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ABSTRACT 

Droughts are natural disasters and extreme climate events with a large impact 

on different areas of the economy, agriculture, water resources, tourism, and 

ecosystems. Hence, the ability to forecast drought is important to manage water 

resources for agricultural and industrial uses. Traditionally, single models have been 

introduced to forecast the drought data; however, single models may not be suitable to 

capture the nonlinear nature of the data. Therefore, this study proposed the Empirical 

Wavelet Transform (EWT) and Stochastic Reconstruction based on Gaussian Process 

Regression (GPR) and ARIMA models. The study aims to reduce the computation 

complexity and enhance forecasting accuracy of decomposition ensemble model by 

incorporating intrinsic mode functions (IMFs) reconstruction method. The proposed 

model comprises four steps: (i) decomposing the complex data into several IMFs using 

the EWT method; (ii) reconstructing the decomposed IMFs through autocorrelation 

into stochastic and deterministic components; (iii) forecasting every reconstructed 

component using GPR and ARIMA models; (iv) ensemble all forecasted components 

for the final output. The Standard Precipitation Index (SPI) data from Arau, Perlis; and 

Gua Musang, Kelantan were employed in this study for the purpose of illustration and 

verification. The performance of the proposed model was then compared with the 

following models: ARIMA, GPR, EWT-ARIMA, and EWT-GPR. Based on 

percentage comparisons, for the Arau region, the EWT-Stochastic Reconstruction-

GPR showed improvement in accuracy with reductions of RMSE over the following 

models: ARIMA (11.90%), GPR (12.71%), EWT-ARIMA (8.48%), EWT-GPR 

(1.54%) and EWT-Stochastic Reconstruction-ARIMA (3.34%). Similarly, for the Gua 

Musang region, EWT- Stochastic Reconstruction-GPR yielded reductions of RMSE 

by around 30.40%, 32.94%, 18.87%, 4.39%, and 20.24% compared to ARIMA, GPR, 

EWT-ARIMA, EWT-GPR, and EWT-Stochastic Reconstruction-ARIMA models 

respectively. The empirical results indicated that the EWT-Stochastic Reconstruction-

GPR model is the best model for forecasting drought data, followed by EWT-GP, 

EWT-Stochastic Reconstruction-ARIMA, EWT-ARIMA, ARIMA, and GPR models. 

In conclusion, the proposed method of reconstruction of IMFs based on autocorrelation 

enhanced the forecasting accuracy of the EWT model.  
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ABSTRAK 

Kemarau adalah bencana alam dan peristiwa iklim yang ekstrem yang 

memberikan impak besar kepada berbagai bidang ekonomi, pertanian, sumber air, 

pelancongan, dan ekosistem. Justeru itu, keupayaan untuk meramal kemarau adalah 

penting untuk menguruskan sumber air bagi kegunaan pertanian dan perindustrian. 

Secara tradisional, model tunggal telah diperkenalkan untuk meramalkan data 

kemarau. Walau bagaimanapun, model tunggal mungkin tidak sesuai untuk 

menghuraikan sifat data yang tidak linear. Oleh itu, Empirical Wavelet Transform 

(EWT) dan Stochastic Reconstruction berdasarkan Gaussian Process Regression 

(GPR) dan model ARIMA adalah dicadangkan di dalam kajian ini. Kajian ini 

bertujuan untuk mengurangkan kerumitan pengiraan dan meningkatkan ketepatan 

ramalan model himpunan penguraian dengan memasukkan kaedah pembinaan semula 

Intrinsic Mode Function (IMF). Model cadangan merangkumi empat langkah; (i) 

menguraikan data kompleks menjadi beberapa IMF menggunakan kaedah EWT; (ii) 

membina semula IMF yang terurai melalui autokorelasi menjadi komponen stokastik 

dan deterministik; (iii) meramalkan setiap komponen yang dibina semula 

menggunakan model GPR dan ARIMA; (iv) menyusun semua komponen yang 

diramalkan untuk hasil akhir. Data Indeks Pemendakan Standard (SPI) dari Arau, 

Perlis; dan Gua Musang, Kelantan digunakan sebagai sampel kajian untuk tujuan 

illustrasi dan pengesahan.  Prestasi model yang dicadangkan kemudiannya 

dibandingkan dengan model ARIMA, GPR, EWT-ARIMA dan EWT-GPR.  

Berdasarkan perbandingan peratusan, untuk wilayah Arau, EWT-Stochastic 

Reconstruction-GPR menunjukkan peningkatan ketepatan dengan pengurangan 

RMSE berbanding dengan model ARIMA (11.90%), GPR (12.71%), EWT-ARIMA 

(8.48%), EWT-GPR (1.54% ), dan EWT-Stochastic Reconstruction-ARIMA (3.34% 

).  Begitu juga untuk wilayah Gua Musang, EWT-Stochastic Reconstruction-GPR 

menghasilkan pengurangan RMSE sekitar 30.40%, 32.94%, 18.87%, 4.39% dan 

20.24% berbanding ARIMA, GPR, EWT-ARIMA, EWT-GPR dan EWT-Stochastic 

Reconstruction-ARIMA masing-masing. Hasil empirik menunjukkan bahawa model 

EWT-Stochastic Reconstruction-GPR adalah model terbaik untuk meramalkan data 

kemarau diikuti oleh model EWT-GP, model EWT-Stochastic Reconstruction-

ARIMA, model EWT-ARIMA, model ARIMA dan model GPR. Kesimpulannya, 

kaedah cadangan pembinaan semula IMF berdasarkan autokorelasi telah 

meningkatkan ketepatan ramalan model EWT. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

Time series forecasting is a process of predicting the future observations where 

these observations have never been made before. Time Series is a sequence of data 

points that consists of successive measurement made over a time interval. Time series 

is commonly used in mathematics, finance, statistics, weather, engineering, and 

applied science. The process of making prediction relies on past and present data where 

the data are analysed. In most fields, forecasting can help in decision making and risk 

management as the result of the forecasting can be used to devise decision or plan. 

With regards to drought, an accurate forecasting of drought could enable the 

appropriate party to prepare for it to minimise the negative effects of the drought. 

There are many forecasting models that have been developed for forecasting 

time series data. These techniques are normally based on statistical technique such as 

autoregressive integrated moving average (ARIMA), neural network, support vector 

machine (SVM) and gaussian process regression (GPR). The accuracy of a forecast 

can have an impact on the decision-making process, thus the research in improving the 

effectiveness of forecasting accuracy is still ongoing (A. K. Mishra & Singh, 2011). 

This study is focused on the development of a hybrid model for forecasting 

drought. Drought is a natural hazard and is defined as deficiency in precipitation for 

an elongated period, which is usually a season or more that cause water shortages. 

World Meteorological Organization defined drought as a continuous, elongated 

shortage of precipitation. United Nations (UN) Convention to Combat Drought and 

Desertification defined drought as the naturally occurring phenomenon that happens 

when precipitation has been considerably lower than usual recorded levels, leading to 

serious hydrological imbalances which negatively impacts land resource production 
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systems. The definition of drought varies per variable utilised to explain it. Thus, there 

are multiple categories for classifying drought.  

American Meteorological Society (1997) classified droughts by four 

classification, namely meteorological, agricultural, hydrological, and socioeconomics. 

The deficit of precipitation leads to meteorological drought, soil moisture leads to 

agricultural drought, and stream flow leads to hydrological drought. Socio-economic 

drought is when water resource fails to meet the water demand. Therefore, drought can 

be associated with supply of and demand of water in economic good, in which the 

supply cannot match the demand for economic good (American Meteorological 

Society, 1997). 

Droughts have negative impact on vegetation, animals, and people in the form 

of water shortages. Drought can be considered as a normal, periodical feature of a 

climate. Droughts occur across every climatic zone. Drought can be recognised by the 

drop of precipitation for an extended period of time over a timescale such as a season 

or a year (Mishra & Singh, 2010).   

Drought can affect communities and environment in many ways. The strength 

of the drought influences the impact of the drought, which is considered by the period, 

or the area affected by the drought. When water supply runs low, the local government 

set a restriction on water, limiting the activities that can be performed in a community. 

However, to prepare for drought and issue warning to the masses, forecasting drought 

is required. The damage that are caused by drought highlights the importance of 

drought forecasting. 

1.2 Background of Study 

Forecasting drought can be done through the use of a physical or conceptual 

and data driven models. Physical models require many types of data as its input, thus 

they are result in complex models. For data driven models, they are accurate in various 

hydrology forecasting applications (Belayneh et al., 2014). Since they also have 
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minimum information requirements and rapid development times, they are widely 

used in hydrological forecasting.  

Stochastic models are among the frequently used models to forecast drought 

hydrologically. ARIMA & Seasonal ARIMA are among the most widely used models 

to forecast drought since they are simple yet effective (Mossad & Alazba, 2015).  

Stochastic models are good in forecasting linear time series, however they fall short in 

forecasting non-linear data (Hu & Wang, 2015). ARIMA is also not able to forecast 

time series with high amount of noise as ARIMA produced lower accuracy for lower 

SPI such as SPI 3 where the lower SPI contains more noise compared to higher SPI 

series (Mishra & Desai, 2005).  

Using Artificial Intelligence (AI) to forecast drought is also a popular method 

that have been studied. AI methods have shown to provide great performance and 

accuracy in drought forecasting (Belayneh & Adamowski, 2012; Deo & Şahin, 2015; 

Soh et al., 2018). AI have been found to be flexible and adaptable in predicting the 

occurrence of drought that have varying durations, frequencies and intensities. For AI, 

the popular models include artificial neural network (ANN), support vector regression 

(SVR) and support vector machine (SVM). ANN is one of the non-linear methods used 

to forecast drought (Mishra & Desai, 2006). Using ANN provided a better forecast 

compared to ARIMA models. However, ANN requires estimation of a large number 

of parameters, thus it is complicated to choose the appropriate architecture for the 

model. Several researchers have successfully explored on Gaussian Process 

Regression (GPR) as a forecasting technique (Hu & Wang, 2015; A. Y. Sun et al., 

2014). GPR is able to forecast non-linear timeseries accurately since Gaussian 

Processes (GP) are useful as priors over functions for doing non-linear regression. 

However, there are not many studies done on the application of GPR in forecasting 

timeseries with both linear and non-linear characteristics. 

To further improve the accuracy of drought forecasting several researchers 

have used data decomposition technique to provide the models with simpler inputs. 

Empirical Mode Decomposition (EMD), discrete wavelet transform (DWT), and 

empirical wavelet transform (EWT) are among the methods that are commonly 
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hybridised with forecasting models (Belayneh et al., 2014; Hu & Wang, 2015; Mishra 

& Singh, 2011). Numerous studies come to a conclusion that using these mentioned 

data decomposition methods improved the forecast accuracy in drought forecasting 

(Belayneh et al., 2014, 2016; Belayneh & Adamowski, 2012) and wind speed 

forecasting (Guo et al., 2012; Hu et al., 2015; Hu & Wang, 2015). EMD provides 

solution of non-linear and non-stationary data by decomposing the non-linear and non-

stationary behaviour of the time series into a series of valuable independent time 

resolutions (Tang et al., 2012). EWT is conceptually similar to EMD thus it also 

provides similar solution to non-linear and non-stochastic data (Gilles, 2013). Several 

studies have found that by using EWT improves the forecast accuracy of several 

models, including GPR models (H. Liu, Wu, et al., 2018; W. Sun & Wang, 2018). 

While data decomposition techniques such as EWT and EMD have been used 

as pre-processing technique, these models do not consider the differences of the data 

characteristics after decomposed. There is lack of work that are done to address the 

difference of the data produced. For EMD decomposed data, it was found that the 

residual series have small correlation between them and also zero forecasting result 

may be obtained (Shabri, 2016).  

Yu et al. (2017) found that by extracting the trend from IMF1 produced by 

EMD, the forecast accuracy can be improved. Since IMF1 have the most disordered 

data and have little regularity, it is hard to accurately forecast. This data can also be 

described as stochastic data (Aamir & Shabri, 2018). However, it still has meaningful 

data as model that utilized the trend extracted from IMF1 performed better.  

Another method to improve the input data is by clustering the input. Clustering 

technique can be useful to group the similarities of the IMFs from EMD and EWT and 

cluster them through the calculation of their dissimilarities matrices. Shabri (2016) 

proposed MEMD-ARIMA that implemented k-means clustering and silhouette 

analysis to cluster components resulting from EMD. The IMFs and residual from EMD 

were reconstructed into several components. The result shows that the proposed 

MEMD-ARIMA model have higher accuracy compared to ARIMA and EMD-

ARIMA. Aamir and Shabri (2018) on the other hand classifies the components 
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produced from Ensemble empirical mode decomposition into stochastic component 

and deterministic component by grouping them using autocorrelation function. In the 

study, the stochastic IMFs were reconstructed into a single component and 

deterministic IMFs were reconstructed into a single component. The result shows that 

the proposed EEMD-RSD-ARIMA model performed better than EEMD-ARIMA.  

1.3 Problem Statement 

Drought cannot be completely prevented. However, it can be predicted. The 

population growth and the expansion of industrial and agricultural sector causes the 

increase in the demand for water over time, and various parts of the world has been 

experiencing water scarcity (Mishra & Singh, 2010). In the recent years, an increase 

in the severity level of drought and floods has been experienced. Even though Malaysia 

is a humid country, drought regularly occurs in the country (Shaaban & Low, 2003). 

Droughts are able to reduce the level of agricultural output, which leads to the 

temporary shut-down of capital in the downstream manufacturing industries, therefore, 

drought is able to reduce the GDP of a region(Kilimani et al., 2015).  Knowledge in 

droughts could bring effective planning and management of water resource. 

Because of the impact of drought, predicting it will bring advantage to the 

community. With an accurate prediction, the impact of a drought can be reduced. 

People can prepare for the drought and reduce water usage beforehand, and 

government can prepare the infrastructure to combat the drought. Therefore, it is 

crucial to understand the work of drought mechanism and provide contribution to the 

existing forecasting model to improve the accuracy of the forecast and reduce the 

forecast complexity. However, the non-linear and stochastic characteristic of the 

drought data makes the forecasting process difficult.  

The aim of this study is to develop a new forecasting model which is able to 

forecast SPI of drought data and also overcome the weakness of the existing models 

such as ARIMA, ANN, GPR and LSSVM. Previously, EWT has been used as a data 

pre-processing by researchers to deals with non-linear and non-stationary data. GPR 
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has also been used as a forecasting model by researchers in the past as its development 

is less complex than ANN. Thus, this research preferred the hybridisation of EWT and 

GPR which have been shown in other domains to provide superior performance 

compared to single and stochastic models. Apart from that, the very few applications 

of EWT-GPR in drought forecasting has motivated this research. In this study, a 

modified model that is based on EWT-GPR is proposed where stochastic and 

deterministic influences is used to reconstruct the stochastic IMFs of SPI data from 

EWT into a single stochastic component. Since stochastic data is harder to forecast 

compared to deterministic ones, this will lead to better input variables for the GPR and 

thus able to improve its accuracy in forecasting SPI values. Therefore, the research 

question derived is: 

“How to design and develop a modified model consisting of EWT and 

Stochastic Reconstruction with ARIMA and GPR so that it can improve 

drought forecasting accuracy using SPI”. 

1.4 Objectives 

Based on the statement of problems stated above, the following are the 

objectives proposed for this study: - 

 

(1) To evaluate the capability of hybridising EWT with ARIMA and GPR in 

forecasting SPI for drought. 

(2) To propose the EWT-Stochastic reconstruction-GPR model and EWT-

Stochastic Reconstruction-ARIMA model to provide the best input for the 

EWT based forecasting model. 

(3) To compare the performance of the proposed EWT-Stochastic Reconstruction-

GPR and EWT-Stochastic Reconstruction-ARIMA with EWT-GPR, GPR, 

ARIMA, and EWT-ARIMA in drought forecasting using SPI. 
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1.5 Scopes 

Based on the objectives above, the following are the scope of the research: 

 

i) The data analysis uses daily rainfall data from Arau, Perlis and Gua Musang, 

Kelantan which were provided by Malaysia Meteorological Department. 

ii) The research uses standard precipitation index (SPI) for the drought index with 

SPI 3, 6, 9 and 12. 

iii) Two performance measure used to evaluate the performance of the proposed 

model, which are root mean square error (RMSE), mean absolute error (MAE) 

and mean absolute percentage error (MAPE) 

1.6 Significance of the Study 

 The domain of this research is forecasting drought in Arau, Perlis and Gua 

Musang, Kelantan. This study proposes a hybrid forecasting model that hopes to 

increase the accuracy of the forecasts. Therefore, it is hoped that the result of this study 

will be beneficial to the government and the citizens of Malaysia. With a more accurate 

method to forecast drought, it is hopeful that the citizens can prepare better for drought, 

and the government can provide better infrastructure ahead of a drought. 

1.7 Thesis Organization 

 This thesis consists of 6 chapters. Chapter 1 gives the reader an overview on 

the research areas and its importance. Chapter 2 discusses the previous works in similar 

area of interests in detail. The indices that are used to represent drought is studied 

briefly. The methods that have been used to forecasts drought are mentioned. Next, the 

models that are related with this research is thoroughly analysed. A review is also done 

on how wavelets technique has been used to improve the performance on the past 

works. Chapter 3 describes the research framework. The operational framework is 

described, and the step-by-step procedure is explained in this chapter. The design of 



 

8 

the proposed model is also described. Chapter 4 shows the results of the experiments 

carried out in this study. Chapter 5 discusses and compares the forecasting result for 

all models used in this study and also the findings from the experiment conducted. 

Chapter 6 concludes the overall research. 
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