ and their compounds: (a) SEM image of V_2AIC , (b-c) SEM images of V_2C , (d) SEM image of $g-C_3N_4$, (e-f) SEM images of $V_2C/g-C_3N_4$ at different magnification.

Fig. 7. EDX measurement of a 15%-V₂C/g-C₃N₄ catalyst material; (a) SEM showing mapping distribution, (b) EDX plots of the nanocomposite.

Fig. 8. High resolution XPS spectra of $V_2C/g-C_3N_4$ (a) C 1s, (b) N 1s, (c) O 1s and (d) V 2p.

composite in order to guarantee that the V₂C dispersion in the composite was consistent. Fig. 7(a) depicts the consistent distribution of elements over the composite catalyst. Fig. 7(a) shows also the good interaction and homogeneous distribution of elements in the V₂C and g- C₃N₄ nanosheets in the EDX layered image. The presence of all elements in the composite catalyst is further confirmed by the EDX data in Fig. 7(b). The existence of the main constituents of the V₂C-g-C₃N₄ nanocomposite is supported by the elemental analysis in the EDX mapping image. These elements include nitrogen, carbon, oxygen, vanadium, and Aluminum with elemental atomic ratios of 50.9%, 38.6%, 8.6%, 1.6% and 0.3%, respectively. However, as seen in Fig. 7, a denser green, blue, and red color on the right shows that the sample includes more nitrogen, carbon, and oxygen, which is mostly due to the existence of g-C₃N₄. Finally, the nanocomposite was synthesized with a high degree of purity due to the presence of prediction elements in V₂C-g-C₃N₄ photocatalysts.

3.1.7. XPS analysis

The elemental states of the of 15%-V₂C/g-C₃N₄ composite was examined utilizing X-ray photoelectron spectroscopy (XPS), as shown in Fig. 8. Fig. 8(a) shows C 1 s XPS spectrum with two significant peaks having binding energies at 284.6 and 287.9 eV corresponding to C-C and N-C=N. Fig. 8(b) shows N 1 s spectrum for the compounds with binding energies 397.9, 398.4, and 400.1 eV, which are assigned to pyridine-N (sp²-bonded nitrogen) in the triazine ring (C-N=C), ternary nitrogen (N-C₃), and the amino group (C-N-H), respectively [65]. The O 1 s XPS spectrum in Fig. 8(c) shows two peaks with binding energies 530.9 and 533.1 eV attributable to presence of oxygen vacancies and presence of hydroxyl group. As illustrated in Fig. 8, (d), spectrum of V 2p can be fitted with three peaks at 513.5, 515.4, and 517.8 eV, corresponds to V²⁺, V³⁺ and V⁵⁺ with their doublets at 522.3 and 524.4 eV, respectively [69].

These XPS analysis results were compared to those of analogous studies that have previously been reported in the literature utilizing pure g-C₃N₄ and pure V₂C, respectively. Previously, we studied the XPS analysis of pure g-C₃N₄ and found that the binding energies were almost the same compared to the result of this study, thereby verifying the successful production of g-C₃N₄ in 2D/2D g-C₃N₄/V₂C composite without any band shift. The sp² hybridized carbon (NC=N) and C-C are responsible for the spectrum at 288.45 and 284.85 eV, while the N 1 s, the peak at 398.68, 400.74, and 401.18 eV, are due to the bicoordinated (N₂C) and tricoordinated (N₃C) nitrogen atoms and N-H_x groups in the heptazine structure of g-C₃N₄. Likewise, For Pure V₂C MXene, the results were almost in good agreement with $V_2C/g-C_3N_4$ composite. In the V_2C , V, C and O elements were found. The presence of O could be attributable to the slight surface oxidation of V2C that occurred during the preparation process. [70]. Briefly, the XPS results reveal that a 2D/2D V2C/g-C3N4 nanocomposite was successfully synthesized when compared to the XPS results of pure g-C₃N₄ and pure V₂C MXene, respectively, which were obtained from the previous literature.

3.2. Photocatalytic CO_2 reduction with H_2O

Prior to starting the actual experiments, several initial experiments were performed under identical experimental conditions to ensure that each and every product produced was generated solely from CO_2 as a consequence of the photocatalysis process. To initially verify whether or not products such as CO and CH₄ were generated, quality control tests were performed utilizing photocatalysts and light without reactants, whereas another experiment was conducted without photocatalyst in the presence of a feed mixture under light irradiation. Both products (CO and CH₄) were observed to be formed not from the photocatalyst individually or from any other resources, but as a consequence of carbon dioxide reduction during a photocatalytic activity process utilizing light irradiation and photocatalysts. The quality control experiments confirmed that the photocatalysts is clean and that carbon-based products such as CO and CH₄ were generated during the photocatalytic CO₂ reduction process.

3.2.1. Performance comparison between V2AlC MAX and V2C MXene

The MXene sheets originating from Al-containing MAX phases can be synthesized using hydrofluoric acid (HF) as an etching solution. Diverse MXenes layered can be constructed by acid etching (HF etching) at room temperature by regulating the concentration of HF and reaction time [71]. When MAX phases are exfoliated into 2D MXenes nanosheets, the transition metals, thickness, and surface functionality exhibit quite different electronic, magnetic, optical, and electrochemical properties that are rarely seen in their original MAX phases. This will have a different effect on the bulk material and alter its properties. It is also revealed that the terminal groups of the nanosheets can be varied using different exfoliants solution during the fabrication processes [72]. All these factors can be used to optimize MXenes properties for the applications in photocatalytic CO_2 reduction. The results presented here provide fundamental insights on MAX and MXene phases and can be used to obtain a more complete picture of MAX and MXene to couple with another photocatalyst to determine the efficiency of both of them to improve the generation of CO and CH₄ during photocatalytic CO₂ conversion.

To investigate the effect of 2D V₂AlC MAX and 2D V₂C MXene on the photocatalytic activity of g-C₃N₄ for photocatalytic CO₂ reduction with H₂O, several samples were synthesized including 2D V₂AlC MAX/g-C₃N₄ and 2D V2C MXene/g-C3N4 composites. When V2AlC was coupled with g-C₃N₄ to form V₂AlC/g-C₃N₄, different V₂AlC MAX amounts of 5%, 10%, and 15% were loaded onto the pure g-C₃N₄ sample, as illustrated in Fig. 9. The rates of generation of both products increased steadily with the addition of V₂AlC up to 10% wt. Optimal CO and CH₄ production was found to be 134 and 185 μ mol g⁻¹ after 4 h with 10% V₂AlC loaded over g-C₃N₄, which is 6.1 and, \sim 1.2 times greater than what was produced over g-C₃N₄, respectively. This could be interpreted in terms of the availability of irradiation active sites, with boosting the catalyst loading providing additional active sites for the reaction. Nevertheless, increasing the V_2AlC loading onto g-C_3N_4 by 15 wt% leads in a drop of CO (129 $\mu mol~g^{-1}$) and CH₄ (179 $\mu mol~g^{-1}$) values. This decreased could be ascribed to a variety of factors; for example, the excessive V₂AlC contents effectively covers the active sites on the g-C₃N₄ surface, or at the very least reduces their availability, thereby decreasing the overall photocatalytic activity, as the CO₂ reduction process happens on the surface of g-C₃N₄. More importantly, the bulk structure of V₂AlC is provided by compact sheets, thereby $g-C_3N_4$ can only be spread partially the bulk surface, resulting in poor interfacial interactions between the two materials. Although, coupling V₂AlC is beneficial for transporting electrons, however, an excess quantity should have adverse effects on the photocatalytic performance for CO₂ reduction.

Relatively, compared to V2AlC MAX, 2D V2C MXene was shown to be more effective for charge carrier transport and segregation. Fig. 10 (a-b) illustrates the influence of V₂C MXene loading on the photocatalytic efficiency of g-C₃N₄ for CO₂ reduction with H₂O during CO and CH₄ generation. Different V2C MXene contents of 5, 10, 15 and 20 wt% have been presented to the pristine g- C_3N_4 sample. CO and CH_4 are found as the primary products when all types of photocatalysts are used, with CH₄ production being the highest. Moreover, the V₂C introduction has a considerable effect on photocatalytic CO and CH4 generation, which increased as the V₂C MXene amount increased, reaching up to 15% for CO and CH₄, respectively. As the V₂C- loading grows from 15 to 20 wt%, the CO and CH₄ production gradually decline. The generation of CH₄ increased constantly with the irradiation period for all samples tested, as shown in Fig. 10 (a). It can be clearly seen that optimized amount of V_2C loading is 15 wt%, where 15 wt%V2C/g-C3N4 exhibits highest photoactivity for the production of CH_4 with yield rates 205 µmole g^{-1} , which is 6.7, and 1.1 folds higher compared to g-C₃N₄ and 10% V₂AlC/g-C₃N₄ samples, respectively. Similarly, highest CO production over 15%V2C/g- C_3N_4 of 151 µmole g⁻¹ was achieved, which is ~1.3, and 1.1 times higher compared to g-C₃N₄ and 10% V₂AlC/g-C₃N₄ samples, as shown

Fig. 9. Performance analysis of $g-C_3N_4$, $V_2AlC/g-C_3N_4$ for the generation of CO and CH₄ via photocatalytic CO₂ conversion under visible light: (a) CH₄ generation, (b) CO generation.

Fig. 10 (b), respectively. It can be also clearly seen that the efficiency of V₂C-loading is much noticeable for CH₄ generation than CO. This significantly improved activity with the loading of V₂C into g-C₃N₄ was due to its conductive properties and working as a mediator for transporting charge carrier [73]. These observations revealed that V₂C-loading to the pure catalyst (g-C₃N₄) makes it very efficient for CH₄ production. However, a decreased in CO, and CH₄ production rate per unit mass were observed with increasing catalyst loading, this behavior has been observed in a number of other investigations [20,74]. The formation of charge recombination centers over the g-C₃N₄ surface is likely to be the cause of the reduction in photoactivity at increased V₂C loading. As a result, the quantity of V₂C MXene in the g-C₃N₄ structure influences the photocatalytic efficiency of the photocatalyst.

The results presented here provide comprehensive comparison on MAX and MXene phases and can be used to obtain a more complete picture of MAX and MXene to couple with another photocatalyst to determine the efficiency of both of them to improve the production rate of CO and CH₄ during photocatalytic CO₂ reduction. The CH₄ production rate over the heterostructure 2D/2D V₂AlC/g-C₃N₄ and 2D/2D V₂C/g-C₃N₄ composite was highest than the single g-C₃N₄ semiconductor. Heterojunction semiconductors are an effective method for electronhole separation to decrease energy-wasting electron-hole

Fig. 10. Analysis of g-C₃N₄ and V₂C/g-C₃N₄ performance for the generation of CO and CH₄ via photocatalytic CO₂ reduction under visible light: (a) CH₄ generation, (b) CO generation.

recombination, in contrast to single photocatalysts. This is owing to the increased production of electrons and protons, effective visible light absorption, rapid charge transfer and inhibited recombination rate, porous structure, and appropriate oxidation potential, an abundance of active sites, huge specific surface area, which results in selective methane production [17]. The increased activity was caused by using cocatalyst such as V₂C MXene and V₂AlC MAX phase, which has excellent electrical conductivities and significant CO₂ adsorption capabilities. Due to the synergistic effects of g-C₃N₄ and V₂C in preventing charge recombination and providing multiple electron separation routes for the conversion of CO₂ to CH₄., Thus, he 2D/2D V₂C/g-C₃N₄ composite catalyst produced the most methane.

These results could be elucidated based on rate of production of CO and CH₄ for g-C₃N₄, 10%V₂AlC/g-C₃N₄, and 15%-V₂C/g-C₃N₄ samples as shown in Fig. 11. To begin with, the existence of Al in the MAX structure makes V₂AlC lower conductive than V₂C MXene. As a result, the separation of charges in V₂AlC/g-C₃N₄ would be less effective than in V₂C/g-C₃N₄ heterojunction. Second, compared to V₂C/g-C₃N₄, the contact between V₂AlC/g-C₃N₄ is poor, since MXene nanosheets have a higher conductivity than bulk material [72]. Additionally, the expectation that high electrical conductivity and the hydrophilic nature will

Fig. 11. Performance analysis of g-C₃N₄, 10% V₂AlC/g-C₃N₄, and 15%V₂C/g-C₃N₄ for the generation of CH₄ and CO via photocatalytic CO₂ reduction under visible light.

accelerate an electrochemical reduction of CO2, in consideration of both giving electrons and H⁺ attachment [71]. More importantly, because V₂AlC is made up of compressed sheets that provide bulk structure to V_2AlC , and because g-C₃N₄ can only be spread over the bulk surface, thereby there is poor interaction between the two materials. Furthermore, charges generated over the g-C₃N₄ have a greater possibility for the rate of recombination than charges transferred to V₂AlC, leading to decrease activity throughout the CO₂ reduction process. In contrast, the V₂C layer structure has been exfoliated, whilst the single-layered structure of g-C₃N₄ has been intimately intertwined. Therefore, a two-dimensional heterojunction is beneficial to promote photoactivity due to excellent charge carrier separation properties [75]. Photo-generated electrons could be efficiently segregated from the g-C₃N₄ surface during visible light irradiation, leading to increased CO₂ conversion to methane. Thus, enhanced performance of g-C₃N₄ loaded with V₂C was due to 2D/2D heterojunction formation and synergistic effects between V2C/g-C3N4, which results efficient photo-generated charges separation for selective photocatalytic CO2 conversion to fuels. Therefore, the conductive properties of V2AlC MAX phase and V2C MXene nanosheets and their interfacial interface with g-C₃N₄ to form an excellent heterojunction is the most important factors to enhance photocatalysis activity. Previously, reduction of CO₂ by photocatalysis over a 2D/2D/2D O-C₃N₄/Bt/Ti₃C₂T_x nanocomposite to CO has been studied utilizing visible light [48]. It enabled a more intimate interface engagement with higher efficiency of photocatalysis. Another confirmation of how materials combine to promote photocatalytic activity and so enhances CO_2 reduction is provided by this study [20].

3.2.2. Effect of different catalyst loading

Solar fuel production efficiency at varied catalyst loadings under visible light irradiation using 15%-V₂C/g-C₃N₄ is depicted in Fig. 12. Fig. 12 (a) shows the irradiation time required to produce CH₄ at various photocatalyst loadings ranging from 25 to 150 mg. The best CH₄ evolution was observed with a photocatalyst loading of 50 mg. CH₄ generation per unit mass was increased when the 15%-V₂C/g-C₃N₄ catalyst loading was raised from 25 to 50 mg. However, as the photocatalyst loading was increased from 50 to 100 and 150 mg, it began to drop, and the trends were consistent throughout the reaction. The CH₄ production was 1.2, ~1.1, and 1.3 times greater at 50 mg than at 25, 100, and 150 mg, respectively. This enhanced rate of production was attributed to the use of an appropriate catalyst loading and the presence of a larger active surface for initiating photocatalytic CO₂ reduction. Contritely, the decreased in CH₄ formation was attributed to less available surface area

Fig. 12. The impact of varied catalyst loadings ($15 \text{ wt\% } V_2C/g-C_3N_4$) on photocatalytic CO₂ conversion to CO and CH₄ under visible light; (a) CH₄ generation, (b) CO generation.

exposed to light irradiation. More importantly, better light absorption and increased catalyst sensitivity for CO_2 reduction light irradiation absorption were obviously responsible for this enhancement. All of the findings indicate that exposing the active sites on the surface of the photocatalyst to adequate light irradiation could alter and enhance the photocatalytic CO_2 reduction process.

Fig. 12(b) shows that CO generation trends are quite similar to those of CH₄, with a maximum yield of 50 mg of catalytic loading. At higher catalyst loadings, such as 100 mg and 150 mg, as well as at the lowest catalyst loading of 25 mg, photoactivity for CO and CH₄ generation was shown to be inefficient. The CO production rate was 1.3, ~1.1, and 1.3 times higher with catalyst loading of 50 mg, respectively. As a result of increased or lower catalyst loading, the CO development rate per unit mass will be lowered. This was most likely owing to the photochemical reaction having a smaller exposed catalyst surface accessible. Furthermore, the amount of light irradiated on the catalyst surface determines the production rates. All of these findings indicated that additional catalyst loading has an effect on CO and CH₄ production, whereas, the generation rates per unit mass were attained as an outcome of the decreased photocatalyst loading. However, in some circumstances, the generation rate can be increased while retaining the same reaction conditions by increasing catalyst loading [14]. These results indicate that optimized catalyst loading is crucial to obtaining improved

production and selectivity when using solar energy.

3.2.3. Effect of pressure

The photocatalysis performance of a 15%-V₂C/g-C₃N₄ composite was tested at three different CO₂ gas pressures (0.3, 0.4, and 0.6 bars). Both CH₄ and CO generation rates were enhanced with increasing pressure, reaching up to 266.5 and 172.9 μ mol g⁻¹ at 0.4 bar, respectively, as shown in Fig. 13 (a-b). This is due to a variety of factors, including the following: (i) Pressure rises CO₂ concentration and availability on the photocatalyst surface, (ii) More CO2 and water molecules collide with photogenerated e-h⁺ pairs in a narrow region when the reactor pressure rises which increases the rate of photoreaction, (iii) By reducing the boundary layer thickness and raising pressure, photocatalyst nanosheet boundary layers are able to transfer mass more quickly, (iv) With increasing pressure, CO₂ gas adsorption and diffusion rates through the photocatalyst pore mouth increases [76,77]. This can happen as a result of CO₂ molecules competing for adsorption on the binary composite active sites during the photocatalytic reduction process. However, as the pressure was increased from 0.4 to 0.6 bar, the CO and CH₄ production began to drop, and the trend was maintained throughout the reaction. The influence of rising CO₂ pressure on photocatalytic conversion to CH₄ with a TiO₂ photocatalyst was also investigated by Kaneco and colleagues [78]. The findings suggest that the production of methane begins to decline at pressures greater than

2.8 MPa. Tseng et al. [79] stated that the CH₃OH produce increased greatly as CO_2 pressure was increased up to 125 kPa and then began to drop.

3.2.4. Effect of reforming systems

Further investigation of the efficiency of a 15%-V₂C/g-C₃N₄ heterojunction was conducted using various CO₂ reducing agents. As the reductants, CO₂ reduction experiments were carried out using water (CO₂ +H₂O), hydrogen (CO₂ +H₂), and a methanol-water mixture (CO₂ + 10% CH₃OH), respectively. The CO and CH₄ were the primary CO₂ reduction products in all of the experiments. The CH₄ production was increased when methanol was added to water as sacrificial reagent, as shown in Fig. 14 (a). The maximum methane evolution rate of $254\,\mu\text{mol}\;g^{-1}$ was attained using a methanol–water mixture (CO_2 +10% CH₃OH), which is approximately 1.2 and 1.6 times greater than that achieved using water $(CO_2 + H_2O)$ and hydrogen $(CO_2 + H_2)$ photocatalytic systems, respectively. This is because when methanol was added to the feed mixture, the rate of CH₄ generation increased, owing to the increased production of protons (H^+) as demonstrated in Eqs. (4) and (5). Accordingly, the presence of a proton-rich reaction system would be ideal for the production of CH₄.

Fig. 14. (a) The impact of a reducing agent on the efficiency of a 15%-V₂C/g-C₃N₄ for CH₄ evolution, (b) Performance of 15%-V₂C/g-C₃N₄ nanocomposite for CO using several reducing agents.

$$CH_3 OH + H_2 O \rightarrow CO_2 + 3H_2 \tag{4}$$

$$CH_3 \text{OH} \rightarrow CO + 2H_2 \tag{5}$$

Thus, the use of sacrificial reagents (10 vol% methanol-water mixture) could improve photocatalytic CO₂ reduction process. The sacrificial reagents not only promote higher proton production but also contribute to providing electrons throughout the oxidation process, resulting in increased CH₄ formation. Enhanced CH₄ yield using methanol-water combination over the composite catalyst can help increase numerous parameters such as electron transfer rate, hole scavenger contribution, proton generation and efficient feed mixture adsorption in a methanol nature of feed mixture and photocatalyst [80]. Earlier, we examined photocatalytic CO₂ conversion over a Ti₃AlC₂/g-C₃N₄/TiO₂ composite in the presence of methanol as a sacrificial reagent, and hydrogen was produced as the primary product during the irradiation [81]. All of these results demonstrate that sacrificial reagents contribute greatly to CH₄ generation by limiting charge carrier recombination and by delivering additional protons via photo-reformation. These findings support the utilize of CH₃OH as a potential sacrifice reagent and 15%-V₂C/g-C₃N₄ as an effective composite catalyst for photocatalytic CO₂ reduction to CH₄ under light irradiation.

As illustrated in Fig. 14 (b), a large amount of CO was noticed at the beginning of the chemical process when a CO₂-water system was used. This amount increases with the reaction time. After 4 h of irradiation, the greatest CO generation was achieved utilizing the CO₂-water system, followed by the $CO_2 + 10\%$ CH₃OH mixture and hydrogen $CO_2 + H_2$ photocatalysts system. The production of CO in CO2-H2O reaction system is depicted in Eq. (6). The highest CO development rate of 151 μ molg⁻¹ was obtained by the CO₂-water system, which is evidently 1.4 and 1.2 times greater than that obtained using the CO2-methanol-water and CO2-H2 photocatalytic systems, respectively. However, the production of CO is still lower than CH₄ production over 15%-V₂C/g-C₃N₄ nano catalysts. This is due to the lower photon energy requirement in CO₂ reduction utilizing H₂O reductant and the lower adsorption of CO₂ and H₂O over the catalyst surface [82]. Furthermore, CO₂ would adsorption less effectively over 15% -V2C/g-C3N4 catalyst due to the basic character of the catalyst, resulting in decrease CO yield. This could be also explained by differences in H₂O adsorption on the catalyst surface. However, H₂O aided CO₂ conversion, resulting in an adequate

amount of CO being produced [32]. It appears that appreciable amounts of CO and CH₄ were produced during CO₂ reduction with H₂ as reducing agent. This also confirms that any hydrogen produced during the water oxidation process is consumed by CO₂ in the production of CO and CH₄. However, during CO₂ reduction with hydrogen, production of CO and CH₄ were the lowest compared to water (CO₂ +H₂O), and a methanol-water mixture (CO₂ +10% CH₃OH), respectively Previously, Xiong and colleagues detailed the possible CO and CH₄ production during CO₂ reduction with water as reducing agent. Our team studied the impacts of H₂O/H₂ on the efficiency of a WO₃/g-C₃N₄ nanocomposite in another work and observed that when H₂ was utilized as the reducing agent, CO generation increased [14].

$$2CO_2 + 3H_2O \longrightarrow {}^{light,Cata}CH_4 + CO + H_2 + 2O_2 \tag{6}$$

3.3. Stability analysis

A critical aspect of photocatalytic CO2 reduction systems is the investigation of the catalyst lifetime, which also known as the stability of the photocatalyst, when it is used in a variety of applications, as shown in Fig. 15. The stability of the 15%-V₂C/g-C₃N₄ composite was evaluated in cyclic runs to ensure that CO and CH₄ production continues throughout CO₂ photoreduction under similar conditions. Three consecutive cycles of 12 h each were used to perform the stability analysis. To accomplish this, a fixed-bed photoreactor was used, and 50 mg of photocatalyst has been placed into the photoreactor. After each cycle, the procedure was repeated until the 3rd cycle, where the results for the constant evolution of CH₄ and CO could be seen in Fig. 15. However, it was observed that after the third cycle, the rate of CO and CH₄ evolution decreased by a small amount. After the first cyclic cycle, many studies report that photocatalysts deactivate with a negligible reduction in photocatalytic CO2 reduction [83]. A variety of factors can cause catalysts to lose their photoactivity, including the presence of oxygen in the solution, intermediate products blocking catalyst sites, morphological changes in response to light irradiation, and carbon production during chemical reactions [81]. The optimum CH₄ and CO of 205 and 151 μ mol g⁻¹ were attained after the first cycle, respectively. However, the amount of CO and CH₄ produced is still adequate after the third cycle, which was 46.4 and 129.3 mol g-cat⁻¹, albeit lower than the amounts produced in the first and second cycles. Although, the photocatalysts efficiency has been reduced by multiple cycles, the production

Fig. 15. The photocatalytic CO_2 reduction stability analysis of 15%- $V_2C/g-C_3N_4$ with production of CO and CH_4 under visible light.

of CH₄ and CO is still continuous. It is also noticeable that the efficiency of 15%-V₂C/g-C₃N₄ is much greater for the production of CH₄ than for CO during photocatalytic CO₂ reduction. This enhanced photocatalytic activity and photostability of the 15%-V₂C/g-C₃N₄ heterojunction is a result of the excellent interfacial interaction between g-C₃N₄ and V₂C nanosheets and the efficient separation of charge carriers. As a result, the 15%-V₂C/g-C₃N₄ composite exhibits exceptional durability for continual CO and CH₄ generation in multiple cycles.

3.4. Spent catalyst analysis

The reproducibility of the 2D/2D V₂C/g-C₃N₄ composite catalyst was further evaluated by measuring its ability to withstand repeated cycling under visible light for continuous photocatalytic CO₂ reduction to CO and CH₄. After three consecutive cycles of use, the spent catalyst was collected and examined using XRD, FTIR, and TGA in order to support stability of the photocatalysts. The interaction of the components in the spent 2D/2D V2C/g-C3N4 nanocomposite has not been noticeably changed by XRD analysis, as shown in Fig. 16 (a). The spent catalyst is still maintaining similar XRD peaks to fresh peaks that appeared at 13.4, 35.5° , 41.4° , 55.6° , 63.7° , 75° , and 79 were assigned to the crystal indices of (002), (101), (103), (106), (110), (109), and (116) of the delaminated V₂C MXene. More significantly, there was no evidence of peaks shifting in the composite of 2D/2D V₂C/g-C₃N₄, which supports the catalyst's high stability for continuous photocatalytic CO₂ conversion to CH₄ and CO under visible light irradiations. As shown in Fig. 16 (b), the FTIR analysis of spent 2D/2D V₂C/g-C₃N₄ catalyst has dips at 805, 810, 885, 1233, 1337, 1401, 1415, 1559, 1630, 1638, 2354, 3000, and 3290 cm $^{-1}$. This reveals that the spent 2D/2D V₂C/g-C₃N₄ catalyst is still maintaining similar dips regarding the chemical bonds, and functional groups that could exist of fresh catalyst samples. This illustrates successful preparation with high stability of 2D V₂C, and 2D g-C₃N₄ in 2D/2D V₂C/g-C₃N₄ nanocomposite. Using thermogravimetric analysis (TGA), the purity and stability temperatures of the fresh and spent 2D/ 2D V₂C/g-C₃N₄ composite catalyst were determined; the results are depicted in Fig. 16(c). The thermal stability was evaluated by comparing the occurrences of weight loss across the temperature range. The fresh 2D/2D V2C/g-C3N4 catalyst demonstrated the best coking resistance over the period of the reaction. The TGA curve of a fresh photocatalyst indicates that the nanocomposite is nonvolatile up to 500°C, even in the existence of airflow. A significant weight increase of 59.5% over the 2D/ 2D V₂C/g-C₃N₄ catalyst was observed at a high temperature of 500 °C. The thermal stability is still also present even after 4 h of irradiation, as shown by the similar non-volatile and decomposition curve patterns in the TGA of the spent 2D/2D V₂C/g-C₃N₄ photocatalyst. The spent 2D/ 2D V₂C/g-C₃N₄ catalyst demonstrated coke resistance, with 66.3% of coke production starting at 400° C. This is due to the carbon content of g-C₃N₄ and V₂C nanosheets. It is clear that moisture attaching to the catalyst surface is what caused the weight loss in the spent catalyst to start off higher than in the fresh sample. However, the TGA results clearly show that after 4 h of irradiation, no additional carbon was deposited on the spent 2D/2D V2C/g-C3N4 composite during the photocatalytic CO_2 reduction process. Thus, it is proving that the 2D/2D V₂C/g-C₃N₄ composite excellent stability over three successive cycles. This also illustrates how well-suited it is for solar energy applications. All of these findings show that when exposed to visible light, the 2D/2D V₂C/g-C₃N₄ composite catalyst effectively reduced CO₂ to CO and CH₄. The total moles of carbon dioxide converted throughout the photocatalytic CO₂ reduction process would therefore be equal to the total moles of CO and CH₄ produced over the catalyst surface.

3.5. Performance analysis

Although the rate of production (R) and selectivity (S) are critical parameters for evaluating the effectiveness of any photocatalytic system, these values do not provide information about the photon energy

Fig. 16. (a) The XRD analysis of fresh and spent 2D/2D V₂C/g-C₃N₄ composite catalyst, (b) FTIR analysis of fresh and spent 2D/2D V₂C/g-C₃N₄ composite catalyst, (c) TGA analysis of fresh and spent 2D/2D V₂C/g-C₃N₄ composite catalyst.

consumed. The reason is that yields and selectivity would vary depending on light intensity, wavelength and catalyst loading [84]. Thus, instead of evaluating merely the production rate, all of these factors should be thoroughly examined. Recently, quantum efficiency is very important to evaluate different photo-catalytic systems by considering photon flux consumed and products obtained. Quantum yield is defined in heterogeneous photocatalysis as the ratio of production rate (mol/s) to photonic flux (mol/s) when a single photon produces a pair of electrons and holes. Photon energy is used to produce electrons and then consumed through the CO₂ reduction method, and the QYs delivers these details. The R, and S, and QYs for CO and CH₄ could be evaluated according to Eqs. (7)-(10), respectively [85].

$$R = \frac{\text{mole of } C_i \text{ in product}}{\text{Time } (t) X \text{ Weight } (W)}$$
(7)

$$S = \frac{C_i \text{ moles in product}}{Total \text{ moles in } C \text{ product}} X100$$
(8)

$$QYs = \frac{n_i X R_i}{Number of incident photons} X100$$
(9)

$$Number of incident photons = \frac{P\lambda St}{hc}$$
(10)

where C, C_i, t, and W represent to the total moles of carbon produced, express to species of mole carbon (CO, CH₄) in the mixture product, time (h), and weight of catalyst (mg), whereas P, λ , S, t, h, and c imply to the luminous intensity of incident light, wavelength of light, irradiated area of 25 cm², illumination time, Planck constant, and the speed of light, respectively. Sources of light 20 mWcm⁻², and QY calculations were conducted at a wavelength of 450 nm. The values of 2 and 8 electrons were utilized in the QY computation since they are consumed in CO and CH₄ production, respectively. The production rate and QY were determined using loading of photocatalyst at 50 mg, a source of light 20 mW cm², and a 4 h irradiation time.

The rate of production, selectivity, and QY of CO/CH₄ obtained following conversion of CO₂ with the H₂O as reducing agent over pristine g-C₃N₄, 10 wt% V₂AlC/g-C₃N₄ and 15%-V₂C/g-C₃N₄ are summarized in Table 1. CH₄ was generated at a rate of 205 µmole g-cat⁻¹ over 15%-V₂C/g-C₃N₄ with a selectivity of 57.58%, which is 1.1 and 6.8-fold larger than when it was generated with 10% wt. V₂AlC/g-C₃N₄ and g-C₃N₄, respectively. Likewise, a generation rate of 151 µmole g-cat⁻¹ was created for CO with a selectivity of 42.41%, that is 1.0 and 1.3-fold better than the selectivity achieved over 10 wt%V₂AlC/g-C₃N₄ and g-C₃N₄, respectively. The amount of QY for CH₄ yield over 15%-V₂C/g-C₃N₄ and g-C₃N₄, respectively, whereas the amount of QY for CO yielded over 15%-V₂C/g-C₃N₄ was 1.02 and 1.32 times higher than QY of 10 wt% V₂AlC/g-C₃N₄ and g-C₃N₄, respectively.

This is due to their excellent photoelectrical characteristics, high conductivity, and efficient absorption of visible light. Furthermore, the heterojunction structure may facilitate as well as provide adequate charge transfer, significantly speeding up the splitting and migration of high-activity charges created by photons.

The results of the photocatalytic CO₂ method over the 15%-V₂C/g-C₃N₄ nanosheets were then compared to those of other recent research on CO2 and H2O over a variety of photocatalyst composites with a variety of reaction conditions, which are summarized in Table 2. The performance of a 15%-V₂C/g-C₃N₄ composite was compared to that of similar available literature, despite the fact that no literature exists on the use of V₂C MXene for photocatalytic CO₂ reduction applications. Quantum yield and production rates were used to compare performance despite the fact that testing conditions varied across others literature. It was possible to obtain CO and CH₄ generation rates of 5.19 and 0.004 μ mol g⁻¹ h⁻¹, respectively, using 2D Ti₃C₂ and g-C₃N₄, according to Yang and co-authors. The combined effect of boosted CO2 adsorption and inhibited photoinduced charge recombination result in an increase in photocatalytic activity [86]. In another development, g-C₃N₄ loaded with alkalinized Ti₃C₂ MXene was examined for photocatalytic CO₂ reduction and discovered that the Ti_3C_2/MX ene composite has a 5.9 fold increase in photoactivity for CO conversion when compared to pure g-C₂N₄ photocatalyst [23]. According to X. Zhao et al., the higher amounts of CO and CH₄ were obtained through CO₂ conversion within visible light using metal modified composites. When Pt and CeO₂ were mixed with 3D g-C₃N₄, CO and CH₄ were increased to 4.69 and $3.03 \ \mu mol \ g^{-1} \ h^{-1}$, respectively [87]. In another study under visible light, a CH₄ development rate of 0.99 μ mol g⁻¹ h⁻¹ was attained among the MXene-based composites via CO2 photoreduction over 2% Ti3C2 linked g-C₃N₄[88]. Controlled chemical and ultrasonic methods were used by Tahir et al. [44] to fabricate multilayer Ti₃C₂ nanosheets embedded with TiO₂ nanoparticles and anchoring with PCN. With selectivity of 80.16% and 19.84%, the greatest CO and CH₄ production rates were achieved over 10TiC-48/PCN, that were 306.75 and 60.15 μ mol g⁻¹ h⁻¹, respectively. Therefore, for the conversion of CO₂ to CO and CH₄, Ti₃C₂ MXene based composites could be as effective as metal-modified g-C₃N₄ composites. In the current study, the external surface of V₂C layers were uniformly covered with 2D g-C₃N₄, which acts as a mediator for electron transport between the composite materials. In comparison, the current work achieved remarkably improved photocatalytic CO₂ conversion to CO and CH₄ with high CH₄ production owing to the synergistic effect of 15%-V2C/g-C3N4 and strong interfacial interaction with porous g-C₃N₄, which enables proficient charge carrier separation.

3.6. Proposed mechanism for photocatalytic CO₂ reduction

In the photocatalytic CO₂ reduction with H₂O over the 15%-V₂C/g-C₃N₄ composite, the potential products were CO and CH₄. Fig. 17 depicts a proposed photocatalytic pathway for photocatalytic CO₂ conversion to CO and CH₄ production, which helps to explain why a 15%-V₂C/g-C₃N₄ composite catalyst performs better. The electronic band structure was first defined in order to investigate a potential mechanism for photocatalytic CO₂ reduction. As a result, the VB position was determined to be 1.67 eV and the CB position to be -1.21 eV using Eqs. (2) and (3) with the bang gap energy of 2.88 eV for g-C₃N₄ [89]. The reaction pathways for better charge transport processes and their utilization in

Table 1

Summary	of of	production rate,	selectivity	and o	uantum	vields or	n different	photocatal	vsts for (CH₄ and	1 CO	generation.
	-											() · · · · · ·

Catalyst	Generation rate ^a (µmol. g ⁻¹)		Selectivity ^b (%)		Quantum Yield ^c (%)		Apparent Quantum Yield (%)	
	CH ₄	CO	CH ₄	CO	CH ₄	СО		
g-C ₃ N ₄	30	114	20.83	79.16	0.112	0.105	0.215	
10%V ₂ AlC+CN	185	148	55.55	44.44	0.683	0.136	0.819	
15% V ₂ C/CN	205	151	57.58	42.41	0.756	0.139	0.895	

^a Calculated rate of generation based on a four-hour irradiation period and a 50 mg catalyst loading.

 $^{\rm b}\,$ On the basis of CH4 and CO, the selectivity is estimated.

^c Quantum yield was estimated using a light source of 20 mWcm⁻² and a wavelength of 420 nm.

Table 2

A review of recent advances in photocatalytic CO2 reduction performance across a variety of photocatalyst composites.

Name of photocatalyst	Method of Synthesis	photocatalyst Loading	Light Source Power Wavelength	Reactor Parameters	Product (s) (rate)µmol g ⁻¹ h ⁻¹	Quantum Yields (QY)	Ref.
10 wt% V ₂ AlC/ g-C ₃ N ₄	Following physical mixing, an ultrasonic technique is used.	50 mg catalyst	Visible light 35 W Xe lamp 420 nm	Fixed -bed photoreactor system Temp. = 25° C, Press. = 0.3 bar, Vol. = 80 cm^3 , Time = 4 h.	$\begin{array}{l} CH_4 = 185 \\ CO = 148 \end{array}$	CH_4 = 0.683% CO = 0.136%	Current study
15%- 48 h V ₂ C/ g- C ₃ N ₄	Physical mixing followed by an ultrasonic approach	50 mg catalyst	Visible light 35 W Xe lamp 420 nm	Fixed-bed photoreactor system Temp. = 25 °C, Press. = 0.3 bar, Vol. = 80 cm3, Time = 4 h, etching time = 48 h	$\begin{array}{l} CH_4 = 205 \\ CO = 151 \end{array}$	CH_4 = 0.765% CO = 0.139%	Current study
2D/2DTi ₃ C ₂ /g- C ₃ N ₄	directly calcining the mixture of multi-layered Ti ₃ C ₂ particles and urea	20 mg catalyst	300 W Xenon lamp, Wavelength = 420 nm	-	$\begin{array}{l} CH_4=0.044\\ CO=5.19 \end{array}$	-	[86]
Pt@CeO ₂ / 3DCN	Calcination method and photoreduction technology	100 mg catalyst	UV and visible light	Closed photochemical reactor, involving 100 mL of NaOH solution (0.1 M) and 1 mL of triethanolamine (TEOA)	$\begin{array}{l} CH_4=3.03\\ CO=4.69 \end{array}$	-	[87]
2% Ti ₃ C ₂ /g- C ₃ N ₄	simple one-step electrostatic self-assembly method	15 mg catalyst	300 W Xenon lamp, Wavelength = 420 nm	DI-water with a polytetrafluoroethylene inner tank in a 200 mL cylindrical steel reactor, Pressure $= 0.6$ MPa	$\mathrm{CH}_4=0.99$		[88]
10TiC-48/PCN	Ultrasonic approach	150 mg catalyst	Light intensity = 20 mW/cm^2 , Wavelength = 420 nm	Fixed-bed photoreactor, Reactor volume $= 150 \text{ cm}^3$.	$\begin{array}{l} CH_4=64.25\\ CO=394.03 \end{array}$	$\begin{array}{l} CH_4\\ = 1.089\\ CO = 1.669 \end{array}$	[44]

Fig. 17. Schematic illustration for charge carrier separation over the 15%-V₂C/ g-C₃N₄ composite under visible light for photocatalytic CO₂ reduction towards CO and CH₄ production.

the redox of CO_2 to form CO and CH_4 are shown in Eqs. (11)–(16). Step 1: Activation of Photocatalyst

$$g - C_3 N_4 \longrightarrow^{nv} g - C_3 N_4(h^{-}) + g - C_3 N_4(e^{-})$$
(11)

$$g - C_3 N_4(e^-) + V_2 C \rightarrow g - C_3 N_4 + V_2 C(e^-)$$
(12)

Step 2: The reduction mechanism

 $CO_2 + e^- \to CO^{--} \tag{13}$

Step 3: The oxidation mechanism

 $2H_2O + 4h^+ \to O_2 + 4H^+$ (14)

Step 4: CO and CH₄ product development

 $CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$ (15)

 $CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$ (16)

When $g-C_3N_4$ was exposed to visible region, electrons were stimulated from the VB to the CB, leaving holes in the VB (Eq. (11)). This

resulted in the generation of charges carriers (e^-/h^+). Electrons from the CB of g-C₃N₄ successfully migrated to the conductive V₂C because of its powerful electronic properties as indicated in Eq. (12). Due to the presence of V₂C nanosheets and great contact with the g-C₃N₄ surface, CO₂ reduction and water oxidation are particularly effective. The electrons are being used to reduce CO₂ to its radical, as shown in Eq. (13). Likewise, holes are consumed in the formation of protons and oxygen, as seen in Eq. (14). CO and CH₄ were produced by involving 2 and 8 electrons and protons, respectively, as shown in Eqs. (15) and (16).

Furthermore, as stated in the literature, V_2C could form a Schottky junction with another semiconductor, allowing for efficient electron flow in the composite [90]. The semiconductor's energy band bends upward to reach the Fermi level equilibrium, providing a Schottky barrier between the 2D g-C₃N₄ and 2D V₂C MXene. The electrons in the CB of g-C₃N₄ have the potential to migrate toward V₂C due to the difference in Fermi levels of g-C₃N₄ and V₂C, allowing for efficient charge separation [91]. Such a characteristic makes it possible for V₂C to function as an "electron sink" for quickly and continuously receiving the photogenerated electrons from the CB of the 2D g-C₃N₄. The Schottky barrier also prevents photogenerated electrons from flowing backward, ensuring that the photogenerated charge carriers are separated spatially. The separation and migration of the charge carrier could be further facilitated by the synergistic interaction of 2D/2D V₂C/g-C₃N₄, which is advantageous for effective CO₂ conversion.

Thermodynamically, CO and CH₄ generation is possible because the conduction band (CB) location of $g-C_3N_4$ (-1.21 eV) is lower than the reduction potentials of CO₂/CO (-0.48 eV) and CO₂/CH₄ (-0.24 eV). Furthermore, because $g-C_3N_4$ has a higher positive VB (+1.67 V) than H_2O/O_2 (0.82 eV vs. SHE at pH = 7) and has been described in previous studies, g-C₃N₄ can oxidize H₂O into O₂. As can be observed, producing CH₄ requires eight electrons and eight protons through the CO₂ conversion method, but producing CO requires only two electrons and two protons. Due to the quick recombination of photogenerated charges over pure g-C₃N₄, very poor photocatalytic CO₂ reduction with lower amounts of methane was achieved over g-C₃N₄. However, the 15%-V₂C/ g-C3N4 composite catalyst provided the most methane due to the combined benefits of V2C in avoiding rate of recombination and presenting various electron separation paths for photoreduction of CO2 and CO to CH₄. This proves that the composite catalyst can efficiently produce electrons and protons, allowing for increased methane production when exposed to visible light. Thus, regulated preparation of a 2D/2D nanocomposite composed of 15%-V2C/g-C3N4 with superior electron trapping and transport properties results in an excellent photocatalyst for photocatalytic generation when exposed to visible light.

4. Conclusions

To summarize, A new 2D/2D heterojunction of 15%- 48hV₂C/g-C₃N₄ composite was successfully fabricated using physical mixing followed by an ultrasonic method. It demonstrates a significant increase in photocatalytic CO₂ efficiency under visible light. Electrical conductivity in the V₂C MXene makes it a suitable cocatalyst. Consequently, coupling with another photocatalyst to increase the photoactivity is advantageous. The analysis of 15%- 48hV2C/g-C3N4 composite demonstrates selective CH₄ production via CO₂-water reaction approach. CH₄ generation rate of 205 μ mol g⁻¹ was achieved over 15%- 48hV₂C/g-C₃N₄, which is 1.1 and 6.7 folds higher than using 10 wt% V2AlC/g-C3N4 and g-C₃N₄ samples, respectively. Similarly, highest CO production rate of 151 μ mol g⁻¹ was achieved with CO₂-water system over 15%-48 h V₂C/g-C₃N₄, which is 1.1 and 1.3 times than folds higher than using 10 wt% V_2AlC/ g-C_3N_4 and g-C_3N_4 samples, respectively. The CH_4 generation rate was 205 $\mu mol~g^{-1}$ using CO2-water system. More interesting, the CH₄ generation rate was enhanced to 254 μ mol g⁻¹ using a CO₂-methanol-water system. This is 1.23 and 1.7 times more than the efficiency of CO₂-water and CO₂-hydrogen photocatalytic systems, respectively. Moreover, the effects of photocatalyst loading, reforming systems, and varying the pressure were also investigated. Theses parameters had an effective effect on determining the efficiency of the photocatalysts. This is owing to the effective separation of charge transfer and the enhanced sorption process on the multilayer surface. This selective photocatalytic conversion of Carbon dioxide to methane indicates that 15% $-V_2C/g-C_3N_4$ is an attractive material that should be further investigated for solar energy applications. The results of the stability test showed that CO and CH₄ are continuously evolving in photocatalytic cycles. These encouraging results and novel insights might be valuable for further exploration in this field for wastewater and solar energy applications.

CRediT authorship contribution statement

Mohamed Madi: Methodology, Writing – original draft, Formal analysis. **Muhammad Tahir:** Financial support, Conceptualization, Supervision, Editing, Proof reading. **Zaki Yamani Zakaria:** Editing and Proof reading.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

The authors would like to extend their deepest appreciation to University Technology Malaysia, Malaysia, for financial support of this work under the Research University Grant vot 21H66 and United Arab Emirates University (UAEU), UAE under Startup research grant vot no. 12N097.

References

 R.R. Ikreedeegh, M. Tahir, A critical review in recent developments of metalorganic-frameworks (MOFs) with band engineering alteration for photocatalytic CO₂ reduction to solar fuels, J. CO₂ Util. 43 (2021), 101381.

- [2] A. Francis, S. Shanmuga Priya, S. Harish Kumar, K. Sudhakar, M. Tahir, A review on recent developments in solar photoreactors for carbon dioxide conversion to fuels, J. CO₂ Util. 47 (2021), 101515.
- [3] N. Shehzad, M. Tahir, K. Johari, T. Murugesan, M. Hussain, A critical review on TiO₂ based photocatalytic CO₂ reduction system: strategies to improve efficiency, J. CO₂ Util. 26 (2018) 98–122.
- [4] M. Elavarasan, W. Yang, S. Velmurugan, J.-N. Chen, Y.-T. Chang, T.C.-K. Yang, T. Yokoi, In-situ infrared investigation of m-TiO₂/α-Fe₂O₃ photocatalysts and tracing of intermediates in photocatalytic hydrogenation of CO₂ to methanol, J. CO₂ Util. 56 (2022).
- [5] Y.-T. Li, L. Zhou, W.-G. Cui, Z.-F. Li, W. Li, T.-L. Hu, Iron promoted MOF-derived carbon encapsulated NiFe alloy nanoparticles core-shell catalyst for CO₂ methanation, J. CO₂ Util. 62 (2022), 102093.
- [6] B. Tahir, M. Tahir, N.A.S. Amin, Photo-induced CO₂ reduction by CH₄/H₂O to fuels over Cu-modified g-C₃N₄ nanorods under simulated solar energy, Appl. Surf. Sci. 419 (2017) 875–885.
- [7] M. Tahir, N.A.S. Amin, Photo-induced CO₂ reduction by hydrogen for selective CO evolution in a dynamic monolith photoreactor loaded with Ag-modified TiO₂ nanocatalyst, Int. J. Hydrog. Energy 42 (23) (2017) 15507–15522.
- [8] M. Tahir, Hierarchical 3D VO₂/ZnV₂O₄ microspheres as an excellent visible light photocatalyst for CO₂ reduction to solar fuels, Appl. Surf. Sci. 467–468 (2019) 1170–1180.
- [9] X. Fan, L. Zhang, M. Wang, W. Huang, Y. Zhou, M. Li, R. Cheng, J. Shi, Constructing carbon-nitride-based copolymers via Schiff base chemistry for visiblelight photocatalytic hydrogen evolution, Appl. Catal. B 182 (2016) 68–73.
- [10] Y. Zhao, M. Que, J. Chen, C. Yang, MXenes as co-catalysts for the solar-driven photocatalytic reduction of CO₂, J. Mater. Chem. A 8 (46) (2020) 16258–16281.
- [11] L.-f. Hong, R.-t. Guo, Y. Yuan, X.-y. Ji, Z.-s. Li, Z.-d. Lin, W.-g. Pan, Recent progress of two-dimensional MXenes in photocatalytic applications: a review, Mater. Today Energy 18 (2020), 100521.
- [12] J. Pei, J. Yang, T. Yildirim, H. Zhang, Y. Lu, Many-body complexes in 2D semiconductors, Adv. Mater. 31 (2) (2019), 1706945.
- [13] R. Hu, G. Liao, Z. Huang, H. Qiao, H. Liu, Y. Shu, B. Wang, X. Qi, Recent advances of monoelemental 2D materials for photoctalytic applications, J. Hazard. Mater. (2020), 124179.
- [14] B. Tahir, M. Tahir, M.G.M. Nawawi, Highly stable 3D/2D WO₃/g-C₃N₄ Z-scheme heterojunction for stimulating photocatalytic CO₂ reduction by H₂O/H₂ to CO and CH₄ under visible light, J. CO₂ Util. 41 (2020), 101270.
- [15] W. Yu, D. Xu, T. Peng, Constructing a stable 2D layered Ti₃C₂ MXene cocatalystassisted TiO₂/g-C₃N₄/Ti₃C₂ heterojunction for tailoring photocatalytic bireforming of methane under visible light, J. Mater. Chem. A 3 (39) (2015) 19936–19947.
- [16] A.A. Khan, M. Tahir, A. Bafaqeer, Constructing a stable 2D layered Ti₃C₂ MXene cocatalyst-assisted TiO₂/g-C₃N₄/Ti₃C₂ heterojunction for tailoring photocatalytic bireforming of methane under visible light, Energy Fuels 34 (8) (2020) 9810–9828.
- [17] B. Tahir, M. Tahir, M.G. Mohd Nawawi, Well-designed 3D/2D/2D WO3/Bt/g-C₃N₄ Z-scheme heterojunction for tailoring photocatalytic CO₂ methanation with 2Dlayered bentonite-clay as the electron moderator under visible light, Energy Fuels 34 (11) (2020) 14400–14418.
- [18] R.R. Ikreedeegh, M. Tahir, Indirect Z-scheme heterojunction of NH₂-MIL-125(Ti) MOF/g-C₃N₄ nanocomposite with RGO solid electron mediator for efficient photocatalytic CO₂ reduction to CO and CH₄, J. Environ. Chem. Eng. 9 (4) (2021), 105600.
- [19] J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, J. Yu, Hierarchical porous O-doped g-C₃N₄ with enhanced photocatalytic CO₂ reduction activity, Small 13 (15) (2017), 1603938.
- [20] M. Tahir, B. Tahir, 2D/2D/2D O-C₃N₄/Bt/Ti₃C₂T_x heterojunction with novel MXene/clay multi-electron mediator for stimulating photo-induced CO₂ reforming to CO and CH₄, Chem. Eng. J. 400 (2020), 125868.
- [21] J.-y. Tang, W.-g. Zhou, R.-t. Guo, C.-y. Huang, W.-g. Pan, Enhancement of photocatalytic performance in CO₂ reduction over Mg/g-C₃N₄ catalysts under visible light irradiation, Catal. Commun. 107 (2018) 92–95.
- [22] M. Tahir, B. Tahir, M.G.M. Nawawi, M. Hussain, A. Muhammad, Cu-NPs embedded 1D/2D CNTs/pCN heterojunction composite towards enhanced and continuous photocatalytic CO₂ reduction to fuels, Appl. Surf. Sci. 485 (2019) 450–461.
- [23] Q. Tang, Z. Sun, S. Deng, H. Wang, Z. Wu, Decorating g-C₃N₄ with alkalinized Ti₃C₂ MXene for promoted photocatalytic CO₂ reduction performance, J. Colloid Interface Sci. 564 (2020) 406–417.
- [25] G. Chen, R. Gao, Y. Zhao, Z. Li, G.I.N. Waterhouse, R. Shi, J. Zhao, M. Zhang, L. Shang, G. Sheng, X. Zhang, X. Wen, L.Z. Wu, C.H. Tung, T. Zhang, Aluminasupported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO₂ hydrogenation to hydrocarbons, J. Adv. Mater. 30 (3) (2018), 1704663.
- [26] Y. Guan, S. Jiang, Y. Cong, J. Wang, Z. Dong, Q. Zhang, G. Yuan, Y. Li, X. Li, A hydrofluoric acid-free synthesis of 2D vanadium carbide (V₂C) MXene for supercapacitor electrodes, 2D Mater. 7 (2) (2020), 025010.
- [27] B. Wang, A. Zhou, F. Liu, J. Cao, L. Wang, Q. Hu, Carbon dioxide adsorption of twodimensional carbide MXenes, J. Adv. Ceram. 7 (3) (2018) 237–245.
- [28] J. Wang, P. Zhai, T. Zhao, M. Li, Z. Yang, H. Zhang, J. Huang, Laminar MXene-Nafion-modified separator with highly inhibited shuttle effect for long-life lithium-sulfur batteries, Electrochim. Acta 320 (2019), 134558.

M. Madi et al.

- [29] E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi, D.-J. Kim, Room temperature gas sensing of two-dimensional titanium carbide (MXene), ACS Appl. Mater. Interfaces 9 (42) (2017) 37184–37190.
- [30] T.P. Nguyen, D.M.T. Nguyen, H.K. Le, D.-V.N. Vo, S.S. Lam, R.S. Varma, M. Shokouhimehr, C.C. Nguyen, Q. Van Le, MXenes: applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO₂ reduction, J. Mol. Catal. 486 (2020), 110850.
- [31] H. Wang, Y. Wu, X. Yuan, G. Zeng, J. Zhou, X. Wang, J.W. Chew, Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges, Adv. Mater. 30 (12) (2018), 1704561.
- [32] A. VahidMohammadi, A. Hadjikhani, S. Shahbazmohamadi, M. Beidaghi, Twodimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries, ACS Nano 11 (11) (2017) 11135–11144.
- [33] E. Ghasali, Y. Orooji, A. Azarniya, M. Alizadeh, M. Kazem-zad, Production of V₂C MXene using a repetitive pattern of V₂AlC MAX phase through microwave heating of Al-V₂O₅-C system, Appl. Surf. Sci. 542 (2021), 148538.
- [34] C. Ling, L. Shi, Y. Ouyang, Q. Chen, J. Wang, Transition metal-promoted V₂CO₂ (MXenes): a new and highly active catalyst for hydrogen evolution reaction, Adv. Sci. 3 (11) (2016), 1600180.
- [35] G. Gao, A.P. O'Mullane, A. Du, 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction, ACS Catal. 7 (1) (2017) 494–500.
- [36] N. Li, X. Chen, W.-J. Ong, D.R. MacFarlane, X. Zhao, A.K. Cheetham, C. Sun, Understanding of electrochemical mechanisms for CO₂ capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes), ACS Nano 11 (11) (2017) 10825–10833.
- [37] B. Zhu, B. Cheng, J. Fan, W. Ho, J. Yu, g-C₃N₄-based 2D/2D composite heterojunction photocatalyst, Small Struct. 2 (12) (2021), 2100086.
- [38] L. Cheng, Q. Chen, J. Li, H. Liu, Boosting the photocatalytic activity of CdLa₂S₄ for hydrogen production using Ti₃C₂ MXene as a co-catalyst, Appl. Catal. B 267 (2020), 118379.
- [39] M.H. Tran, T. Schäfer, A. Shahraei, M. Duïrschnabel, L. Molina-Luna, U.I. Kramm, C.S. Birkel, Adding a new member to the MXene family: synthesis, structure, and electrocatalytic activity for the hydrogen evolution reaction of V₄C₃T x, ACS Appl. Energy Mater. 1 (8) (2018) 3908–3914.
- [40] D. Qin, Y. Zhou, W. Wang, C. Zhang, G. Zeng, D. Huang, L. Wang, H. Wang, Y. Yang, L. Lei, Recent advances in two-dimensional nanomaterials for photocatalytic reduction of CO₂: insights into performance, theories and perspective, J. Mater. Chem. A 8 (37) (2020) 19156–19195.
- [41] H. Dong, X. Zhang, Y. Zuo, N. Song, X. Xin, B. Zheng, J. Sun, G. Chen, C. Li, 2D Ti₃C₂ as electron harvester anchors on 2D g-C₃N₄ to create boundary edge active sites for boosting photocatalytic performance, Appl. Catal. A 590 (2020), 117367.
 [42] M. Lu, Q. Li, C. Zhang, X. Fan, L. Li, Y. Dong, G. Chen, H. Shi, Remarkable
- [12] M. Li, Q. al, C. Zhang, A. Fan, E. J., T. Ding, C. Chen, H. Din, R. Inikator, photocatalytic activity enhancement of CO₂ conversion over 2D/2D g-C₃N₄/BiVO₄ Z-scheme heterojunction promoted by efficient interfacial charge transfer, Carbon 160 (2020) 342–352.
- [43] F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, 2D/2D/0D TiO₂/C₃N₄/Ti₃C₂ MXene composite S-scheme photocatalyst with enhanced CO₂ reduction activity, Appl. Catal. B 272 (2020), 119006.
- [44] M. Tahir, B. Tahir, In-situ growth of TiO₂ imbedded Ti₃C₂T_A nanosheets to construct PCN/Ti₃C₂TA MXenes 2D/3D heterojunction for efficient solar driven photocatalytic CO₂ reduction towards CO and CH₄ production, J. Colloid Interface Sci. 591 (2021) 20–37.
- [45] Q. Shan, X. Mu, M. Alhabeb, C.E. Shuck, D. Pang, X. Zhao, X.-F. Chu, Y. Wei, F. Du, G. Chen, Y. Gogotsi, Y. Gao, Y. Dall'Agnese, Two-dimensional vanadium carbide (V₂C) MXene as electrode for supercapacitors with aqueous electrolytes, Electrochem. Commun. 96 (2018) 103–107.
- [46] Y. Chen, H. Yao, F. Kong, H. Tian, G. Meng, S. Wang, X. Mao, X. Cui, X. Hou, J. Shi, V₂C MXene synergistically coupling FeNi LDH nanosheets for boosting oxygen evolution reaction, Appl. Catal. B 297 (2021), 120474.
- [47] F.V. Bekun, A.A. Alola, S.A. Sarkodie, Toward a sustainable environment: Nexus between CO₂ emissions, resource rent, renewable and nonrenewable energy in 16-EU countries, Sci. Total Environ. 657 (2019) 1023–1029.
- [48] Y. Liu, H. Xiao, W.A. Goddard III, Schottky-barrier-free contacts with twodimensional semiconductors by surface-engineered MXenes, JACS 138 (49) (2016) 15853–15856.
- [49] H. Hu, R. Zhao, X. Fan, J. Liu, Y. Nie, D. Wang, Preparation of a novel V₂C mxene/ g-C₃N₄ and its performance in plasma catalytic denitrification, E3S Web Conf. EDP Sci. (2021) 02068.
- [50] N. Fajrina, M. Tahir, Monolithic Ag-Mt dispersed Z-scheme pCN-TiO₂ heterojunction for dynamic photocatalytic H₂ evolution using liquid and gas phase photoreactors, Int. J. Hydrog. Energy 45 (7) (2020) 4355–4375.
- [51] Q. Deng, F. Zhou, B. Qin, Y. Feng, Z. Xu, Eco-friendly poly(vinyl alcohol)/ delaminated V₂C MXene high-k nanocomposites with low dielectric loss enabled by moderate polarization and charge density at the interface, Ceram. Int. 46 (17) (2020) 27326–27335.
- [52] Z. Wang, X. Li, J. Zhou, P. Liu, Q. Huang, P. Ke, A. Wang, Microstructure evolution of V–Al–C coatings synthesized from a V₂AlC compound target after vacuum annealing treatment, J. Alloy. Compd. 661 (2016) 476–482.
- [53] A. Akhundi, A. Badiei, G.M. Ziarani, A. Habibi-Yangjeh, M.J. Muñoz-Batista, R. Luque, Graphitic carbon nitride-based photocatalysts: toward efficient organic transformation for value-added chemicals production, Mol. Catal. 488 (2020), 110902.
- [54] Z. Wang, K. Yu, Y. Feng, R. Qi, J. Ren, Z. Zhu, VO₂(p)-V₂C(MXene) grid structure as a lithium polysulfide catalytic host for high-performance Li–S battery, ACS Appl. Mater. Interfaces 11 (47) (2019) 44282–44292.

- [55] Y. Bai, P.-Q. Wang, J.-Y. Liu, X.-J. Liu, Enhanced photocatalytic performance of direct Z-scheme BiOCl–g-C₃N₄ photocatalysts, RSC Adv. 4 (37) (2014) 19456–19461.
- [56] J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity, J. Mater. Chem. 21 (38) (2011) 14398–14401.
- [57] Y. Bi, M.F. Ehsan, Y. Huang, J. Jin, T. He, Synthesis of Cr-doped SrTiO₃ photocatalyst and its application in visible-light-driven transformation of CO₂ into CH₄, J. CO₂ Util. 12 (2015) 43–48.
- [58] R. Thakur, A. VahidMohammadi, J. Moncada, W.R. Adams, M. Chi, B. Tatarchuk, M. Beidaghi, C.A. Carrero, Insights into the thermal and chemical stability of multilayered V₂CTx MXene, Nanoscale 11 (22) (2019) 10716–10726.
- [59] M. Wu, B. Wang, Q. Hu, L. Wang, A. Zhou, The synthesis process and thermal stability of V₂C MXene, Materials 11 (11) (2018).
- [60] Y. Kim, A. Gkountaras, O. Chaix-Pluchery, I. Gélard, J. Coraux, C. Chapelier, M. W. Barsoum, T. Ouisse, Elementary processes governing V₂AlC chemical etching in HF, RSC Adv. 10 (42) (2020) 25266–25274.
- [61] D. Huang, Y. Xie, D. Lu, Z. Wang, J. Wang, H. Yu, H. Zhang, Demonstration of a white laser with V₂C MXene-based quantum dots, Adv. Mater. 31 (24) (2019), 1901117.
- [62] Y. Cao, T. Wu, K. Zhang, X. Meng, W. Dai, D. Wang, H. Dong, X. Zhang, Engineered exosome-mediated near-infrared-II region V₂C quantum dot delivery for nucleustarget low-temperature photothermal therapy, ACS Nano 13 (2) (2019) 1499–1510.
- [63] X. Jiang, A.V. Kuklin, A. Baev, Y. Ge, H. Ågren, H. Zhang, P.N. Prasad, Twodimensional MXenes: From morphological to optical, electric, and magnetic properties and applications, Phys. Rep. 848 (2020) 1–58.
- [64] V.N. Khabashesku, J.L. Zimmerman, J.L. Margrave, Powder synthesis and characterization of amorphous carbon nitride, Chem. Mater. 12 (11) (2000) 3264–3270.
- [65] B. Li, H. Song, F. Han, L. Wei, Photocatalytic oxidative desulfurization and denitrogenation for fuels in ambient air over Ti₃C₂/g-C₃N₄ composites under visible light irradiation, Appl. Catal. B 269 (2020), 118845.
- [66] W. Luo, Y. Liu, F. Li, J. Huo, D. Zhao, J. Zhu, S. Guo, H₂O₂ assisted hydrothermal oxidation of partially etched vanadium carbides (MXene) and their electrochemical properties as anode for Li-ion batteries, Appl. Surf. Sci. 523 (2020).
- [67] A.A. Khan, M. Tahir, Well-designed 2D/2D Ti₃C₂T_{A/R} MXene coupled g-C₃N₄ heterojunction with in-situ growth of anatase/rutile TiO₂ nucleates to boost photocatalytic dry-reforming of methane (DRM) for syngas production under visible light, Appl. Catal. B 285 (2021), 119777.
- [68] R.R. Ikreedeegh, M. Tahir, Facile fabrication of well-designed 2D/2D porous g-C₃N₄–GO nanocomposite for photocatalytic methane reforming (DRM) with CO₂ towards enhanced syngas production under visible light, Fuel 305 (2021), 121558.
- [69] G.I. Rashed, H. Hu, R. Zhao, X. Fan, J. Liu, Y. Nie, D. Wang, M. Kheshti, Preparation of a novel V₂C mxene/g-C₃N₄ and its performance in plasma catalytic denitrification, E3S Web Conf. 252 (2021).
- [70] R.J. Liu, L.X. Yang, Y. Wang, H.P. Bu, H.J. Liu, C.L. Zeng, Characterization and electrochemical properties of submicro-sized orthorhombic V₂C for Li-ion storage, J. Solid State Electrochem. 26 (3) (2022) 831–842.
- [71] K. Kannan, K.K. Sadasivuni, A.M. Abdullah, B. Kumar, Current trends in MXenebased nanomaterials for energy storage and conversion system: a mini review, Catalysts 10 (5) (2020) 495.
- [72] J. Michael, Z. Qifeng, W. Danling, Titanium carbide MXene: synthesis, electrical and optical properties and their applications in sensors and energy storage devices, Nanomater. Nanotechnol. 9 (2019) 1–9.
- [73] C. Prasad, X. Yang, Q. Liu, H. Tang, A. Rammohan, S. Zulfiqar, G.V. Zyryanov, S. Shah, Recent advances in MXenes supported semiconductors based photocatalysts: properties, synthesis and photocatalytic applications, J. Ind. Eng. Chem. 85 (2020) 1–33.
- [74] H. Hou, G. Shao, W. Yang, Recent advances in g-C₃N₄-based photocatalysts incorporated by MXenes and their derivatives, J. Mater. Chem. A 9 (24) (2021) 13722–13745.
- [75] X. Chen, W.-g. Pan, R.-t. Guo, X. Hu, Z.-x. Bi, J. Wang, Recent progress on van der Waals heterojunctions applied in photocatalysis, J. Mater. Chem. A 10 (14) (2022) 7604–7625.
- [76] L.-L. Tan, W.-J. Ong, S.-P. Chai, A.R. Mohamed, Photocatalytic reduction of CO₂ with H₂O over graphene oxide-supported oxygen-rich TiO₂ hybrid photocatalyst under visible light irradiation: Process and kinetic studies, Chem. Eng. J. 308 (2017) 248–255.
- [77] W.A.W. Abu Bakar, R. Ali, S. Toemen, Catalytic methanation reaction over supported nickel–ruthenium oxide base for purification of simulated natural gas, Sci. Iran. 19 (3) (2012) 525–534.
- [78] S. Kaneco, Y. Shimizu, K. Ohta, T. Mizuno, Photocatalytic reduction of high pressure carbon dioxide using TiO₂ powders with a positive hole scavenger, J. Photochem. Photobiol. C 115 (3) (1998) 223–226.
- [79] I.H. Tseng, W.-C. Chang, J.C.S. Wu, Photoreduction of CO₂ using sol–gel derived titania and titania-supported copper catalysts, Appl. Catal. B 37 (1) (2002) 37–48.
- [80] X. Xiong, Y. Zhao, R. Shi, W. Yin, Y. Zhao, G.I.N. Waterhouse, T. Zhang, Selective photocatalytic CO₂ reduction over Zn-based layered double hydroxides containing tri or tetravalent metals, Sci. Bull. 65 (12) (2020) 987–994.
- [81] M. Tahir, Construction of a stable two-dimensional MAX supported protonated graphitic carbon nitride (pg-C₃N₄)/Ti₃AlC₂/TiO₂ Z-scheme multiheterojunction system for efficient photocatalytic CO₂ reduction through dry reforming of methanol, Energy Fuels 34 (3) (2020) 3540–3556.

M. Madi et al.

Journal of CO2 Utilization 65 (2022) 102238

- [82] B. Tahir, M. Tahir, N.A.S. Amin, Tailoring performance of La-modified TiO₂ nanocatalyst for continuous photocatalytic CO₂ reforming of CH₄ to fuels in the presence of H₂O, Energy Convers. Manag. 159 (2018) 284–298.
- [83] A. Raza, H. Shen, A.A. Haidry, L. Sun, R. Liu, S. Cui, Studies of Z-scheme WO₃-TiO₂/Cu₂ZnSnS₄ ternary nanocomposite with enhanced CO₂ photoreduction under visible light irradiation, J. CO₂ Util. 37 (2020) 260–271.
- [84] B. Tahir, M. Tahir, M.A.C. Yunus, A.R. Mohamed, M. Siraj, A. Fatehmulla, 2D/2D Mt/m-CN composite with enriched interface charge transfer for boosting photocatalytic CO₂ hydrogenation by H₂ to CH₄ under visible light, Appl. Surf. Sci. 520 (2020), 146296.
- [85] S. Nahar, M. Zain, A.A.H. Kadhum, H.A. Hasan, M. Hasan, Advances in photocatalytic CO₂ reduction with water: a review, Materials 10 (6) (2017) 629.
- [86] C. Yang, Q. Tan, Q. Li, J. Zhou, J. Fan, B. Li, J. Sun, K. Lv, 2D/2D Ti₃C₂ MXene/g-C₃N₄ nanosheets heterojunction for high efficient CO₂ reduction photocatalyst: dual effects of urea, Appl. Catal. B 268 (2020), 118738.
- [87] X. Zhao, J. Guan, J. Li, X. Li, H. Wang, P. Huo, Y. Yan, CeO₂/3D g-C₃N₄ heterojunction deposited with Pt cocatalyst for enhanced photocatalytic CO₂ reduction, Appl. Surf. Sci. 537 (2021), 147891.
- [88] J. Hu, J. Ding, Q. Zhong, Ultrathin 2D Ti₃C₂ MXene Co-catalyst anchored on porous g-C₃N₄ for enhanced photocatalytic CO₂ reduction under visible-light irradiation, J. Colloid Interface Sci. 582 (2021) 647–657.
- [89] A. Ali Khan, M. Tahir, Constructing S-scheme heterojunction of CoAlLa-LDH/g-C₃N₄ through monolayer Ti₃C₂-MXene to promote photocatalytic CO₂ re-forming of methane to solar fuels, ACS Appl. Energy Mater. 5 (1) (2022) 784–806.
- [90] Y. Wang, D. Shen, Y. Liang, Y. Zhao, X. Chen, L. Zhou, M. Zhang, J. Xu, X. Liu, E. Hu, L. Wang, R. Xu, Y. Tong, Emulation of multiple-functional synapses using V₂C memristors with coexistence of resistive and threshold switching, Mater. Sci. Semicond. Process. 135 (2021), 106123.
- [91] B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2 (2) (2017) 16098.