
 

IMMOBILIZATION OF LACCASE ENZYME ON MAGNETICALLY-

SEPARABLE HIERARCHICALLY-ORDERED MESOCELLULAR 

MESOPOROUS SILICA 

 

 

 

 

 

 

 

 

NORSYAFIQAH AMALINA BINTI AHMAD JAFRI 

 

 

 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Master of Philosophy 

 

 

School of Chemical and Energy Engineering 

Faculty of Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

FEBRUARY 2022 



 

iv 

DEDICATION 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my father, who taught me that the best kind of 
knowledge to have is that which is learned for its own sake. It is also dedicated to my 

mother, who taught me that even the largest task can be accomplished if it is done 
one step at a time. 

  



 

v 

ACKNOWLEDGEMENT 

In preparing this thesis, I was in contact with many people, researchers, 
academicians, and practitioners. They have contributed towards my understanding and 
thoughts. In particular, I wish to express my sincere appreciation to my main thesis 
supervisor, Associate Professor Ir. Ts. Dr. Roshanida A. Rahman for encouragement, 
guidance, critics and friendship. I am also very thankful to my co-supervisor Puan 
Noorhalieza Ali for her guidance, advices and motivation. Without their continued 
support and interest, this thesis would not have been the same as presented here. 

I am also indebted to my parents who has supported me financially and also 
emotionally by not giving up upon her daughter although need to extend 10 semesters 
long. Laboratory technicians En Yaakop, En Hafzan and Chemad also deserve special 
thanks for their assistance in supplying the abundance help in solving technicalities 
and equipments supports. 

My fellow postgraduate friends should also be recognized for their support. 
Thank you from my heart to Kak Jannah, Kak Ros, Kak Ayu, Syu, Aiman, Syahlan, 
Amir and N18 clans. My sincere appreciation also extends to m\�WHDPPDWHV�.KRV\L¶LQ��
Geng 12 and all beloved akhawats. Their views, tips and prayers has been 
accompanying me through my thick and thin journey. The most appreciation post also 
I bid to Dr Roket, team 2M World, and my amazing platinum members for their 
continuous momentum and spirit in helping the postgraduate students completing 
master PhD journey together.  Unfortunately, it is not possible to list all of them in this 
limited space. May Allah grant all of you the highest level of heaven, Jannatul Firdaus. 

  



 

vi 

ABSTRACT 

Multicopper oxidases, known as laccase, are a sustainable biocatalyst with 

efficient ability to degrade a wide range of compounds, environmentally friendly 

properties and promise major advances in a wide range of industries. However, the use 

of free laccase in industries often suffers problems, such as instability, low recovery 

and low reusability of enzyme. Hence, laccase immobilization on a magnetically-

separable hierarchically-ordered mesocellular mesoporous silica (M-HMMS) as the 

support material was optimized and characterized. In this study, three different 

immobilization methods used were enzyme adsorption, entrapped-crosslinked enzyme 

and entrapped-crosslinked enzyme aggregate. The optimum parameters for laccase 

immobilization were at 5 hr of crosslinking time, 100 mM glutaraldehyde 

concentration, 1 mg/ml laccase concentration, 60 min time of precipitation with pH 

4.5 and WHPSHUDWXUH�RI����ႏ. This optimal condition contributed to 65.03 ± 4.31 % of 

laccase activity recovery and enhancement by 2.6 fold. The adsorption of laccase on 

M-HMMS obeyed the pseudo-second-order kinetic model. The optimized immobilized 

laccase was able to withstand high temperature (50 ႏ) and also oxidize 2, 2-azino-bis 3-

ethylbenzothiazoline-6- sulfonic acid (ABTS) at a broad range of pH (pH 3.0 to pH 6.0) 

and WHPSHUDWXUH�����WR����ႏ�� It also retained 63.72 ± 6.59 % of its initial activity after 

8 repeated cycles of ABTS oxidation and 100 % of its activity after 30 days of storage 

DW���ႏ�in pH 4.5 buffer. In conclusion, the optimized immobilized laccase has potential 

as immobilized biocatalyst for the application of bioremediation and biotransformation 

of contaminant molecules in water. 

  



ABSTRAK 

Oksidase pelbagai tembaga yang dikenali sebagai lakase ialah biomangkin 

mampan dengan keupayaan cekap untuk menguraikan pelbagai jenis sebatian, mesra 

alam dan menjanjikan kemajuan yang besar dalam pelbagai industri. Walau 

bagaimanapun, penggunaan enzim bebas di dalam industri sering menghadapi 

beberapa permasalahan seperti ketidakstabilan enzim, kadar penghasilan yang rendah 

dan kesukaran perolehan semula enzim. Oleh itu, imobilisasi lakase ke atas silika 

mesoporous mesoselular yang tersusun secara hierarki (M-HMMS) yang boleh 

dipisahkan secara magnetik sebagai bahan sokongan telah dioptimumkan dan 

dicirikan. Dalam kajian ini, tiga kaedah imobilisasi yang berbeza digunakan iaitu 

penjerapan enzim, diperangkap dan pemautsilangan enzim, dan diperangkap, 

pemautsilangan dan gumpalan enzim. Parameter optima bagi imobilisasi lakase adalah 

pada 5 jam masa pemautsilangan, 100 mM kepekatan glutaraldehida, 1 mg / ml 

kepekatan lakase, 60 min masa pemendakan dengan pH 4.5 pada suhu 20 ℃.  Keadaan 

optima ini menyebabkan 65.03 ± 4.31 % kadar penghasilan lakase dan peningkatan 

sebanyak 2.6 kali ganda. Penjerapan lakase pada M-HMMS mematuhi model pseudo 

tertib kedua. Lakase yang telah melalui proses imobilisasi yang dioptimakan mampu 

bertahan pada (50 ℃) dan juga mengoksidakan 2, 2-azino-bis 3-etilbenzotiazolina-6-

asidsulfonik (ABTS) pada pelbagai pH (pH 3.0 hingga pH 6.0) dan suhu (20 hingga 

70 ℃). Di samping itu, proses imobilisasi enzim secara optima mampu mengekalkan 

63.72 ± 6.59 % daripada aktiviti awal lakase setelah 8 kitaran pengoksidaan ABTS 

secara berulang dan 100 % aktiviti setelah disimpan selama 30 hari pada suhu 4 ℃ 

dalam larutan penimbal pH 4.5. Kesimpulannya, lakase yang diimobilisasi dan 

dioptimakan ini berpotensi sebagai biomangkin untuk digunakan dalam bidang 

bioremediasi dan biotransformasi molekul air yang tercemar. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background of Study 

 Enzymes are a promising tool as biocatalysts for treating numerous 

environmental pollutants from industrial sectors such as textile, pulp and paper, food, 

cosmetics, pharmaceutical, tanning and plastics industries (Ramírez-Montoya et al., 

2015; Bilal et al., 2017). Unlike current treatment technologies, utilization of enzymes 

opens a new horizon to treat wastewater streams containing recalcitrant organic 

pollutants (Arica et al., 2009; Barrios-Estrada et al., 2018). This is because enzymes 

are easy to handle and have lower environmental and physiological toxicity (Choi et 

al., 2015; Madhavan et al., 2017; Torres et al., 2017).  

Although enzymes are known to be environmentally friendly catalysts, they 

are often not ideally suited for industrial use (Krajewska, 2004). Several drawbacks to 

the use of soluble and native enzymes including high cost, poor operational stability, 

sensitivity to harsh environmental conditions and poor recovery (Bilal et al., 2018). In 

addition, native enzymes are not reusable after the first run and have limited shelf life 

(Silva et al., 2013; Ali et al., 2018).   

Enzyme immobilization technology provides a practical and remarkable 

approach to avoid instability problems and obtain industrially desirable biocatalysts 

(Bilal et al., 2017). Enzyme immobilization can be defined as the binding of soluble 

enzymes to a carrier resulting in a reduction or complete loss of mobility of the bound 

enzyme using various methods such as physical methods (entrapment, adsorption, 

encapsulation) and chemical methods (covalent bonding and crosslinking) (Chagas et 

al., 2015; Meryam Sardar, 2015). Immobilization of the enzyme improved the 

properties, but this is strictly case by case basis. The improved enzyme properties 

include stability to various denaturation conditions, pH tolerance, functional stability, 
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easier separation of the enzyme and subsequent recovery, reusability, and increased 

catalytic performance (Sadighi and Faramarzi, 2013). Mechanical rigidification of 

enzymes through immobilization also contributes to enzyme stabilization and prevents 

dissociation related inactivation (Meryam Sardar, 2015).   

The enzyme laccase, known as a multicopper oxidase, holds excellent  

advancements in recent years as a sustainable and green biocatalyst for 

biotechnological and environmental applications in industries (Barrios-Estrada et al., 

2018). Laccase has the ability to degrade a wide range of compounds, including 

phenolic and non-phenolic compounds (Mogharabi-Manzari et al., 2019). Due to the 

exceptional properties such as catalytic efficiency, low toxicity, biodegradability, high 

specificity and mild reaction conditions, enzyme immobilization has been extensively 

studied (Bilal et al., 2019c).   

However, certain properties of free enzymes, including their sensitivity to 

denaturants and non-reusability, low operational stability, and high production costs, 

make laccases undesirable for large-scale applications (Zhu et al., 2007). One way to 

overcome these limiting factors is to immobilize laccases on supports that improve the 

stability of the enzymes to extreme conditions and chemical agents, protect them from 

denaturation, maintain good catalytic efficiency, and facilitate their use in continuous 

processes, leading to more economical processes (Kashefi et al., 2019a). 

The potential uses of laccases have been extensively studied in recent years, 

and other reports on these enzymes dealing with applications in the food industry 

(Bezerra et al., 2015) and wastewater treatment (Mate and Alcalde, 2017; Alshabib 

and Onaizi, 2019a). Due to their ability to reduce oxygen to water in the presence of 

phenolic compounds, immobilized laccases-based biosensors have been used to 

determine phenolic chemical compounds in food (Bagci, 2014). In addition, the most 

commonly used strategies for immobilization are those in which laccases are 

physically adsorbed and immobilized on various supports by crosslinking 

(Jesionowski et al., 2014). Enzyme immobilization by adsorption, unlike covalent 

binding, is generally ineffective in binding the enzyme to the support, especially under 
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industrial conditions. Therefore, covalent binding has gained popularity as it makes 

the enzyme more robust and attractive for industrial use (Bommarius and Paye, 2013). 

In the past, laccase has been immobilized by adsorption and covalent binding 

using mesostructured silicon-containing cellular foams (Zhao et al., 2011; Bryjak et 

al., 2012; Zdarta et al., 2020a). Immobilization of Myceliophthora thermophilic 

laccase by covalent binding to epoxy-functionalized silica for decolorization and 

degradation of textile dyes was described by Salami et al., (2018). They discovered 

high enzyme binding (50 mg/g), high catalytic efficiency, and excellent reusability (61 

percent of original activity after 8 cycles), as well as the ability to remove five different 

textile dyes. In addition, advances in the use of laccase in environmental applications 

have enabled more advanced technologies that include not only carrier-bound and 

carrier-free immobilization of laccase, but also the combination of the advantages of 

carrier-bound and carrier-free immobilized enzymes (Ba and Vinoth Kumar, 2017; 

Fathali et al., 2019).     

Enzyme immobilization via physical and chemical approaches explains the 

combined strategy. Mesoporous silica materials are suitable candidates for the 

preparation of entrapped cross-linked enzyme aggregates (E-CLEA) according to 

Fathali et al., (2019). A simple fabrication procedure of amino-functionalized 

magnetic nanoparticles (MNPs) for Trametes versicolor cross-linked enzyme 

aggregates (CLEA) to immobilize laccase was also reported in another study (Kumar 

et al., 2014b). In this study, laccase was immobilized on magnetically separable 

hierarchically ordered mesocellular mesoporous silica (M-HMMS). This approach 

further developed the combination of immobilization methods on magnetic 

mesocellular mesoporous silica to increase enzyme stability and catalytic activity for 

the application in the bioremediation and biotransformation of contaminant molecules 

in water. 
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1.2 Problem Statement 

The ability of laccase as a biocatalyst to oxidize phenolic and non-phenolic 

compounds has found wide application in the food, bioremediation, biofuel, and other 

industries (Bilal et al., 2017). However, problematic separation, low stability, and high 

processing cost limit its practical application (Bilal et al., 2019a). Therefore, 

immobilization of laccase is one of the advantageous approaches that enhanced laccase 

performance from the above limitations (Deska and .RĔF]DN� 2019a).     

The combined method of enzyme immobilization has been explored as it 

represents a biocatalyst with an attractive proposition for industrial applications 

(Sheldon, 2011; Kumar et al., 2014b; Fathali et al., 2019). Physical methods such as 

entrapment, adsorption and encapsulation of laccase are inexpensive and 

straightforward. However, those methods cause more enzyme losses (Górecka and 

-DVWU]ĊEVND� 2011). Chemical methods such as covalent bonding and cross-linking 

strengthen the bond between enzyme and carrier, but require a large amount of enzyme 

and altered the active site of the enzyme (Secundo, 2013). However, the advantages of 

both methods can be used to improve the catalytic performance of laccase on M-

HMMS.     

Nevertheless, data on laccase immobilization on mesoporous supports are 

limited and efficient protocols for laccase immobilization are still needed (Zdarta et 

al., 2020a). Lee et al., (2009, 2010) and Jannah Sulaiman et al., (2019) published some 

studies on the immobilization of laccase using M-HMMS as a carrier. However, these 

studies used different enzymes such as cellulase, xylanase, Į-chymotrypsin, and 

glucose oxidase. Therefore, M-HMMS was investigated as potential carrier for the 

immobilization of laccase to determine the performance of the biocatalyst. It was 

found that nanosized silica is suitable carrier because it has excellent properties such 

as large surface area, high chemical purity, good stability, good dispersion and easy 

modification (Yang et al., 2014).     

In addition, the operating conditions during the immobilization process are 

another important factor affecting the stability and catalytic activity of the enzyme. In 
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order to provide optimal conditions for the immobilized laccase, the bonds that are 

bound to the support must be altered in the environment (Sulaiman, 2020; Mohd 

Syukri, 2021). Therefore, optimizing the operating conditions in the production of 

immobilized laccase is crucial because of the environmental changes during the 

immobilization process and affect the activity (Wang et al., 2018).   

Moreover, since the first step in the immobilization of laccase is adsorption, it 

is vital to determine the adsorption efficiency and identify the adsorption mechanism 

(Gilani et al., 2016). To date, adsorption studies of laccase enzymes still lack, 

especially on magnetic supports. It is crucial to know the adsorption mechanism as it 

can help determine the durability and cause of the enzyme behaviour after 

immobilization and improve the immobilization of the enzyme.     

1.3 Research Objectives 

The objectives of the research are: 

(a) To determine the immobilization method for laccase on M-HMMS. 

(b) To optimize the operating condition affecting the immobilization of laccase on 

M-HMMS. 

(c) To determine laccase adsorption kinetics and mechanism on M-HMMS. 

(d) To evaluate the physical properties and catalytic performance of immobilized 

laccase on M-HMMS. 

1.4 Scope of Study 

(a) Immobilization methods for laccase on M-HMMS were determined, which are 

enzyme adsorption (EA), entrapped cross-linked enzyme (E-CLE) and 

entrapped cross-linked enzyme aggregate (E-CLEA) methods.  
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(b) Optimization of operating conditions, i.e., cross-linking time (1 - 6 hr), 

glutaraldehyde concentration (4 - 500 mM), enzyme concentration (1 - 9 

mg/mL), precipitation time (30 - 150 min), pH (4 - 6), and temperature (4 - 25 

ႏ�� was performed using one factor at a time (OFAT) method. Statistical 

analysis was performed using One-Way ANOVA from software IBM SPSS 

Statistics Version 26. 

(c) An adsorption kinetics study involving pseudo-first-order, pseudo-second-

order and intraparticle diffusion was also performed to determine the 

interaction between laccase and the carrier. The effects of contact time (0 - 105 

min), laccase concentration (0.1, 0.5, 1.0, 1.5 mg/ml) and adsorption 

temperature (15, 20, 25, 30 ႏ� on the adsorption of laccase on M-HMMS were 

determined.  

(d) The characterization of immobilized laccase on M-HMMS was carried out and 

and compared with free laccase. The analysis on functional groups, 

morphology and magnetization value before and after immobilization were 

evaluated. The immobilized laccase was characterized in terms of physical 

properties, optimum pH (3 - 8), optimum temperature (20 -70 ႏ�� pH stability 

(3 - 6), thermal stability (30 ± 70 ႏ�� storage stability (30 days), reusability (8 

cycles) and leaching. In addition, the kinetics coefficients (Km and Vmax) of the 

immobilized laccase were determined by measuring the laccase activity in 

different ABTS concentrations.  

1.5 Significant of Study 

The immobilization of laccase on M-HMMS create a new approach that 

combined physical and chemical method with magnetic properties. This study gives 

information on the adsorption mechanism between laccase enzyme and M-HMMS as a 

carrier.  The optimum laccase operating conditions were obtained from one-factor-at-a-

time (OFAT) method. Furthermore, it can work well in broader range of pH and 

temperature with improved reusability and stability. The immobilized laccase would 

benefit the industrial sector as it introduced an easy way to separate biocatalyst after 
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the process of degrading dyes, pharmaceutical contaminants and also in pulp and paper 

industries.  
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