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ABSTRACT 

Gene set enrichment analysis (GSEA) is one of the methods in functional class 

scoring (FCS) categories for gene set analysis. GSEA is a popular method that was 

developed to identify, analyse and interpret set of genes or pathways from high-

throughput transcriptomics experiments which are significantly enriched to help 

further analysis by biologist researchers. Many methods have been developed to 

enhance the original procedure of the GSEA. One of the evolutions of the GSEA 

method is the use of the elastic-net to reduce the effect of overlapping that reduces the 

statistical power and instability of the inference at the level of the gene set. However, 

elastic-net has limitations as it is inconsistent and bias in estimation. Thus, an 

ADaptive ELastic-NET in GSEA (ADELNET-GSEA) with an adaptive elastic-net 

was proposed to achieve a better result in identifying more gene sets that are 

informative and significant. The key part of the adaptive elastic-net is the weight 

parameter. It enables the adaptive elastic-net to perform different amounts of shrinkage 

to the different variables. Consequently, the ADELNET-GSEA is also consistent and 

unbiased in estimation. This research utilized the real dataset of Influenza A H3N2 

time-course gene expression. It was found that the ADELNET-GSEA outperformed 

the previous GSEA method by identifying higher numbers of informative and 

significant gene sets to the immune response to human influenza infection. 

ADELNET-GSEA was able to identify the new gene sets, which were Spliceosome 

and Ubiquitin Mediated Proteolysis gene sets, related to the immune response for 

influenza. These findings have been validated through a word search strategy proven 

by previous researchers. Based on this result, this research brings benefits to the 

biological context validation and able to clarify the reliability of the improved method in 

identifying the significant gene sets.  
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ABSTRAK 

Analisis pengayaan set gen (GSEA) adalah salah satu kaedah dalam kategori 

pemarkahan kelas kefungsian (FCS) untuk analisis set gen. GSEA adalah kaedah yang 

dikenali yang dibangunkan untuk mengenal pasti, menganalisis dan mentafsirkan 

kumpulan gen atau laluan dari eksperimen transkripomik hasil yang tinggi yang 

diperkaya secara signifikan untuk membantu analisis lebih lanjut oleh penyelidik 

biologi. Banyak kaedah telah dibangunkan untuk meningkatkan prosedur asal GSEA. 

Salah satu evolusi kaedah GSEA adalah penggunaan jaring elastik untuk 

mengurangkan kesan pertindihan yang mengurangkan kekuatan statistik dan 

ketidakstabilan inferens pada tahap kumpulan gen. Walau bagaimanapun, jaring 

elastik mempunyai batasan kerana ia tidak konsisten dan berat sebelah dalam 

perkiraan. Oleh itu, ADaptive ELastic-NET di GSEA (ADELNET-GSEA) dengan 

jaring elastik adaptif dicadangkan untuk mencapai hasil yang lebih baik dalam 

mengenal pasti lebih banyak kumpulan gen yang bermaklumat dan signifikan. 

Bahagian utama dari jaring elastik adaptif adalah parameter berat. Ini membolehkan 

jaring elastik adaptif untuk melakukan penyusutan jumlah yang berbeza terhadap 

pemboleh ubah yang berbeza. Oleh itu, ADELNET-GSEA juga konsisten dan tidak 

berat sebelah dalam perkiraan. Penyelidikan ini menggunakan kumpulan data sebenar 

ekspresi gen kursus masa Influenza A H3N2. Didapati bahawa ADELNET-GSEA 

mengungguli kaedah GSEA sebelumnya dengan mengenal pasti bilangan set gen yang 

berinformasi dan signifikan terhadap tindak balas imun terhadap jangkitan influenza 

manusia. ADELNET-GSEA dapat mengenal pasti kumpulan gen baru, yang terdiri 

daripada kumpulan gen Spliceosome dan Ubiquitin Mediated Proteolysis yang 

berkaitan dengan tindak balas imun terhadap influenza. Penemuan ini telah disahkan 

melalui strategi pencarian kata yang dibuktikan oleh penyelidik sebelumnya. 

Berdasarkan keputusan ini, penyelidikan ini membawa manfaat kepada pengesahan 

konteks biologi dan dapat menjelaskan kebolehpercayaan kaedah yang ditambah baik 

dalam mengenal pasti kumpulan gen yang signifikan.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

Over of the last few decades, the field of molecular biology has targeted and 

focused on studying biological systems at the molecular level which provided richer 

information. Then the comprehension of the genes and their function has been assisted 

by microarray experiments (Tusher et al., 2001; Beadling and Smith, 2002; Xie et al., 

2007; Nan et al., 2012; Mathur et al., 2018). Across several of the clinical condition 

and experimental, RNA-seq and DNA microarray has made simultaneous expression 

level profiling of thousands of genes that can be widely accessible by researchers. 

 

Microarray data was used in many areas such as cancer classification in order 

to build the powerful classifier, cancer diagnosis, providing more comprehensive 

understanding for complex disease, discovering and finding the hidden taxonomies 

(Piatetsky-Shapiro and Tamayo, 2003), data normalization (Quackenbush, 2002), 

identify biomarkers (Takamiya et al., 2021) and other. One of the objectives of 

microarray analysis is to identify the constant differential expression pattern between 

two classes of samples. However, it needs to go through a critical data preparation step 

in biological function analyses as shown in Figure 1.1 to get microarray data. Such 

experiments generate a very large number of data that lead to difficult analyses, 

especially without great gene annotation. 
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Figure 1.1 Overview of the microarray data preparation step 

 

Another kind of microarray data is time-course gene expression data that also 

known as time-series data has gained more popularity in interpretation studies in recent 

years (Zhang et al., 2011; Wu and Wu, 2013; Hejblum et al., 2015; Khodayari Moez 

et al., 2019). The time-course gene expression data is different from microarray data 

that usually use before. In which, it is the static experiment that captures only the 

expression value. Meanwhile, the time-course gene expression data capture the 

expression value over several time points in a given biological process. This enables 

the specialists and biologists to study the gene expression pattern over time points in 

order to monitor the dynamic behaviors of the genes (L. Wang et al., 2007; Wu and 

Wu, 2013). Microarray advancements have made it conceivable to measure the gene 

expression values of all the genes. 

In order to obtain significant outcomes, it is important to interpret these data 

sets accurately. Various inferential and statistical methods have been developed and 

available to extract useful information and detecting significant genes from these data 

sets in the past decade. For example, ErmineJ (Lee et al., 2005), DAVID (Dennis et 

al., 2003), and GeneMerge (Castillo-Davis and Hartl, 2003). Then for single time-

course gene analysis is maSigPro (Conesa et al., 2006), ANOVA based method model 

(Park et al., 2003), and EDGE (Storey et al., 2005). All these methods are known as 

single gene analysis (SGA) or individual gene analysis (IGA) (Nam and Kim, 2008). 



 

3 

It discovers differently expressed genes by evaluating every single gene. However, a 

usual microarray data has a dimensional limitation, where this data has a large number 

of genes and a frequently a small number of samples. This causes the interpretation 

expression level profile to remain a key challenge. 

Thus, the concept of this area moved from the differential expression of single 

or individual genes to sets of biologically related genes, known as gene set analysis 

(GSA). This area divides into groups of analyses, which are network-based analysis 

and pathway-based analysis. The term “pathway-based analysis” has been used widely 

in the literature (Green and Karp, 2006; Khatri et al., 2012) and is also known as gene 

set analysis. However, the term “gene set” is used in this thesis. Gene sets or pathways 

are ordinarily grouped by genes that share some of the basic or common biological 

properties such as having a common function, same metabolic pathway, or existence 

of the binding motif. Figure 1.2 shows the difference between single gene analysis and 

gene set analysis. 

 

 

There are three generations of gene set or pathway analysis that have been 

described by Khatri et al., (2012). These generations are different from each other 

based on their step and strategy. First generation is over-representation analysis (ORA) 

that follows the following strategy. Firstly, from the whole gene expression, it creates 

the list of input by using specific criteria or thresholds. After that, for every gene set, 

the inputs of genes that are part of the gene sets are counted. This procedure is repeated 

for a proper context list of genes. Finally, each gene set is tested for under or over-

Figure 1.2 The comparison of single gene analysis (SGA) and the gene-set 

analysis strategy (GSA) 
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representation in the list of input genes. Chi-square, hypergeometric and binomial 

distribution are common tests have used. The second generation is functional class 

scoring (FCS). This generation has three main steps. Firstly, a gene-level statistic is 

computed from the differential expression of individual genes by statistic tests such as 

Kolmogorov-Smirnov statistic (Mootha et al., 2003; Subramanian et al., 2005), 

ANOVA (Al-Shahrour et al., 2005), FPCA (Ramsay, 2005), Q-statistic (Goeman et 

al., 2004) and Z-score (Kim and Volsky, 2005). Secondly, the gene-level statistic for 

all genes in gene sets is accumulated into a single gene set-level statistic. The gene set-

level statistic that is commonly used is maxmean statistic (Efron and Tibshirani, 2007) 

and Wilcoxon rank-sum (Barry et al., 2005). Finally, assessing the significant gene set 

from gene set-level statistics. The last generation is pathway topology (PT) which has 

the same step as the FCS method. However, this generation uses additional information 

such as genes interaction and pathway topology to compute gene-level statistics. In 

this research, FCS generation and method are used. 

Gene set analysis has gained popularity and become the first option to interpret 

gene expression and protein in recent years because of its advantages. Firstly, gene set 

analysis has reduced the complexity of analysis by gathering the long list of individual 

genes into a smaller set of related genes. Secondly, it can have more explanatory power 

compared to individual gene analysis (Glazko and Emmert-Streib, 2009). Thirdly, it is 

successful to interpret the gene expression in terms of the molecular pathway, 

biological function, and genomic function (Zhang et al., 2011). In addition, gene set 

analysis had emerged widely in microarray analysis due to the large number of open 

databases which can easily access the high-quality gene set or pathway datasets (Yaari 

et al., 2013; Zhang et al., 2017). The example of open databases is Molecular 

signatures database (MSigDB) (Liberzon et al., 2011), Kyoto Encyclopaedia of Genes 

and Genomes (KEGG) (Kanehisa and Goto, 2000), Reactome (Croft et al., 2010), 

BioCarta (Nishimura, 2001), and Pathway Interaction Database (Schaefer et al., 2008). 

These databases are growing exponentially that enabling further opportunities for 

reveal new functional gene sets (Ideker et al., 2002; Segal et al., 2003; Sharan et al., 

2005; Chen and Yuan, 2006). 
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Due to these advantages, gene set analysis has turned into a well-known 

research area and numerous strategies have been developed to enhance the original 

Gene set Enrichment analysis (GSEA) procedure by Mootha et al., (2003) and 

Subramanian et al., (2005) to identify informative gene sets to related biological 

condition. For example, Parametric Analysis of Gene set Enrichment (PAGE) (Kim 

and Volsky, 2005), was used the normal distribution in statistical inference that 

reduces the computation effect compare to using permutation step. Besides, a 

Generally Applicable Gene-set Enrichment (GAGE) (Luo et al., 2009) was used a two-

sample t-test, adjust for the different microarray experiment designs, and separate the 

experimental gene set and canonical pathway to successfully apply for different 

sample sizes, profiling techniques, and experimental designs of microarray dataset. 

Correlation Adjusted Mean Rank gene set test (CAMERA) and its extension (Wu and 

Smyth, 2012; Yaari et al., 2013) incorporate the adjustment of the inter-gene 

correlation to increase the false discoveries of numerous differential expression tests 

and gene-set test considerably. Lastly, Functional Elastic-net regression in Gene Set 

Enrichment Analysis (FUNNEL-GSEA) (Zhang et al., 2017; Meng et al., 2018) uses 

for time-course gene expression based on FPCA and use the elastic-net as the weight 

method or penalized method to decompose the overlapping effect that reduces the 

statistical power and instability of the inference at the level of the gene set. 

The penalized method is the alternative or advance method for gene selection 

that is crucial for discovering the knowledge with high-dimensional data (Fan and Li, 

2006). The penalized method could greatly improve the performance of the fitted 

model and gene-set analysis method. Thus, many statisticians have attempted to 

propose several penalization methods and strategies such as LASSO, adaptive 

LASSO, SCAD, elastic net, and adaptive elastic net to perform model selection and 

estimation simultaneously. Penalization methods shrink down to zero the coefficient 

of genes or markers that a have little apparent impact (Ayers and Cordell, 2010) on the 

phenotype of interest. Through the utilization of the penalization method, it can be 

discovering the subset of genes that are most associated with the phenotype of interest. 

Furthermore, penalization methods are able to handle the impacts of the 

multicollinearity, overfitting issues (Zakariya Yahya Algamal and Lee, 2015), and the 

effect of the overlapping (Zhang et al., 2017). However, it keeps challenging to choose 
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the better and suitable penalized method to implement in the gene set analysis method 

to achieve the better result in identify a significant gene set. 

1.2 Problem Background 

Microarray data analysis has been broadly utilized by researchers to enhance 

the biological interpretation and understanding of the analysis outcome. The 

conceptual on the differential expression of single or individual genes shift to sets of 

biologically related genes and known as gene set analysis (GSA) or pathway analysis. 

Integration of pathway data and information into the microarray data has enhanced the 

interpretation and analysis for achievement in microarray analysis. 

However, most of the pathway definitions were discovered in the public 

database are usually curated from numerous studies of cultured cells and domain 

experts (Adriaens et al., 2008) that obtain under different experimental conditions. 

Therefore, these gene sets or pathways are not context-specific and there is incredible 

overlap in these gene sets. The overweight for overlap of the important genes that 

shares by numerous sets can cause an increase the hypothesis test dependency, 

encourage type I error (false positive), reduce the power of statistical and instability of 

inferences at the gene set level (Qiu et al., 2005; Qiu and Yakovlev, 2006, 2007; 

Gordon et al., 2007; Zhang et al., 2017). Figure 1.3 shows the example of the 

overlapping gene in the gene set. The red color presents the overlapping gene. One of 

the examples for overlap gene is G4 that be assigned to the gene set one, two, and 

three. However, the exact activation for the G4 in the context of influenza viral 

infection might not be inferred by all the gene sets that can activate that gene. 
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The penalized method is the alternative or advance method for the gene 

selection to help to reduce the overlapping effect for improving the performance gene 

set enrichment analysis in identifying the significant gene set. The elastic-net is one of 

the penalization methods that has been implemented in the FUNNEL-GSEA method. 

However, the elastic-net penalization method has some limitations. The elastic-net is 

lacked the oracle property due to the bias estimation same as LASSO even though it 

outperforms LASSO (Zou and Zhang, 2009; Zeng and Xie, 2014; Zakariya Y Algamal 

and Lee, 2015; Zakariya Yahya Algamal and Lee, 2015).  Consequently, the elastic-

net is inconsistent in estimation. 
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Figure 1.3 Overlapping gene between the gene sets.  
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1.3 Problem Statement 

Since the gene set analysis dataset consists of overlapping gene causes curated 

from numerous studies of the expert domain, the penalization method is required to 

reduce the overlapping effect to improve the performance of gene set enrichment 

analysis in identifying the significant gene set. The penalization methods are able to 

discover the subset of marks that are most associated with the disease or phenotype. 

The previous penalization method regularizes the entire variable coefficient in the gene 

set equally. As the result, the estimation can be biased for the large coefficient since 

the heavy shrinkage is imposed on a large coefficient.  

1.4 Research aim 

The aim of this research is to propose an improved gene set enrichment analysis 

method to better identifying the significant gene set from the time-course gene 

expression dataset for further analysis and examination through biological context 

validation by word search. 

1.5 Objectives 

The objectives of this research are specified as follows: 

a) To propose an improved FUNNEL-GSEA method with integrating 

adaptive weight parameter in elastic-net penalization method to reduce 

overlapping effect for better identification of significant gene sets. 

b) To discover the significant gene sets to immune response to human 

influenza infection for Influenza A H3N2 disease. 
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c) To propose a new validation approach through biological context 

validation by word search. 

1.6 Research Scopes 

The scopes of this research are as follow: 

a) This research uses Rstudio software to run the source code and R 

programming language has been used. 

b) The dataset of time-course gene expression going to be used in this 

research is Human influenza infection by influenza A H3N2 or 

Wisconsin virus that has been downloaded from Gene Expression 

Omnibus (GEO) repository website with GSE52428 series number. 

c) CP: KEGG biological pathway is used as gene set data that has been 

downloaded from MSigDB database. 

d) The research used the “gene set” or group of genes terms to refer as a 

pathway. 

e) The performance measurements used in this research are F-value and 

p-value 

f) The biological context validations by word search are used to validate 

the significant gene sets to justify the relationship between the gene set 

and the immune response. 
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1.7 Significance of the Research 

The significance of this research is that the improved method able to better in 

identifying and more numbers significant gene sets that related to the immune 

response. It can help researchers and biologists to further study and analyze the 

significant gene sets for the production of products such as vaccines. Furthermore, the 

proposed weight parameter in adaptive elastic-net has the ability to produce consistent 

estimation in penalizing the coefficient of variable and able to reduce the overlapping 

effect in gene set data that usually affects the performance of methods. Besides, the 

usage of the time-course gene expression dataset allows for a better interpretation of 

temporal information and the dynamic behaviors of the gene. Finally, the improved 

method can be utilized in other biological areas related to human genomes for better 

interpretation and analysis. 

1.8 Thesis Outline 

This thesis is arranged into five chapters as follow: 

Chapter 1: This chapter presents a detailed explanation of the research domain. This 

chapter helps to understand the general biological information that relates to this 

research. It contains the overview of the research domain, problem background, 

problem statement, research aim, objectives, research scopes, significance of this 

research, and thesis outline. 

Chapter 2: This chapter reviews the revolution and trend from previous researchers 

that related to gene set enrichment analysis and penalization method. 

Chapter 3: This chapter explains the research methodology in detail. It consists of the 

research framework and research materials such as time-course gene expression 

datasets and gene set or pathway data. Additionally, this chapter discusses the 
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fundamental software and hardware requirement as well as the performance 

measurement for the evaluation process. 

Chapter 4: This chapter describes the differences between the original FUNNEL- 

GSEA method from the previous researcher and the improved method. Furthermore, 

dataset pre-processing is also included in this chapter. This chapter also presents the 

design and development of the improved method, an improved ADaptive ELastic-NET 

in Gene Set Enrichment Analysis (ADELNET-GSEA) to identify more numbers of 

informative gene sets that related to immune response. Then, the result of the improved 

method and comparison with other methods is presented and discussed. Lastly, will be 

performed the biological context validation by word search. 

Chapter 5: This chapter concludes by emphasizing the achievement of research and 

recommendations for the future direction of the present research.



 

103 

REFERENCES 

Adriaens, M. E., Jaillard, M., Waagmeester, A., Coort, S. L. M., Pico, A. R. and Evelo, 

C. T. A. (2008) ‘The public road to high-quality curated biological pathways’, 

Drug discovery today, 13, pp. 856–862. 

Alharthi, A. M., Lee, M. H. and Algamal, Z. Y. (2021) ‘Gene selection and 

classification of microarray gene expression data based on a new adaptive L1-

norm elastic net penalty’, Informatics in Medicine Unlocked, p.100622 

Al-Shahrour, F., Díaz-Uriarte, R. and Dopazo, J. (2005) ‘Discovering molecular 

functions significantly related to phenotypes by combining gene expression 

data and biological information’, Bioinformatics, 21, pp. 2988–2993. 

Algamal, Zakariya Y and Lee, M. H. (2015) ‘High Dimensional Logistic Regression 

Model using Adjusted Elastic Net Penalty’, Pakistan Journal of Statistics and 

Operation Research, 11(4), p. 667. 

Algamal, Zakariya Yahya and Lee, M. H. (2015) ‘Regularized logistic regression with 

adjusted adaptive elastic net for gene selection in high dimensional cancer 

classification’, Computers in Biology and Medicine. Elsevier, 67, pp. 136–145. 

Anbari, M. El and Mkhadri, A. (2014) ‘Penalized regression combining the L1 norm 

and a correlation based penalty’, Sankhya B, 76(1), pp. 82–102. 

Ashburner, M., Ball, Catherine, A., Blake, Judith, A., Botstein, D., Butler, H., Cherry, 

J. M. and Sherlock, G. (2000) ‘Gene Ontology: tool for the unification of 

biology’, Nature genetics, 25(1), pp. 25–29. 

Ayers, K. L. and Cordell, H. J. (2010) ‘SNP Selection in genome-wide and candidate 

gene studies via penalized logistic regression’, Genetic Epidemiology. John 

Wiley & Sons, Ltd, 34(8), pp. 879–891. 

Barry, W. T., Nobel, A. B. and Wright, F. A. (2005) ‘Significance analysis of 

functional categories in gene expression studies: a structured permutation 

approach’, Bioinformatics, 21, pp. 1943–1949. 

Beadling, C. and Smith, K. A. (2002) ‘DNA array analysis of interleukin-2-regulated 

immediate/early genes’, Medical Immunology, 1, p. 2. 



104 

Becker, N., Toedt, G., Lichter, P. and Benner, A. (2011) ‘Elastic SCAD as a novel 

penalization method for SVM classification tasks in high-dimensional data’, 

BMC Bioinformatics, 12(i). 

Ben-Shaul, Y., Bergman, H. and Soreq, H. (2005) ‘Identifying subtle interrelated 

changes in functional gene categories using continuous measures of gene 

expression’, Bioinformatics, 21(7), pp. 1129–1137. 

Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A., Benítez, J. M. and 

Herrera, F. (2014) ‘A review of microarray datasets and applied feature 

selection methods’, Information Sciences, 282, pp. 111–135. 

Branagan, A. R., Duffy, E., Albrecht, R. A., Cooper, D. L., Seropian, S., Parker, T. L., 

Gan, G., Li, F., Zelterman, D. and Boddupalli, C. S. (2017) ‘Clinical and 

Serologic Responses After a Two-dose Series of High-dose Influenza Vaccine 

in Plasma Cell Disorders: A Prospective, Single-arm Trial’, Clinical 

Lymphoma Myeloma and Leukemia, 17, pp. 296-304. e2. 

Breslin, T., Edén, P. and Krogh, M. (2004) ‘Comparing functional annotation analyses 

with Catmap’, BMC Bioinformatics, 5(1), pp. 1–8. 

Bühlmann, P., Rütimann, P., van de Geer, S. and Zhang, C. H. (2013) ‘Correlated 

variables in regression: Clustering and sparse estimation’, Journal of Statistical 

Planning and Inference. Elsevier, 143(11), pp. 1835–1858. 

Castillo-Davis, C. I. and Hartl, D. L. (2003) ‘GeneMerge—post-genomic analysis, 

data mining, and hypothesis testing’, Bioinformatics, 19, pp. 891–892. 

Chan, W. H. (2016) Identification of informative genes and pathways using improved 

penalized support vector machine for cancer classification. Universiti 

Teknologi Malaysia. 

Chan, W. H., Mohamad, M. S., Deris, S., Corchado, J. M., Omatu, S., Ibrahim, Z. and 

Kasim, S. (2016) ‘An improved gSVM-SCADL2 with firefly algorithm for 

identification of informative genes and pathways’, International Journal of 

Bioinformatics Research and Applications, 12(1), pp. 72–93. 

Chen, J. and Yuan, B. (2006) ‘Detecting functional modules in the yeast protein–

protein interaction network’, Bioinformatics, 22, pp. 2283–2290. 

Chen, X. (2011) ‘Adaptive elastic-net sparse principal component analysis for pathway 

association testing’, Statistical Applications in Genetics and Molecular 

Biology, 10(1). 



 

105 

Ciuperca, G. (2018) ‘Adaptive elastic-net and fused estimators in high-dimensional 

group quantile linear model’, arXiv. 

Coleman, M. D., Ha, S.-D., Haeryfar, S. M. M., Barr, S. D. and Kim, S. O. (2018) 

‘Cathepsin B plays a key role in optimal production of the influenza A virus.’, 

Journal of virology & antiviral research. PMC Canada manuscript submission, 

2018, pp. 1–20. 

Conesa, A., Nueda, M. J., Ferrer, A. and Talón, M. (2006) ‘maSigPro: a method to 

identify significantly differential expression profiles in time-course microarray 

experiments’, Bioinformatics, 22, pp. 1096–1102. 

Croft, D., O’kelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., Caudy, M., 

Garapati, P., Gopinath, G. and Jassal, B. (2010) ‘Reactome: a database of 

reactions, pathways and biological processes’, Nucleic acids research, 39, pp. 

D691–D697. 

Cypryk, W., Lorey, M., Puustinen, A., Nyman, T. A. and Matikainen, S. (2016) 

‘Proteomic and bioinformatic characterization of extracellular vesicles 

released from human macrophages upon influenza A virus infection’, Journal 

of proteome research, 16, pp. 217–227. 

Dennis, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C. and 

Lempicki, R. A. (2003) ‘DAVID: database for annotation, visualization, and 

integrated discovery’, Genome biology, 4, p. R60. 

Dienz, O., Rud, J. G., Eaton, S. M., Lanthier, P. A., Burg, E., Drew, A., Bunn, J., 

Suratt, B. T., Haynes, L. and Rincon, M. (2012) ‘Essential role of IL-6 in 

protection against H1N1 influenza virus by promoting neutrophil survival in 

the lung’, Mucosal Immunology, 5(3), pp. 258–266. 

Dinu, I., Potter, J. D., Mueller, T., Liu, Q., Adewale, A. J., Jhangri, G. S., Einecke, G., 

Famulski, K. S., Halloran, P. and Yasui, Y. (2007) ‘Improving gene set analysis 

of microarray data by SAM-GS’, BMC Bioinformatics, 8(1), pp. 1–13. 

Dørum, G., Snipen, L., Solheim, M. and Sæbø, S. (2009) ‘Rotation testing in gene set 

enrichment analysis for small direct comparison experiments’, Statistical 

Applications in Genetics and Molecular Biology, 8(1). 

Edinger, T. O., Pohl, M. O., Yángüez, E. and Stertz, S. (2015) ‘Cathepsin W Is 

Required for Escape of Influenza A Virus from Late Endosomes.’, mBio. 

American Society for Microbiology (ASM), 6(3), p. e00297. 



106 

Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004) ‘Least angle regression’, 

The Annals of Statistics, 32(2), pp. 407–499. 

Efron, B. and Tibshirani, R. (2007) ‘On testing the significance of sets of genes’, The 

annals of applied statistics, 1, pp. 107–129. 

Engchuan, W., Meechai, A., Tongsima, S. and Chan, J. H. (2015) Cross-platform 

pathway activity transformation and classification of microarray data, In 

Computational Intelligence in Information Systems. 

Fan, J. and Li, R. (2001) ‘Variable Selection via Nonconcave Penalized Likelihood 

and its Oracle Properties’, Journal of the American Statistical Association. 

Taylor & Francis, 96(456), pp. 1348–1360. 

Fan, J. and Li, R. (2006) ‘Statistical Challenges with High Dimensionality: Feature 

Selection in Knowledge Discovery’. 

Fan, J. and Lv, J. (2010) ‘A Selective Overview of Variable Selection in High 

Dimensional Feature Space’, Statistica Sinica, 20(1), pp. 101–148. 

Fisher, R. A. (1992) ‘Statistical Methods for Research Workers.’, In Breakthroughs in 

statistics. Springer, pp. 66–70. 

Friedman, J., Hastie, T. and Tibshirani, R. (2010) ‘Regularization paths for generalized 

linear models via coordinate descent’, Journal of Statistical Software, 33(1), 

pp. 1–22. 

Gatti, D. M., Barry, W. T., Nobel, A. B., Rusyn, I. and Wright, F. A. (2010) ‘Heading 

Down the Wrong Pathway: On the Influence of Correlation within Gene Sets’, 

BMC Genomics, 11(1), pp. 1–10. 

Ghosh, S. (2007) ‘Adaptive Elastic Net : An Improvement of Elastic Net to achieve 

Oracle Properties’, Most. 

Ghosh, S. (2011) ‘On the grouped selection and model complexity of the adaptive 

elastic net’, Statistics and Computing, 21(3), pp. 451–462. 

Glazko, G. V and Emmert-Streib, F. (2009) ‘Unite and conquer: univariate and 

multivariate approaches for finding differentially expressed gene sets’, 

Bioinformatics, 25, pp. 2348–2354. 

Goeman, J. J., Van De Geer, S. A., De Kort, F. and Van Houwelingen, H. C. (2004) 

‘A global test for groups of genes: testing association with a clinical outcome’, 

Bioinformatics, 20, pp. 93–99. 

Goli, S., Mahjub, H., Faradmal, J., Mashayekhi, H. and Soltanian, A. R. (2016) 

‘Survival Prediction and Feature Selection in Patients with Breast Cancer 



 

107 

Using Support Vector Regression’, Computational and Mathematical Methods 

in Medicine, 2016. 

Gordon, A., Glazko, G., Qiu, X. and Yakovlev, A. (2007) ‘Control of the mean number 

of false discoveries, Bonferroni and stability of multiple testing’, The Annals 

of Applied Statistics. Institute of Mathematical Statistics, 1(1), pp. 179–190. 

Green, M. L. and Karp, P. D. (2006) ‘The outcomes of pathway database computations 

depend on pathway ontology’, Nucleic Acids Research, 34, pp. 3687–3697. 

Haggag, M. M. M. (2018) ‘Adjusting the Penalized Term for the Regularized 

Regression Models’, Afrika statistika, 13(2), pp. 1609–1630. 

Hagiwara, K. (2018) ‘On an improvement of LASSO by scaling’. 

Hejblum, B. P., Skinner, J. and Thiébaut, R. (2015) ‘Time-Course Gene Set Analysis 

for Longitudinal Gene Expression Data’, PLoS Computational Biology, 11(6), 

pp. 1–21. 

Hoerl, A. E. and Kennard, R. W. (1970) ‘Ridge Regression: Biased Estimation for 

Nonorthogonal Problems’, Technometrics, 12(1), pp. 55–67. 

Hu, J., Huang, J. and Qiu, F. (2018) ‘A group adaptive elastic-net approach for variable 

selection in high-dimensional linear regression’, Science China Mathematics, 

61(1), pp. 173–188. 

Huang, Y., Zaas, A. K., Rao, A., Dobigeon, N., Woolf, P. J., Veldman, T., Øien, N. 

C., McClain, M. T., Varkey, J. B., Nicholson, B., Carin, L., Kingsmore, S., 

Woods, C. W., Ginsburg, G. S. and Hero, A. O. (2011) ‘Temporal Dynamics 

of Host Molecular Responses Differentiate Symptomatic and Asymptomatic 

Influenza A Infection’, PLoS Genetics. Edited by N. J. Schork. Public Library 

of Science, 7(8), p. e1002234. 

Hundt, C., Hildebrandt, A. and Schmidt, B. (2016) ‘rapidGSEA: Speeding up gene set 

enrichment analysis on multi-core CPUs and CUDA-enabled GPUs’, BMC 

Bioinformatics. BMC Bioinformatics, 17(1), pp. 1–11. 

Ideker, T., Ozier, O., Schwikowski, B. and Siegel, A. F. (2002) ‘Discovering 

regulatory and signalling circuits in molecular interaction networks’, 

Bioinformatics, 18, pp. S233–S240. 

Jha, U. K., Bajorski, P., Fokoue, E., Heuvel, J. Vanden, Aardt, J. van and Anderson, 

G. (2017) ‘Dimensionality Reduction of High-Dimensional Highly Correlated 

Multivariate Grapevine Dataset’, Open Journal of Statistics, 07(04), pp. 702–

717. 



108 

Jia, P., Kao, C. F., Kuo, P. H. and Zhao, Z. (2011) ‘A comprehensive network and 

pathway analysis of candidate genes in major depressive disorder’, BMC 

Systems Biology, 5(3), pp. 1–13. 

Kanehisa, M. and Goto, S. (2000) ‘KEGG: kyoto encyclopedia of genes and genomes’, 

Nucleic acids research, 28(1), pp. 27–30. 

Kharoubi, R., Oualkacha, K. and Mkhadri, A. (2019) ‘The cluster correlation-network 

support vector machine for high-dimensional binary classification’, Journal of 

Statistical Computation and Simulation. Taylor & Francis, 89(6), pp. 1020–

1043. 

Khatri, P., Sirota, M. and Butte, A. J. (2012) ‘Ten years of pathway analysis: current 

approaches and outstanding challenges’, PLoS computational biology, 8, p. 

e1002375. 

Khodayari Moez, E., Hajihosseini, M., Andrews, J. L. and Dinu, I. (2019) 

‘Longitudinal linear combination test for gene set analysis’, BMC 

Bioinformatics. BMC Bioinformatics, 20(1), pp. 1–19. 

Kim, S.-Y. and Volsky, D. J. (2005) ‘PAGE: parametric analysis of gene set 

enrichment’, BMC bioinformatics, 6, p. 144. 

Kim, Y., Choi, H. and Oh, H. S. (2008) ‘Smoothly clipped absolute deviation on high 

dimensions’, Journal of the American Statistical Association, 103(484), pp. 

1665–1673. 

Kumar, S., Ingle, H., Mishra, S., Mahla, R.S., Kumar, A., Kawai, T., Akira, S., 

Takaoka, A., Raut, A.A. and Kumar, H. (2015) ‘IPS-1 differentially induces 

TRAIL, BCL2, BIRC3 and PRKCE in type I interferons-dependent and-

independent anticancer activity’, Cell death & disease. 6(5), pp.e1758-e1758. 

Lapuente, D., Storcksdieck Genannt Bonsmann, M., Maaske, A., Stab, V., Heinecke, 

V., Watzstedt, K., Heß, R., Westendorf, A. M., Bayer, W., Ehrhardt, C. and 

Tenbusch, M. (2018) ‘IL-1β as mucosal vaccine adjuvant: the specific 

induction of tissue-resident memory T cells improves the heterosubtypic 

immunity against influenza A viruses.’, Mucosal immunology, 11(4), pp. 

1265–1278. 

Lee, H. K., Braynen, W., Keshav, K. and Pavlidis, P. (2005) ‘ErmineJ: tool for 

functional analysis of gene expression data sets’, BMC bioinformatics, 6, p. 

269. 



 

109 

Li, J., Jia, Y. and Zhao, Z. (2013) ‘Partly adaptive elastic net and its application to 

microarray classification’, Neural Computing and Applications, 22(6), pp. 

1193–1200. 

Li, W., Wang, G., Zhang, H., Zhang, D., Zeng, J., Chen, X., Xu, Y. and Li, K. (2009) 

‘Differential suppressive effect of promyelocytic leukemia protein on the 

replication of different subtypes/strains of influenza A virus’, Biochemical and 

Biophysical Research Communications, 389(1), pp. 84–89. 

Li, X., Shen, L., Shang, X. and Liu, W. (2015) ‘Subpathway analysis based on 

signaling- Pathway impact analysis of signaling pathway’, PLoS ONE, 10(7), 

pp. 1–19. 

Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P. and 

Mesirov, J. P. (2011) ‘Molecular signatures database (MSigDB) 3.0’, 

Bioinformatics, 27(12), pp. 1739–1740. 

Liiving, T., Baker, S. M. and Junker, B. H. (2011) ‘Biochemical Fundamentals’, in. 

Gatersleben, Germany: Springer, London, pp. 19–36. 

Lu, M., Zhou, J., Naylor, C., Kirkpatrick, B. D., Haque, R., Petri, W. A. and Ma, J. Z. 

(2017) ‘Application of penalized linear regression methods to the selection of 

environmental enteropathy biomarkers’, Biomarker Research. Biomarker 

Research, 5(1), pp. 1–10. 

Luo, W., Friedman, M. S., Shedden, K., Hankenson, K. D. and Woolf, P. J. (2009) 

‘GAGE: generally applicable gene set enrichment for pathway analysis’, BMC 

bioinformatics, 10, p. 161. 

Luo, Z., Li, Z., Chen, K., Liu, R., Li, X., Cao, H. and Zheng, S. J. (2012) ‘Engagement 

of heterogeneous nuclear ribonucleoprotein M with listeriolysin O induces type 

I interferon expression and restricts Listeria monocytogenes growth in host 

cells’, Immunobiology. Urban & Fischer, 217(10), pp. 972–981. 

Ma, S. and Huang, J. (2008) ‘Penalized feature selection and classification in 

bioinformatics’, Briefings in Bioinformatics, 9(5), pp. 392–403. 

Mathur, R., Rotroff, D., Ma, J., Shojaie, A. and Motsinger-Reif, A. (2018) ‘Gene set 

analysis methods: A systematic comparison’, BioData Mining. BioData 

Mining, 11(1), pp. 1–19. 

Matsunaga, T., Ishida, T., Takekawa, M., Nishimura, S., Adachi, M. and Imai, K. 

(2002) ‘Analysis of Gene Expression During Maturation of Immature 

Dendritic Cells Derived from Peripheral Blood Monocytes’, Scandinavian 



110 

Journal of Immunology. John Wiley & Sons, Ltd (10.1111), 56(6), pp. 593–

601. 

McClain, M.T., Henao, R., Williams, J., Nicholson, B., Veldman, T., Hudson, L., 

Tsalik, E.L., Lambkin‐Williams, R., Gilbert, A., Mann, A. and Ginsburg, G.S. 

(2016) ‘Differential evolution of peripheral cytokine levels in symptomatic and 

asymptomatic responses to experimental influenza virus challenge’, Clinical 

& Experimental Immunology. 183(3), pp.441-451. 

Meng, Y., Cai, X. H. and Wang, L. (2018) ‘Potential Genes and Pathways of Neonatal 

Sepsis Based on Functional Gene Set Enrichment Analyses’, Computational 

and Mathematical Methods in Medicine. Hindawi, 2018, pp. 1–10. 

Mohammed, A., Biegert, G., Adamec, J. and Helikar, T. (2017) ‘Identification of 

potential tissue-specific cancer biomarkers and development of cancer versus 

normal genomic classifiers.’, Oncotarget. Impact Journals, LLC, 8(49), pp. 

85692–85715. 

Mootha, V. K., Lindgren, C. M., Eriksson, K.-F., Subramanian, A., Sihag, S., Lehar, 

J., Puigserver, P., Carlsson, E., Ridderstråle, M. and Laurila, E. (2003) ‘PGC-

1α-responsive genes involved in oxidative phosphorylation are coordinately 

downregulated in human diabetes’, Nature genetics, 34, p. 267. 

Nam, D. and Kim, S.-Y. (2008) ‘Gene-set approach for expression pattern analysis’, 

Briefings in bioinformatics, 9, pp. 189–197. 

Nan, X., Wang, N., Gong, P., Zhang, C., Chen, Y. and Wilkins, D. (2012) ‘Biomarker 

discovery using 1-norm regularization for multiclass earthworm microarray 

gene expression data’, Neurocomputing. Elsevier, 92, pp. 36–43. 

Nishimura, D. B. (2001) ‘Biotech Software & Internet Report: The Computer Software 

Journal for Scient 2’. 

Oemar, N., Schnücker, A. and Reuvers, H. (2020) ‘Model selection for Vector 

Autoregressive processes using the Multi-Step Elastic Net’. Erasmus 

University Rotterdam. 

Offenhäuser, C., Lei, N., Roy, S., Collins, B.M., Stow, J.L. and Murray, R.Z. (2011) 

‘Syntaxin 11 binds Vti1b and regulates late endosome to lysosome fusion in 

macrophages’ Traffic. 12(6), pp.762-773. 

Ogutu, J. O., Schulz-Streeck, T. and Piepho, H. P. (2012) ‘Genomic selection using 

regularized linear regression models: ridge regression’, In BMC proceedings. 

BioMed Central., 6(Suppl 2). 



 

111 

Oron, A. P., Jiang, Z. and Gentleman, R. (2008) ‘Gene set enrichment analysis using 

linear models and diagnostics’, Bioinformatics, 24(22), pp. 2586–2591. 

Park, T., Yi, S.-G., Lee, S., Lee, S. Y., Yoo, D.-H., Ahn, J.-I. and Lee, Y.-S. (2003) 

‘Statistical tests for identifying differentially expressed genes in time-course 

microarray experiments’, Bioinformatics, 19, pp. 694–703. 

Piatetsky-Shapiro, G. and Tamayo, P. (2003) ‘Microarray data mining: facing the 

challenges’, ACM SIGKDD Explorations Newsletter, 5, pp. 1–5. 

Poli, M. C., Ebstein, F., Nicholas, S. K., de Guzman, M. M., Forbes, L. R., Chinn, I. 

K., Mace, E. M., Vogel, T. P., Carisey, A. F., Benavides, F., Coban-Akdemir, 

Z. H., Gibbs, R. A., Jhangiani, S. N., Muzny, D. M., Carvalho, C. M. B., 

Schady, D. A., Jain, M., Rosenfeld, J. A., Emrick, L., Lewis, R. A., Lee, B., 

Undiagnosed Diseases Network members, U. D. N., Zieba, B. A., Küry, S., 

Krüger, E., Lupski, J. R., Bostwick, B. L. and Orange, J. S. (2018) 

‘Heterozygous Truncating Variants in POMP Escape Nonsense-Mediated 

Decay and Cause a Unique Immune Dysregulatory Syndrome.’, American 

journal of human genetics. Elsevier, 102(6), pp. 1126–1142. 

Qiu, X., Klebanov, L. and Yakovlev, A. (2005) ‘Correlation Between Gene Expression 

Levels and Limitations of the Empirical Bayes Methodology for Finding 

Differentially Expressed Genes’, Statistical Applications in Genetics and 

Molecular Biology. De Gruyter, 4(1). 

Qiu, X., Wu, S. and Wu, H. (2015) ‘A new information criterion based on langevin 

mixture distribution for clustering circular data with application to time course 

genomic data’, Statistica Sinica. Institute of Statistical Science, Academia 

Sinica, pp. 1459–1476. 

Qiu, X. and Yakovlev, A. (2006) ‘Some commnets on instability of false discovery 

rate stimation’, Journal of Bioinformatics and Computational Biology. 

Imperial College Press, 04(05), pp. 1057–1068. 

Qiu, X. and Yakovlev, A. (2007) ‘Comments on probabilistic models behind the 

concepts of false discovery rate’, Journal of Bioinformatics and Computational 

Biology. Imperial College Press, 05(04), pp. 963–975. 

Quackenbush, J. (2002) ‘Microarray data normalization and transformation’, Nature 

genetics, 32, p. 496. 

Ramsay, J. (2005) ‘Functional data analysis’, Encyclopedia of Statistics in Behavioral 

Science. 



112 

Ramsay, J. . and Silverman, B. . (2008) ‘Functional data analysis’, Springer Series in 

Statistics. 

Schaefer, C. F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T. and Buetow, 

K. H. (2008) ‘PID: the pathway interaction database’, Nucleic acids research, 

37, pp. D674–D679. 

Segal, E., Wang, H. and Koller, D. (2003) ‘Discovering molecular pathways from 

protein interaction and gene expression data’, Bioinformatics, 19, pp. i264–

i272. 

Shannon, J. L., Murphy, M. S., Kantheti, U., Burnett, J. M., Hahn, M. G., Dorrity, T. 

J., Bacas, C. J., Mattice, E. B., Corpuz, K. D. and Barker, B. R. (2018) 

‘Polyglutamine binding protein 1 (PQBP1) inhibits innate immune responses 

to cytosolic DNA’, Molecular Immunology. Pergamon, 99, pp. 182–190. 

Sharan, R., Suthram, S., Kelley, R. M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., 

Karp, R. M. and Ideker, T. (2005) ‘Conserved patterns of protein interaction in 

multiple species’, Proceedings of the National Academy of Sciences, 102, pp. 

1974–1979. 

Storey, J. D., Xiao, W., Leek, J. T., Tompkins, R. G. and Davis, R. W. (2005) 

‘Significance analysis of time course microarray experiments’, Proceedings of 

the National Academy of Sciences, 102, pp. 12837–12842. 

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. 

A., Paulovich, A., Pomeroy, S. L., Golub, T. R. and Lander, E. S. (2005) ‘Gene 

set enrichment analysis: a knowledge-based approach for interpreting genome-

wide expression profiles’, Proceedings of the National Academy of Sciences, 

102, pp. 15545–15550. 

Takamiya, M., Saigusa, K. and Dewa, K. (2021) ‘DNA microarray analysis of 

hypothermia-exposed murine lungs for identification of forensic biomarkers’, 

Legal Medicine. Elsevier B.V., 48(July 2019), p. 101789. 

Tarca, A. L., Bhatti, G. and Romero, R. (2013) ‘A comparison of gene set analysis 

methods in terms of sensitivity, prioritization and specificity’, PLoS ONE, 

8(11). 

Tay, J. K., Aghaeepour, N., Hastie, T. and Tibshirani, R. (2020) ‘Feature-weightrd 

elastic net: using "features of features" for better prediction’, arXiv preprint 

arXiv:2006.01395 



 

113 

Tibshirani, R. (1996) ‘Regression Shrinkage and Selection via the Lasso’, 58(1), pp. 

267–288. 

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J. and Knight, K. (2005) ‘Sparsity and 

smoothness via the fused lasso’, Journal of the Royal Statistical Society. Series 

B: Statistical Methodology, 67(1), pp. 91–108. 

Tsai, C. A. and Chen, J. J. (2009) ‘Multivariate analysis of variance test for gene set 

analysis’, Bioinformatics, 25(7), pp. 897–903. 

Tusher, V. G., Tibshirani, R. and Chu, G. (2001) ‘Significance analysis of microarrays 

applied to the ionizing radiation response’, Proceedings of the National 

Academy of Sciences, 98, pp. 5116–5121. 

Wang, H., Li, R. and Tsai, C. L. (2007) ‘Tuning parameter selectors for the smoothly 

clipped absolute deviation method’, Biometrika, 94(3), pp. 553–568. 

Wang, L., Chen, G. and Li, H. (2007) ‘Group SCAD regression analysis for microarray 

time course gene expression data’, Bioinformatics, 23, pp. 1486–1494. 

Wang, Y., Li, J., Yan, W., Chen, Q., Jiang, Z., Zhang, R., Pan, X. and Wang, X. (2018) 

‘An active component containing pterodontic acid and pterodondiol isolated 

from Laggera pterodonta inhibits influenza A virus infection through the 

TLR7/MyD88/TRAF6/NF‑κB signaling pathway.’, Molecular medicine 

reports, 18(1), pp. 523–531. 

Winham, S., Wang, C. and Motsinger-Reif, A. A. (2011) ‘A comparison of multifactor 

dimensionality reduction and L 1-penalized regression to identify gene-gene 

interactions in genetic association studies’, Statistical Applications in Genetics 

and Molecular Biology, 10(1). 

Woods, C. W., McClain, M. T., Chen, M., Zaas, A. K., Nicholson, B. P., Varkey, J., 

Veldman, T., Kingsmore, S. F., Huang, Y., Lambkin-Williams, R., Gilbert, A. 

G., Hero, A. O., Ramsburg, E., Glickman, S., Lucas, J. E., Carin, L. and 

Ginsburg, G. S. (2013) ‘A Host Transcriptional Signature for Presymptomatic 

Detection of Infection in Humans Exposed to Influenza H1N1 or H3N2’, PLoS 

ONE. Edited by H. Tse. Public Library of Science, 8(1), p. e52198. 

Wu, D. and Smyth, G. K. (2012) ‘Camera: a competitive gene set test accounting for 

inter-gene correlation’, Nucleic acids research, 40, pp. e133–e133. 

Wu, S., Liu, Z.-P., Qiu, X. and Wu, H. (2014) ‘Modeling Genome-Wide Dynamic 

Regulatory Network in Mouse Lungs with Influenza Infection Using High-



114 

Dimensional Ordinary Differential Equations’, PLoS ONE. Edited by A. de la 

Fuente. Public Library of Science, 9(5), p. e95276. 

Wu, S. and Wu, H. (2013) ‘More powerful significant testing for time course gene 

expression data using functional principal component analysis approaches’, 

BMC bioinformatics, 14, p. 6. 

Xiao, N. and Xu, Q. S. (2015) ‘Multi-step adaptive elastic-net: reducing false positives 

in high-dimensional variable selection’, Journal of Statistical Computation and 

Simulation, 85(18), pp. 3755–3765. 

Xie, L., Jiang, Y., Ouyang, P., Chen, J., Doan, H., Herndon, B., Sylvester, J. E., Zhang, 

K., Molteni, A. and Reichle, M. (2007) ‘Effects of dietary calorie restriction or 

exercise on the PI3K and Ras signaling pathways in the skin of mice’, Journal 

of biological chemistry, 282, pp. 28025–28035. 

Xu, Y., Wu, W., Han, Q., Wang, Y., Li, C., Zhang, P. and Xu, H. (2019) ‘Post-

translational modification control of RNA-binding protein hnRNPK function.’, 

Open biology. The Royal Society, 9(3), p. 180239. 

Yaari, G., Bolen, C. R., Thakar, J. and Kleinstein, S. H. (2013) ‘Quantitative set 

analysis for gene expression: a method to quantify gene set differential 

expression including gene-gene correlations’, Nucleic acids research, 41, pp. 

e170–e170. 

Yang, L., Ainali, C., Tsoka, S. and Papageorgiou, L. G. (2014) ‘Pathway activity 

inference for multiclass disease classification through a mathematical 

programming optimisation framework’, BMC Bioinformatics, 15(1), pp. 1–14. 

Yoon, S., Kim, S. Y. and Nam, D. (2016) ‘Improving gene-set enrichment analysis of 

RNA-Seq data with small replicates’, PLoS ONE, 11(11), pp. 1–16. 

Zeng, L. and Xie, J. (2014) ‘Group variable selection via SCAD-L2’, Statistics, 48(1), 

pp. 49–66. 

Zhang, H. H., Ahn, J., Lin, X. and Park, C. (2006) ‘Gene selection using support vector 

machines with non-convex penalty’, Bioinformatics, 22(1), pp. 88–95. 

Zhang, K., Wang, H., Bathke, A. C., Harrar, S. W., Piepho, H.-P. and Deng, Y. (2011) 

‘Gene set analysis for longitudinal gene expression data’, BMC bioinformatics, 

12, p. 273. 

Zhang, Y., Topham, D. J., Thakar, J. and Qiu, X. (2017) ‘FUNNEL-GSEA: 

FUNctioNal ELastic-net regression in time-course gene set enrichment 

analysis’, Bioinformatics, 33(13), pp. 1944–1952. 



 

115 

Zhao, P. and Yu, B. (2006) ‘On model selection consistency of Lasso’, Journal of 

Machine Learning Research, (2541–2563), pp. 1–23. 

Zou, H. (2006) ‘The adaptive lasso and its oracle properties’, Journal of the American 

Statistical Association, 101(476), pp. 1418–1429. 

Zou, H. and Hastie, T. (2005) ‘Regularization and variable selection via the elastic 

net’, Journal of the Royal Statistical Society. Series B: Statistical Methodology, 

67(2), pp. 301–320. 

Zou, H., Hastie, T. and Tibshirani, R. (2007) ‘On the “degrees of freedom” of the 

lasso’, Annals of Statistics, 35(5), pp. 2173–2192. 

Zou, H. and Zhang, H. H. (2009) ‘On the adaptive elastic-net with a diverging number 

of parameters’, Annals of statistics. NIH Public Access, 37(4), pp. 1733–1751. 

 



 

127 

LIST OF PUBLICATIONS 

Hasri, N. M., Wen, N. H., Howe, C. W., Mohamad, M. S., Deris, S., & Kasim, S. 

(2017). Improved support vector machine using multiple SVM-RFE for cancer 

classification. International Journal on Advanced Science, Engineering and 

Information Technology, 7(4-2), 1589-1594. 




