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ABSTRACT 

The importance of the substrate layer in composite membranes lies not only in 

providing mechanical strength to the active layer, but also in serving as a foundation 

for the formation of polyamide. Therefore, the objectives of this study were to 

investigate the physicochemical properties of water stable metal organic framework 

University of Oslo-66 (UiO-66) nanoparticle and thin film composite (TFC) mixed 

matrix membrane (TFC-MMM). The membranes were fabricated by a phase inversion 

process that consists of UiO-66 nanoparticles embedded in a polysulfone matrix 

ranging from 0, 0.05, 0.1, 0.3 and 0.5 wt%. Then, an interfacial polymerization process 

has taken place to form polyamide on the outer membrane surface. These nanoparticles 

and membranes were characterized with field emission scanning electron microscopy, 

x-ray diffraction, contact angle, overall porosity, atomic absorption spectroscopy, 

attenuated total reflectance Fourier transform infrared, atomic force microscopy, pore 

size distribution and zeta potential. Based on the characterizations, the membranes 

have the potential to be used for arsenic (V) rejection in water flux tests. The forward 

osmosis process was utilized to determine water flux and solute reverse flux. Pure 

water and 1 M NaCl solution were used as feed and draw solution, respectively. The 

water flux was increased up to 20 LMH at TFC-0.3 and it went down to 17 LMH at 

TFC-0.5 while the solute reverse flux kept elevated but at a controlled rate. Then, 100 

ppm arsenic (V) was used as feed for As rejection performance. It was demonstrated 

that the physicochemical properties of MMM affect the interfacial polymerization of 

polyamide, leading to greater arsenic (V) rejection which up to 96%. Then, the pH of 

the feed solution was adjusted to 5, 6, 7, 8 and 9. The membrane performs optimally 

at a pH of 9 due to electrostatic repulsion between HAsO4
2- and polyamide. 
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ABSTRAK 

Kepentingan lapisan substrat dalam membran komposit bukan sahaja untuk 

memberi sokongan kekuatan mekanikal kepada lapisan aktif tetapi juga berfungsi 

untuk menjadi asas kepada pembentukan poliamida. Tujuan penyelidikan ini 

dijalankan adalah untuk menyiasat sifat-sifat fizikokimia nanopartikel kerangka logam 

organik stabil dalam air Universiti Oslo-66 (UiO-66) dan komposit filem nipis (TFC) 

membran matriks campuran (TFC-MMM). Membran tersebut dihasilkan melalui 

proses fasa berbalik yang mengandungi nanopartikel UiO-66 dimasukkan ke dalam 

matriks polisulfon antara 0, 0.05, 0.1, 0.3 dan 0.5%. Kemudian, proses pempolimeran 

antaramuka telah berlaku untuk membentuk poliamida di atas permukaan luar 

membran. Nanopartikel dan membran tersebut dicirikan dengan mikroskopi imbasan 

pancaran medan elektron, pembelauan sinar-x, sudut sentuh, keliangan keseluruhan, 

spektroskopi penyerapan atom, pantulan menyeluruh dilemahkan infra merah jelmaan 

Fourier, mikroskopi daya, taburan saiz liang dan potensi zeta. Berdasarkan pencirian 

tersebut, membran ini berpotensi untuk menyingkirkan arsenik (V) semasa ujian fluks 

air. Proses osmosis ke hadapan digunakan untuk menentukan fluks air dan fluks 

berbalik bahan larut. Air tulen dan larutan NaCl berkepekatan 1M masing-masing 

diletakkan sebagai larutan suapan dan larutan penarik. Fluks air telah meningkat 

sehingga 20 LMJ untuk TFC-0.3 dan menurun kepada 17 LMJ untuk TFC-0.5 

sementara fluks larutan berbalik terus meningkat tetapi pada kadar yang terkawal. 

Kemudian, 100 ppm arsenik (V) digantikan sebagai larutan suapan untuk ujian prestasi 

penyingkiran arsenik. Kajian menunjukkan ciri-ciri fizikokimia MMM mempengaruhi 

pempolimeran antaramuka poliamida yang menunjukkan peningkatan kadar 

penyingkiran arsenik (V) sehingga 96%. Seterusnya, pH larutan suapan diubah kepada 

5, 6, 7, 8 dan 9. Membran tersebut bertindak pada tahap yang optimum pada pH 9 

disebabkan oleh penolakan elektrostatik antara HAsO4
2- dengan poliamida.  
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Research Background 

Surface water is a major backbone of drinking water supply because the cost 

of operating per volume of water is low, considering the pollutant containing in the 

water is relatively low. However, this resource is finite, meaning that the source is 

depleting with continuous use. Although the resource is not going to run out in short 

time, the main issue would be the raise of wastewater generation being left untreated 

because the treatment plant may not be able to accommodate in large quantities. 

Wastewater comprises of organic and inorganic pollutant is generated from daily 

consumption such as for household cleaning, drinking and manufacturing of goods has 

led to thousands of different pollutant contain in the water.. The major drawbacks in 

the interest of treating wastewater is higher cost faced in the treatment plant compare 

to groundwater or surface water supply. A research in pursuit to find alternative 

approach or materials are in needed that is more cost effective yet be able to maintain 

high quality of treated water.  

  Arsenic, being classified as heavy metal, is commonly found in wastewater as 

a result of anthropological activities. It is much used in agricultural, glass, wood 

preservatives, herbicides and electronics industries (Ishiguro, 1992). Due to its toxicity 

and carcinogenicity, water containing arsenic is not safe to be directly consumed 

(Singh et al., 2015). Some diseases related with arsenic consumption are including 

skin cancer, vascular disease, hypertension and anhydremia (Duker et al., 2005). 

According to World Health Organization (WHO), it is recommended that the 

permissible As content in water to be not more than 0.01 mg/L for both raw and 

drinking water purpose which is also in-line as prescribed by Ministry of Health 

Malaysia (Choong et al., 2007). In water bodies, As may exist in various concentration, 
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pH and forms such as arsenite (As3+) and arsenate (As5+). Recently, there was rise in 

contamination level of arsenic due to vast growth of industrial activities as much 21 

times fold compared to the past 60 years (Chen et al., 2015). The situation urge the 

need of efficient treatment method to control arsenic contamination.  

 To remove As and to comply with the abovementioned standard, in need to 

undergo a primary treatment by means of coagulation-flocculation. At this stage, a 

major number of foreign particles including As were eliminated but yet to be safe for 

end-user consumption. Secondary treatment took place to remove leftover soluble 

organic matter that escapes from primary treatment. Then, As was completely removed 

at tertiary stage which can be done by membrane separation process. Membrane is a 

semi-permeable, selective barrier that allow certain molecules to pass through while 

retaining solutes from permeating. Membrane can be in range of microfiltration, 

ultrafiltration, nanofiltration or reverse osmosis where each of them are differentiated 

by the pore size. The selection of membrane range is based on molecular size of the 

solute. For instance, UF and NF are applied for heavy metal and dye removal while 

RO is more suitable for desalination (Ammar et al., 2015). Membrane separation is 

superior than other treatment process because it does not produce by-product requiring 

further treatment. Furthermore, membrane is able to reduce solute concentration to 

comply WHO standard.  

 Porous materials had gained interest among researchers because it is very much 

useful for application in mixture separation and chemical storage. Metal organic 

framework (MOF) is a unique class of porous materials built with metal cluster and 

organic linker to form a crystal structure of one, two or three dimensions. The term 

“MOF” may be self-explanatory among scientific community that describe metal 

clusters are surrounded by organic ligand to form a framework or coordination 

network. Due to its highly crystalline structure, MOF possess higher surface area and 

porosity with more uniform pore dimension compare to other porous materials like 

activated carbon, zeolite, silica and carbon nanotube. Another unique feature of MOF 

is its pore size tunability that can be tailored for specific application. MOF was initially 

applied for gas storage which later the scope was expanded for gas separation, drug 

delivery, sensing, catalysis and recently in water treatment. The tunability 
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characteristic is attributed to the degree of freedom to synthesize the MOF through 

altering precursors ratio, synthesizing temperature or guest removal. For wastewater 

treatment field, MOF has potential for adsorbing solutes such as organic materials and 

heavy metal for its high adsorption properties or may be integrated as filler for 

membrane separation.  

Polymeric membrane used in wastewater treatment are relatively low compare 

to inorganic molecular sieve materials because polymer membrane suffers from trade-

off between selectivity and permeability. On the other hand, there is difficulty in 

processing inorganic membrane not to mention the cost is higher which hinder it from 

production in large scale. Given that both of these materials have their own pros and 

cons, combining them together had led into discovery of mixed-matrix membrane 

(MMM) concept, that improved the membrane performance. MMM is often combined 

with thin film composite (TFC) because its denser layer is more effective to reject 

solute particularly for heavy metals and salt.  

 

1.2 Problem Statement 

One of the most common issues in polymeric membrane is the trade-off 

between permeability and selectivity. It is not beneficial to acquire such low 

permeability as it will not utilize the capability to produce clean water at high amount. 

On the other hand, attempting to tune the membrane so it can yield high permeability 

may compromise the quality of treated water making it unsafe for human consumption.  

 To overcome this problem, MMM is one of the promising approach as it 

provides preferential path for water while undesired molecule is retained. It has been 

found that MMM has improved the performance compare to traditional polymeric 

membrane but the extent of finding the best dispersed phase loading remained a 

challenge. The critical issue in MMM is the compatibility between polymer and the 

filler. Without appropriate chemical bonding between them, agglomeration is likely to 

occur. Agglomeration is an occurrence where the filler is distributed unevenly 

throughout the polymer matrix and clumped in certain area. Agglomeration may also 
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occur when excessive filler is loaded into the polymer and tend to sediment to the 

bottom layer of substrate. Studies on overcoming agglomeration had much drawing 

attention but most of them are involving additional steps. A simpler and 

straightforward approach through blending between filler and polymer is critically 

needed so as to develop easier controlled procedure. 

 Extensive research had been carried out for development of high performance 

membranes. In specific, the use of thin film composite membrane which originally 

used in reverse osmosis had yield high water flux. However, water transport passing 

through the membrane is reduced in forward osmosis due to absence of hydraulic 

pressure.  

 Given that MOF is built with inorganic metal clusters and organic linkers is 

what makes it has better compatibility with polymer matrix. Through covalently H2 

bonding, MOF can be dispersed more uniformly and mitigate unwanted voids 

formation. However, it was found that most MOF are unstable in water and other 

chemicals making them unsuitable to be applied for water treatment field. A 

deterioration in performance could be seen when unstable MOF were directly exposed 

towards water indicating the crystalline structure has collapsed.  

 UiO-66 as a type of MOF, had been recognized for its water stability and may 

withstand in wide range of pH for prolong exposure. However, there is lack of 

understanding on how the incorporation of UiO-66 in MMM helps to improve overall 

membrane performance because of limited numbers of research regarding to it.  

 In forward osmosis for heavy metal rejection, the thin film composite (TFC) 

active layer is responsible in performing the separation based on size exclusion and 

electrostatic repulsion (Zhang et al., 2017). The dependency on charge repulsion may 

cause performance deterioration when not in optimal pH condition thus requiring pH 

adjustment, at the cost of adding complexity to the treatment operation.  
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1.3 Objectives of Study 

Based on the abovementioned problem statements, the main goal of this research is to 

develop thin-film composite polyamide on top of PSf-UiO-66 MMM consists of 

synthesizing UiO-66 to treat aqueous arsenic under forward osmosis process. The 

specific objectives of this research are as follows: 

1) To synthesize and characterize the UiO-66 nanoparticles. 

2) To fabricate and characterize TFC-MMM  

3) To identify the TFC-MMM performance on pure water permeability and As (V) 

rejection via forward osmosis process.  

 

1.4 Scopes of Study 

To achieve the aforementioned objectives, the following scopes are outlined: 

 

(a) UiO-66 consists of ZrCl4 and 1,4-benzenedicarboxylic acid was synthesized 

via solvothermal method at 120oC for 24 h.  

(b) The synthesized UiO-66 nanoparticle was characterized for particle shape 

(FESEM), average particle size (ImageJ), particle crystallinity (XRD) and 

presence of functional group (FTIR).  

(c) A series of PSf substrates were prepared by hand casting, non-solvent phase 

inversion method with different loading of UiO-66 nanoparticle (0, 0.05, 0.1, 

0.3 and 0.5 wt%). 

(d) PSf substrate was characterized for top and bottom surface morphology 

(FESEM), functional group peak at different UiO-66 loading (FTIR), 

membrane hydrophilicity (contact angle), porosity (wet-dry method) and 

average pore size (ImageJ).  

(e) On top of the substrate, a thin film composite (TFC) polyamide active layer 

made up of m-phenilenediamine (MPD) and trimesoyl chloride (TMC) was 

fabricated by interfacial polymerization. 
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(f) Fabricated TFC was analysed for top and cross-section morphology (FESEM) 

and membrane surface roughness (AFM).  

(g) Pure water flux was evaluated in FO system by using pure water as feed and 1 

M NaCl as draw solution at 300 rpm 

(h) For rejection testing, the membrane was tested by non-pressurized FO system 

with active layer facing feed solution (AL-FS) with feed and draw solution 

were 100 ppm As (V) solution at fixed pH 6.5 and 1 M NaCl, respectively.  

(i) The final concentration of As (V) at draw solution was measured by atomic 

absorption spectroscopy (AAS).  

(j) The best performed membrane was selected for further As (V) but with 

variation of feed solution at pH 5, 6, 7, 8 and 9.  

1.5 Significance of Study 

Forward osmosis is usually applied for desalination process as alternative to 

intensive energy consumption from reverse osmosis. Aside from that, FO is also 

suitable for heavy metals removal given that their hydrated ion diameter is larger than 

salts. Therefore, this research provided insight on how wastewater containing heavy 

metal can be treated using non-pressurized system.  

In most wastewater treatment plant, the influent wastewater is typically 

existing in various pH due to presence of different chemical constituents and 

concentration. The membrane used in the system not only should be able to handle 

such harsh chemical strength, but also maintaining the performance at its peak. The 

fabricated UiO-66 membrane has potential to advance towards next-generation 

membrane for its high performance in treating water at wider pH range between 3 to 9 

(Wang et al., 2015; He et al., 2017; Liu et al., 2019).  
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