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ABSTRACT 

 

 

 

Identification of correct multi-finger movement class remains a difficulty in a 

myoelectric prosthetic hand. This is because only a small amplitude of 

electromyography (EMG) signal was produced by this multi-finger movement. 

Hence, powerful classification is needed to solve this problem. Support Vector 

Machine (SVM) is a classification method that has been widely used in  classif ying 

multi-finger movement. However, SVM only able to generate solution of multi-

finger classification based on non-optimal default parameter. Hence, the objective of 

this research is to propose hybridization of Grey Wolf optimizer (GWO) with SVM 

namely hybrid GWO-SVM approach to enhance multi-finger movement 

classification. The multifinger movement dataset used in this study was from 

Khusaba et al. (2012) downloaded from free public database in raw forms. The data 

were generated from two surface EMG channels patched on the remaining limb using 

Delsys DE 2.x series EMG sensors. The generated EMG signal was then amplified 

using Delsys Bagnoli8amplifier and sampling using A 12-bit analogue-to-digital 

converter (National Instruments, BNC- 2090) at 4000Hz. Both amplified and 

sampling processes were completed using Delsys EMGWorks Acquisition software. 

Next, pre-processing and feature extraction are important for the achievement in 

EMG analysis and control and by utilizing the feature extraction process, we can 

reduce the computational cost of a multifunction myoelectric control system. 

Furthermore, Hudgins feature set and Root mean square (RMS) feature extraction 

method were also employed to produce optimal features. The results showed that the 

proposed hybrid GWO-SVM approach has improved the classification accuracy, 

sensitivity, and specificity by 1.52 %, 14.22 % and 18.77 % respectively. Hence, the 

proposed hybrid approach can help in improving the performance of prosthesis hand 

for prosthetics people 
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ABSTRAK 

 

 

 

Pengenalpastian kelas pergerakan pelbagai jenis jari yang betul masih 

menjadi kesukaran dalam penghasilan tangan palsu myoelektrik. Ini kerana hanya 

isyarat elektromiografi amplitud kecil (EMG) yang dihasilkan oleh pergerakan 

pelbagai jari ini. Oleh itu, teknik pengkelasan yang jitu diperlukan untuk mengatasi 

masalah ini. Support Vector Machine (SVM) adalah kaedah klasifikasi yang telah 

digunakan secara meluas dalam pengkelasan pelbagai pergerakan jari. Walau 

bagaimanapun, SVM hanya dapat menghasilkan penyelesaian klasifikasi be rbilang 

jari berdasarkan nilai parameter tetap bukan nilai optimum. Oleh itu, objektif kajian 

ini adalah untuk mencadangkan hibridisasi Grey Wolf Optimization (GWO) dengan 

SVM iaitu pendekatan GWO-SVM kacukan untuk meningkatkan klasifikasi 

pergerakan pelbagai jari. Set data pelbagai pergerakan jari yang digunakan dalam 

kajian ini adalah dari Khusaba et al. (2012) yang dimuat turun dari pangkalan data 

awam dalam bentuk belum diproses. Data dihasilkan dari dua saluran EMG 

permukaan yang ditambal pada anggota badan yang tersisa menggunakan sensor 

EMG siri Delsys DE 2.x. Isyarat EMG yang dihasilkan kemudian diperkuat 

menggunakan Delsys Bagnoli-8amplifier dan mengambil sampel menggunakan 

penukar analog-kedigital A 12-bit (National Instruments, BNC- 2090) pada 4000Hz. 

Seterusnya, prapemprosesan dan pengekstrakan ciri penting untuk pencapaian dalam 

analisis dan kawalan EMG dengan menggunakan proses pengekstrakan fitur, dapat 

mengurangkan kos pengiraan sistem kawalan myoelektrik pelbagai fungsi. Selain itu, 

kaedah pengekstrakan ciri Hudgins dan kaedah pengekstrakan ciri segi empat (RMS) 

juga digunakan untuk menghasilkan ciri-ciri yang optimum. Hasil kajian 

menunjukkan bahawa pendekatan GWO-SVM hibrid yang dicadangkan telah 

meningkatkan ketepatan klasifikasi, sensitiviti dan spesifikasi masing-masing 

sebanyak 1.52%, 14.22% dan 18.77%. Oleh itu, pendekatan hibrid yang dicadangkan 

dapat membantu dalam meningkatkan keberkesanan sistem pengecaman pelbagai 

pergerakan jari dalam tangan palsu.    
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CHAPTER 1 

 

 

 
INTRODUCTION 

 

 

 

This chapter discusses the introduction of this research. The contents include 

information about problem background, research questions, research objectives and 

significance of the research. 

 

 

 
1.1  Problem Background 

 

 
The prosthetic hand is a device that assists amputated person for living 

independently in daily life (Chadwell et al. 2016). Even there are different types of 

prosthetic hand, myoelectric prosthetic hand devices are the most similar to origina l 

function of human hand. However, this myoelectric prosthetic hand still not achieves 

fully satisfaction especially in identification of multi-finger movement because of their 

low accuracy and slow in processing (Christian et al. 2007; Biddiss and Cau, 2007; 

Peerdeman et al. 2011; Head, 2014; Engdahl et al. 2015). One of the reasons that 

caused this result is their inefficiency of myoelectric control system (MCS) itself. 

 

Myoelectric control refers to as the process of controlling an external device 

(prosthetic hand) by utilizing electromyography (EMG) signals from the human 

muscles. In general, MCS consists of several main processes which are pre-processing, 

feature extraction and classification. If any of this process is not perform well, the 

performance of MCS will degrade. Hence, researchers have proposed many methods 

to ensure this system is functioning well. As for pre-processing, there are many works 

had been done to ensure the data is noise-free and segmented in suitable frame size. 

Englehart and Hudgins (2003) and Oskoei and Hu (2008) proposed 256 milliseconds 

(ms) and 200ms segment frame size for disjoint segmentation. There are also several 

researchers (Tang et al. 2014; Guo et al. 2015; chan et al. 2007) that employ the 

overlapping segmentation with different window size and window increment. 
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However, there is still no proper benchmark for this process. Hence, to identify the 

optimal segment frame, it needs in comparison to this segmentation methods. 

 

As for feature extraction methods, over the years, many features were 

suggested for classification of hand movement in terms of a single f eature of time - 

domain (TD), frequency domain, time-frequency domain, autoregressive or any 

combination of the listed types. Zardoshti et al. (1995) have evaluated eight EMG 

feature for the control of myoelectric upper arm prostheses. Du et al. (2004) proposed 

feature extraction technique for both temporal and spectral approaches. Munteanu et 

al. (2011) also had analyzed the time and frequency domain of EMG followed by 

Phinyomark (2011) and Phinyomark (2014) that used the scatter plot to evaluate time 

domain and frequency domain. In 2016, Negi and fellow researcher also had evaluated 

fourteen-time domain features and extracted the best possible feature and their 

combination to get high classification accuracy. However, these features are too many, 

applied all this will cause increasing the computational cost. Then, only the simplest 

and proven performance are compared and employ in this study to ensure the accuracy 

and processing time. 

 

For classification, many classification algorithms have been developed. 

Among them, a classical algorithm such as SVM, LDA and ANN and new algorithm 

such as fuzzy logic have employed and reported to perform robustly in many studies 

(Kim et al., 2011; Ahsan et al. 2009; Lorrain et al., 2011; Oskoei and Hu, 2008). 

However, among this, SVM shows an outstanding and consistent performance in terms 

of accuracy (Oskoei and Hu, 2008; Chen and Wang, 2013). However, one of the 

limitations is the optimal parameter value of SVM need to be identified before employ 

them because the performance of SVM depends on their parameter value. Dif ferent 

case study required different optimal parameter value depends on kernel applied. Thus, 

the optimization methods are compulsory in order to optimize the performance of 

SVM classification. For optimizing the parameter, various optimization techniques 

have been proposed hybridized with SVM such as GA, PSO, DE, GSA. However, 

these methods usually unstable in their local and global search, a long period of time 

needs to process and still cannot guarantee the good result for all SVM kernels.  GWO 

one of the recent swarm-based intelligent techniques is seen potentially to be 
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hybridized with SVM due to the ability of GWO in balance in exploration and 

exploitation, high convergence rate and produce high accuracy. Thus, this research 

proposed hybridization of SVM with GWO to enhance the performance of finger 

movement identification for myoelectric control systems. 

 

 

 
1.2  Problem Statement 

 

 
The success of controlling single and multi-finger prostheses depends on the 

proper feature extraction and classification technique applied based on accuracy and 

computing time. To establish the simple with an outstanding performance of 

myoelectric control system that obtains competitive performance result in four main 

aspects of recognition system which is accuracy, sensitivity, specificity and processing 

times. The main problem in this area is obtaining the high performance of a system 

that has high accuracy and low processing time as summarized in the here research 

questions below. 

 

 

 
 

1.3  Research Question 

 

 
To answer the problem statement, this study comes out with three research 

question as stated below: 

 

 

 
1. What is the best combination of overlapping segmentation (segment length and 

segment increment) value based on processing time? 

 

2. Which feature extraction methods performs better based on their performance 

on classification accuracy 

 

3. How does hybrid GWO-SVM can potentially improve the performance of 

classification result in terms of accuracy, sensitivity and specificity? 
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1.4  Aim 

 

 
To establish the simple with an outstanding performance of myoelectric control 

system that obtains competitive performance result in four main aspects of a 

recognition system which is accuracy, sensitivity, specificity and processing times. 

 

 

 
1.5  Objectives 

 

 
The objectives of the research are: 

 

 
(a) To identify the best data segmentation (window length and window increment) 

based on processing time. 

 

(b) To implement and compare three feature extraction methods and compare the 

performance using classification accuracy. 

 

(c) To develop a new hybrid GWO-SVM classification and evaluate the result in 

terms of accuracy, sensitivity and specificity. 



5  

1.6  Scope of Research 

 

 
The scopes of the study are as follows: 

 

 
a) Time Domain feature extraction methods. Using Hudgins and RMS feature 

extraction methods. (Refer to page 25) 

 

b) Overlapping segmentation . randomly pick three combination of segment 

length and segment increments that follows the guidelines. 

 

c) The study focusses on SVM classification technique in myoelectric control 

system. (Refer to page 41 ) 

 

d) Focus on Khusaba et al. (2012) dataset. Limit to only identified ten types of 

single and combined finger movement which are single consist of Thumb (T), 

Index (I), Middle (M), Ring (R), Little (L), and the combined Thumb-Index(T- 

I), Thumb-Middle (T-M), Thumb-Little (T-L), Thumb-Ring (T-R), and Hand 

Close (HC). (Refer to page 57 ) 

 

e) Grey Wolf Optimizer (GWO) is used as a parameter setting for SVM 

classification for this ten-finger movement classified. (Refer to page 32-33 ) 

 

f) Percentage difference of accuracy, sensitivity and specificity between standard 

SVM and GWO-SVM is used to evaluate the performance of classification 

technique. (Refer to page 47 ) 

 

 

1.7  Significant of Research 

 

 
This study introduce the hybrid GWO and SVM in myoelectric control system 

classification problem. The proposed classification method increase the effectiveness 

of the myoelectric control system in overall. 
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1.8  Thesis Organization 

 

 
Chapter 1 discusses the problem background, problem statement, research 

objectives, and research scope of the study. The research significant and contribution 

are also highlighted in this chapter. 

 

Chapter 2 reviews the details of the prosthetic hand myoelectric system. The 

review will focus on all stages of the myoelectric control system. The review will also 

include electromyography dataset followed by pre-processing phase, feature extraction 

and classification. The review will also discuss the grey wolf optimizer technique for 

optimization of prosthetic hand myoelectric system. 

 

Chapter 3 describes the research methodology. This research methodology 

consists of five main phases, they are problem and data definition, experimental setup, 

development of standard SVM classification, development of proposed GWO -SVM 

classification and result validation. The dataset of the case study is also discussed. The 

requirements for hardware and software to conduct the research are explained as well. 

 

Chapter 4 discusses the result and validation of the research. The results are 

compared between the types of feature extraction and between conventional SVM and 

proposed hybrid GWO with SVM. 

 

Chapter 5 summarizes and concludes the study. The findings that reflect 

research questions and objectives are discussed. The future works are also discussed 

to guide next potential project related to the myoelectric control system. 
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