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The present explore effort addresses the impact of radiation on MHD stream of an 
incompressible nano fluid due to an elongating elongating piece by warm and mass 
fluxes border situation. Similarity transformations are applied to attain the self-similar 
equations which are then solved numerically by means of shooting procedure 
alongside by means of 4th order Runge-Kutta method. Features of a variety of sundry 
constraints on the non-dimensional stream, thermal, nanoparticle volume fraction, 
local Nusselt & local Sherwood figures are visualized. Moreover the numerical values 
of friction factor, local Nusselt and Sherwood figures are also computed and analyzed. 
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1. Introduction

In recent years, the investigation of stream and warm transport over a elongating surface have 
achieved extensive attention for the reason that of its broad applications, suchas continuous casting, 
exchangers, metal spinning, bundle wrapping, foodstuff processing, destructive chemical processing, 
equipment and polymer extrusion. Crane [1] was the first who study the fluid of Newtonian stream 
caused by an elongating expanse. Many researchers Dutta et al., [2], Chen and Char [3] and Gupta 
[4] modified the work of Crane [1] by taking the consequence of mass transport under various
circumstances. Nadeem et al., [5] took the exponential elongating sheet to discuss the warm
transport phenomenon of water-based Nano-fluid. Mukhopadhyay et al., [6] scrutinized the warm
transport stream over a porous exponential elongating sheet by means of thermal radiation. Zhang
et al., [7] concentrates the warm transport of the power law Nano-fluid thin film occur due to a
elongating sheet in the presence of stream slip consequence and magnetic field. The border layer
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stream of ferromagnetic fluid over a elongating surface is demonstrated by Majeed et al., [8]. Pal and 
Saha [9] examined the unsteady elongating sheet to discuss the warm and mass transport in a thin 
liquid film by means of the consequence of non linear thermal radiation. Weidman [10] studied a 
unified formulation for stagnation point streams by means of elongating surfaces. 

The study of magneto hydrodynamics(MHD) stream of an electrically conducting liquid over a 
elongating sheet has promising applications in modern metallurgical as well as in metal-working 
procedures [11-16]. Many professional techniques regarding polymers oblige the cooling of 
unbroken strips and filaments by sketch them from moving fluid. The closing product depends greatly 
on the rate of cooling that is governed by the structure of the border layer close to the elongating 
sheet. Mukhopadhyay et al., [17] studied MHD stream of Casson fluid due to exponentially elongating 
sheet by means of thermal radiation. The characteristics of magneto hydro dynamics in bi-directional 
stream of Nano-fluid focus to second order slip stream and homogeneous– non-homogeneous 
reactions is investigated by Hayat et al., [18]. Lin et al., [19] examined unsteady MHD Nano-fluid flow 
of thermal transport in a finite film of thin pseudo-plastic in presence of heat source. Sheikholeslami 
et al., [20] analyzed the MHD flow of Nano-fluid steam and warm transport by means of the help of 
two-phase model by means of radiation. Function of the HAM-based Mathematica enclose BVP h 2.0 
on MHD Falkner–Skan stream of Nano-fluid is provided by Farooq et al., [21]. Shehzad et al., [22] 
presented an analytical study to investigate thermal radiation possessions in 3D stream of Jeffrey 
nano-fluid by means of internal warm creation and magnetic field. 

The significance of radiation cannot be mistreated in the processes that are performed at 
extremely high temperature. The radiative possessions are also significant in gas turbines, 
armaments, aircraft, space vehicles and nuclear control plants [23-26]. The communication of 
radiation in thermally convective stream of viscous liquid over an inclined surface is derived by 
Moradi et al., [27]. Sheikholeslami et al., [28] proposed the impact of viscous Nano-fluid strean by 
means of two phase model with thermal radiation. non-turbulent stream of an Oldroyd-B liquid by 
means of nanoparticles with various constraints is examined by Hayat et al., [29]. Ashraf et al., [30] 
investigated the 3D radiative stream of Maxwell fluid flow by means of thermophoresis and 
convective situations. Hayat et al., [31] developed a model of non- turbulent stream of Powell-Eyring 
Nano-fluid over a elongating sheet due to radiation property.  

Additionally, the convective circumstances are extra useful and realistic in transpiration cooling 
process, fabric drying etc. Aziz [32] proposed the convective circumstance in border layer stream of 
viscous fluid past a flat cover. Hayat et al., [33] studied the possessions of Joule warming and 
thermophoresis in elongated stream of Maxwell model under convective circumstance. Sakiadis 
stream of Maxwell fluid by means of convective border circumstance is developed by Mustafa et al., 
[34]. Hayat et al., [35] systematically discussed the stagnation aim stream of Maxwell fluid in the 
occurrence of warm radiation and convective circumstance. Hayat et al., [36] investigated disposed 
magnetic field and warm source/sink aspects in stream of Nano-fluid by means of nonlinear warm 
radiation. Nonlinear radiative stream of 3D Burgers Nano-fluid by means of new mass flux 
consequence is worked out by Khan et al., [11]. 

In the current manuscript, the thermal radiation possessions magneto hydro dynamic (MHD) 
stream of an incompressible nano fluid due to an exponentially elongating sheet by means of warm 
and mass fluxes circumstancesis studied. With the help of similarity transformations, the leading 
partial differential equations are changed into the self-similar ordinary differential equations which 
are afterwards solved numerically by the shooting process. 
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2. Formulation 
 

Consider the exponentially elongating sheet of three dimensional hydromagnetic stream of an 
incompressible fluid. Warm and mass transport scrutiny is considered in the presence of thermal 
radiation, warm source/sink and destructive chemical reaction. A non-uniform magnetic field B(x) = 
B0 exp(x/2l) is functional in the y-direction. Induced magnetic pitch for tiny magnetic Reynolds 
number is abandoned. We forced the warm and mass fluxes border circumstancesat the surface of 
the sheet. The leading equations of movement may be written as 
 
(i) Continuity 
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(iv) Nanoparticle volume fraction  
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subject to the border circumstances 
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Here u and v indicate the stream components in the x and y directions correspondingly,   the 

kinematic viscosity, 
p

k

c



 the diffusivity of thermal , k the density of fluid,   the conductivity of 
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thermal , pc the specific warm, T the liquid temperature, T∞ the ambient temperature, N the liquid 

concentration, C∞ the ambient concentration, / pk c   the thermal diffusivity, k the thermal 

conductivity, cp the specific warm, 
* 3

*

16

3
r

T T
q

k Y

  
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
 the radiative warm flux, k* the mean 

incorporation coefficient, *  the Stefan-Boltzmann constant, ( ) pc  the consequenceive warm 

capacity of nanoparticles, ( ) fc warm capacity of the base fluid. N is nanoparticle volume, D the 

mass diffusion  0( ) U exp /wU x x l  is the elongating stream of sheet, U0 the reference stream, l the 

reference length,  0 0 0( ) T / 2 exp /w wq x q U vl x l
 

the variable warm flux, 

 0 0 0( ) / 2 exp /np npq x q C U vl x l  the unpredictable surface nanoparticle flux, 
0U , 

0T , 
0wq , 0npq ,

0N

, are the reference stream, temperature and warm flux, surface nanoparticle flux, nanoparticle 

volume fraction respectively,  0( ) exp /V x V x l a special type of stream at the wall is considered 

(Bhattacharyya [12]) where 
0V  is a constant. Here ( ) 0V x   is the stream of suction and ( ) 0V x  is 

the stream of injection. 
Introducing similarity transformations as follows 
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The continuity equation is automatically satisfied and using similarity transformation, the system 
of Eq. (2), (3) and (4) becomes 
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thermophoresis constraint, respectively. The transformed border circumstances (5a) and (5b) are 
given by  
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mass suction and negative S <0 (
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The substantial quantities of attention are the local skin friction factor, the wall warm transport 
factor (or the local heat transfer factor) and the wall deposition flux (or the local Stanton number) 

which are defined as respectively where the factor of friction fC , the warm transport ( )wq x  and the 

mass transport xSh  from the wall are given by 
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From the temperature field, we can study the rate of warm transport which is given by 
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From the concentration field, we can study the rate of mass transport which is given by
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where 0Rex U x   the local Reynolds number. 

 
3. Method of Solution 
 

The scheme of ODEs (7) – (9) subject to the border circumstances (10) are solved numerically 
using Runge–Kutta fourth-order integration by means of shooting procedure. A step size of 

0.01   was certain to be satisfactory for a convergence standard of 10-6 in all belongings. The 

results are presented graphically in Figure 1 – 6 and conclusions are drawn for stream field and other 
physical quantities of interest that have significant possessions. 
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4. Results and Discussion 
 

For the illustration of the marks, Eq. (7) –( 9 ) by means of border circumstances(10) are solved 
numerically by Runge–Kutta fourth-order integration by means of shooting method and numerical 
values are plotted in Figure 2 – 6. The leading constraints are keeping fixed as Ha=1.0, S = 3.0, Le = 
1.3, R = 0.1, Pr = 0.71, Nt = 0.8 and Nb = 0.5 throughout the computations. The influence of the 
involving constraints Hartmann number Ha, Lewis number Le, Radiation constraint R, 
thermophoresis number Nt, suction constraint s and Brownian movement constraint Nb on the 
stream, temperature and nanoparticle volume friction profiles. Figure 1(a)-(c), respectively, illustrate 
the stream, temperature and nanoparticle volume friction profiles for various values of suction 
constraint .S  From Figure 1(a) , the stream profiles increase by means of increasing in suction 
constraint. It is also observed Figure 1(b) that the temperature decreases when suction constraint 
increases. Further, from Figure 1(c), it is found that nanoparticle volume friction decreases as suction 
constraint increases. 

The outcome of the Hartmann number on the stream, temperature and nanoparticle volume 
friction profiles are offered in Figure 2(a)-(c), respectively. We observe from Figure 2(a) that the 
stream profiles increase by means of increasing values of Hartmann number. Physically by increasing 
magnetic field the Lorentz force increases. More resistance is offered to the movement of fluid and 
thus the stream of the fluid is increased. It is also seen Figure 2(b) that the temperature decreases as 
Hartmann number increases. In addition, from Figure 2(c) it is found that nanoparticle volume 
fraction profile increases, as Hartmann number increases. 

Figure 3(a)-(b) display the possessions due to thermophoresis constraint Nt on temperature and 
nanoparticle volume fraction are represented. Due to amplify of thermophoresis constraint, both the 
temperature (Figure 3(a)) and nanoparticle volume fraction (Figure 3(b)) profiles enhance. 
Thermophoresis constraint Nt is the ratio of the nanoparticle diffusion to the thermal diffusion in the 
Nano-fluid. Due to amplify in Nt the temperature dissimilarity between the sheet and the fluid 
increases and as a consequence thermal border layer increases in this case. By means of the amplify 
in Nt, thermophoresis force increases which helps the nanoparticle to move from warm to freezing 
regions. Owing to this movement nanoparticle volume fraction increases. 

Figure 4(a)-(b) depict the influence of radiation constraint R on thermal and volume of 
nanoparticle fraction profiles. It is eminent that well-built values of R improve the thermal profile. 
This is owing to the cause that an amplify in R corresponds to slighter mean inclusion factor. We 
observe from Figure 4(b) that as R amplify the nanoparticle volume fraction outline enlarges. 

Finally, Figure 5 and 6 demonstrate the possessions of Lewis number Le and movement of 
Brownian constraint Nb on the nanoparticle volume fraction outlines, respectively. It is pragmatic 
from Figure (5) that nanoparticle volume fraction distribution decreases as Lewis number increases. 
This is probably because of the fact that an amplify in Le results in smaller Brownian diffusion 
coefficient DB which restricts nanoparticles to infiltrate deeper into fluid. Consequently, a thinner 
nanoparticle volume fraction occurs for a higher Lewis number Le. Moreover, the reduction is occurs 
in nanoparticle volume fraction profile by means of increasing values of Brownian movement 
constraint Nb. This may consequence in the thickening of thermal border layer. Actually, a rise in 
Brownian movement causes an increase in the diffusion of nanoparticles which reduces the 
concentration inside the border layer. 

Numerical data of the influences of a variety of constraints of importance on heat transfer rate 
and mass transfer rate are deliberated in Table 1. Tabulated ideals obviously specify that the value 
of Nusselt number amplifies by increasing R while it dwindles by means of an amplify in the values of 
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Ha and S. On the other hand, Sherwood number increases by increasing the values of Ha and R, but 
opposite behaviors for higher S.  
 

Table 1 
Numerical values of local Nusselt number and local Sherwood number 
for different values of Ha, R and S when Ha=1.0, Nt=0.8, Nb=0.5, 
Pr=0.71, R=0.1 and Le = 1.3. 

Constraints(fixed values) Constraints 
1/2Rex xNu

 
1/2Rex xSh

  

Nt=0.8, Nb = 0.5, S=3.0, Pr=0.71, R=0.1, Le=1.3 Ha=1.0 0.451145 0.294788 
Nt=0.8, Nb = 0.5, S=3.0, Pr=0.71, R=0.1, Le=1.3 1.5 0.438589 0.287824 
Nt=0.8, Nb = 0.5, S=3.0, Pr=0.71, R=0.1, Le=1.3 3.0 0.403746 0.267842 
Nt=0.8, Nb = 0.5, S=3.0, Pr=0.71, Ha=1.0, Le=1.3 R=0.10 0.460557 0.381022 
Nt=0.8, Nb = 0.5, S=3.0, Pr=0.71, Ha=1.0, Le=1.3 0.15 0.466654 0.377892 
Nt=0.8, Nb = 0.5, S=3.0, Pr=0.71, Ha=1.0, Le=1.3 0.30 0.467774 0.377317  
Nt=0.8, Nb = 0.5, R=0.1, Pr=0.71, Ha=1.0, Le=1.3 S=0.5 0.415307 0.251433 
Nt=0.8, Nb = 0.5, R=0.1, Pr=0.71, Ha=1.0, Le=1.3 0.6 0.423403 0.262577 
Nt=0.8, Nb = 0.5, R=0.1, Pr=0.71, Ha=1.0, Le=1.3 0.8 0.440726 0.278440 

 

 
(a) (b) 

 
(c) 

Fig. 1. (a) Consequence of S  on ( )f   (b) Consequence of S  on ( )   (c) Consequence of S  on ( )   
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(a)  (b) 

 
(c) 

Fig. 2. (a) Consequence of Ha  on ( )f   (b) Consequence of Ha  on ( )   (c) Consequence of Ha  on ( )   
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Fig. 3. (a) Consequence of Nt  on ( )   (b) Consequence of Nt  on ( )   
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(a) 

 
(b) 

Fig. 4. (a) Consequence of R  on ( )   (b) Consequence of R  on ( )   

 

  
Fig. 5. Consequence of Le  on ( )   Fig. 6. Consequence of Nb  on ( )   

 
5. Conclusion 
 

Combined possessions of thermal radiation and Magnetohydrodynamics in stream of Nano-fluid 
and warm and mass transport analysis by an exponentially starching sheet by means of warm and 
mass flux circumstances have been examined. The leading PDEs have been rendered into a lay down 
of nonlinear joined, ODEs using appropriate transformations and the consequential well-posed 
border value problem has been solved numerically using the Runge–Kutta fourth order based 
shooting method. Possessions of pertinent constraints on stream, temperature and nanoparticle 
volume friction fields are discussed by means of graphical illustrations. From the present study, the 
main conclusions may be summarized as follows 
 

i. Stream profile and border layer thickness increase via mixed convection constraint k. 
ii. Temperature field hðgÞ yields a decrease via larger Prandtl number  
iii. The nanoparticle volume fraction increases as the value of squeeze constraint decreases. 
iv. Upper values of ratio constraint A marks in the decline of temperature summary and 

enhancement in local rate heat transfer . 
v. The nanoparticle volume fraction increases as the value of squeeze constraint decreases. 
vi. Local rate of mass transfer is increasing function of n; A; Sc and c 
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