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ABSTRACT 

Adequate stock management in emergency trolleys is important to ensure that 

every process requiring medication specifically in hospitals, runs smoothly in any 

given situation. Stock management based on the value of means (or average usage) is 

not adequate to account for unpredictable situations that may result in disruptions in 

drug utilisation and supply. In this study, an investigation to identify possible factors 

that correlate with the fluctuation of terbutaline injection drug utilisation used in 

emergency trolleys, using univariate forecasting methods, machine learning (ML), and 

hybrid models capable of predicting future usage was undertaken. Based on an 

experimental dataset, it was found that the mean temperature in Mersing, Johor, has 

the highest negative correlation with terbutaline injection utilisation, at a correlation 

coefficient value of -0.27 (p-value = 0.0068). Three univariate models and three 

univariate models with exogenous variables were constructed and compared. All 

advanced models show better performance than the naive baseline model that served 

as a benchmark for model building. The univariate models in the analysis consisted of 

Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Network 

(ANN) models. Also, the ML models considered in this study including Support 

Vector Regression (SVR), used the lagged values of terbutaline injection as its 

input variables. The Autoregressive Moving Average (ARMA) (4,4) model performed 

better than the ML models, with a Mean Absolute Error (MAE) of 8.9524 and a Root 

Mean Square Error (RMSE) of 11.4518 in the validation data set. To incorporate the 

effects of exogenous variables, significant lags of emergency admission and climate 

variables were used to construct a predictive model from ARMA (4,4). The hybrid 

model of ARMA-ANN outperformed all other models, with MAE and RMSE values 

of 8.8571 and 10.8496 respectively. It can also be summarized that models utilising 

ANN are far better than SVR models due to a variety of factors, including the type of 

data input and the optimization  techniques used to build the SVR models. Future 

studies should focus on modelling different types of medication used in emergency 

trolleys. The application of other ML algorithms and optimisation strategies can also 

be explored for different patterns of data. 
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ABSTRAK 

Pengurusan stok yang mencukupi dalam troli kecemasan penting bagi 

memastikan setiap proses yang memerlukan ubat, terutama di hospital, sentiasa 

berjalan lancar. Pengurusan stok berdasarkan nilai min (atau purata penggunaan) tidak 

mencukupi dalam keadaan sukar diramal dan boleh menyebabkan gangguan dalam 

penggunaan dan bekalan ubat. Kajian ini melakukan siasatan bagi mengenalpasti 

faktor turun naik penggunaan ubat suntikan terbutalin yang digunakan dalam troli 

kecemasan menggunakan kaedah ramalan univariat, mesin pembelajaran (ML) dan 

model hibrid yang mampu meramalkan penggunaan masa depan. Data eksperimen 

mendapati purata suhu di Mersing, Johor mempunyai korelasi negatif tertinggi dengan 

penggunaan suntikan terbutalin pada nilai -0.27 (nilai p = 0.0068). Tiga model 

univariat dan tiga model univariat dengan pemboleh ubah eksogenus telah dibina dan 

dibandingkan. Semua model canggih menunjukkan prestasi lebih baik berbanding 

model dasar naif yang berfungsi sebagai penanda aras untuk pembinaan model. Model 

univariat dalam analisis ini terdiri daripada model Purata Pergerakan Bersepadu 

Autoregresif (ARIMA) dan Rangkaian Neural Buatan (ANN). Selain itu, model ML 

yang dipertimbangkan dalam kajian ini termasuklah Regresi Vektor Sokongan (SVR) 

menggunakan nilai terdahulu bagi suntikan terbutalin sebagai nilai input. Model Purata 

Pergerakan Autoregresif (ARMA) (4,4) berprestasi lebih baik daripada model ML 

dengan nilai Min Ralat Mutlak (MAE) 8.9524 dan nilai Punca Ralat Min Kuasa Dua 

(RMSE) 11.4518 dalam set data pengesahan. Bagi menggabungkan kesan pemboleh 

ubah eksogenus, nilai signifikan terdahulu bagi kemasukan kecemasan dan pemboleh 

ubah iklim telah digunakan untuk membina model ramalan daripada ARMA (4,4). 

Model hibrid ARMA-ANN mengatasi semua model lain dengan nilai MAE dan RMSE 

sebanyak 8.8571 dan 10.8496. Kesimpulannya, model yang menggunakan ANN 

mempunyai prestasi lebih baik berbanding model SVR kerana pelbagai factor, 

termasuk jenis input data dan teknik pengoptimuman yang digunakan untuk membina 

model SVR.  Kajian masa depan harus fokus pada pemodelan pelbagai jenis ubat lain 

dalam troli kecemasan. Aplikasi menggunakan algoritma ML dan strategi 

pengoptimuman model yang berbeza juga boleh diterokai bagi corak data  berlainan. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background 

Emergency trolley is crucial for the survival of patients in critical and life-

threatening situations. Any delay in delivering the appropriate response in emergency 

cases due to medication stock-outs will increase the mortality rate among the patients 

of the said facility. Medication stock-out and shortage happen when the supply chain 

management is disrupted. This is mainly due to the inability to predict sufficient stock 

of medications in the facility especially when tight government funding which can 

affect the procurement of medications. Presently, most medical institutions tend to 

stock up their medication supply by observing the trend of medication usage rather 

than forecasting the future trends that may affect drug utilisation. Hence a more 

systematic and structured method of predicting the required medication stock is needed 

for an optimized stock-up process.  

The method of retrospectively observing past values and utilisation of 

medication alone would not be effective in accommodating the future increase in 

demands and in predicting outbreaks that may occur in a seasonal or cyclic manner. 

The use of an average value to predict future utilisation will soften the effect of 

fluctuations on medication usage. Fluctuations will further cause damage due to 

sudden surge in demands, consequently causing disruptions in the supply of the 

required medications.. Expert judgement in the other hand is considered to non-

objective as it is based on instinct rather than an evidence-based approach to solve a 

problem.  

To predict future drug utilisation, forecasting strategies should be 

implemented. Presently, there are multiple types of forecasting methods available 

including qualitative method, time series analysis method and causal methods. 
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Qualitative method uses expert judgement, experience and knowledge to predict the 

outcome while time series analysis focuses entirely on patterns over a period of time. 

For causal method, it uses single or multiple factors that influences that outcome 

during forecasting (Chambers et al., 2014). Besides that, the effect of external factors 

that influence drug utilisation can be identified and analysed. External variables may 

either negatively or positively influence the medication usage trends and this will later 

be beneficial in providing the “why” behind medication fluctuations. 

To approach the stated problems, this study proposes to employ the use of 

univariate time series analysis with external factors to forecast future drug utilisation. 

The ultimate aim of the study is to produce a statistical model that can be used to 

predict the usage of emergency trolley medication to ensure that and adequate stock 

for the related drug is always available. The ability to scientifically predict the demand 

of drugs by means of statistical analysis is beneficial in aiding decision making process 

for procurement of these lifesaving medication. This in turn will reduce the mortality 

rate of patients that could be contributed by stock inadequacy especially when prudent 

spending is encouraged due to tight budget allocated by the government. 

1.2 Problem Statement 

Emergency trolley is crucial for the survival of patients that are admitted during 

dire and critical situations that needs immediate resuscitation. Any delay in the 

appropriate response to the emergency cases due to medication stock-out and 

medication shortage can cause lethal consequences. To date, the existing research 

involving stocking of medication tends to focus more on the descriptive statistics. In 

normal practice, stocks are kept based on the value of means which does not account 

for fluctuating utilisation over the period of observation. Moreover, long-term 

forecasting is not usually carried out. Without forecasting data, medication stock-out 

is bound to occur as the demand for the medication constantly varies. In general, the 

usage of medication is influenced by the number of patients and climate variables. 

Hence, it is important to support these claims by implementing appropriate statistical 

method and/ or machine learning to account for stock fluctuations and to explore the 
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relationship between patient admissions and weather variables towards medication 

utilisation. ARMA models are better suited for the linear relationships found in the 

given data. In contrast, non-linear relationships between data can be modelled using 

Machine Learning (ML) models like ANN and SVR. ARMA has an advantage over 

ANN and SVR models because, in contrast to ANN and SVR models, the relationship 

between past and future predictions can be explained through the equation formed. 

ANN and SVR have the advantage over ARMA model due to its ability to handle big 

volume of data. When used separately, these limitations and advantages of the models 

could not be optimised or corrected. Many studies have started to develop hybrid 

models to fully utilised the specific advantages of ARMA, ANN and SVR models. 

Current studies however,  that used hybrid models such as ARMA-ANN and/ or 

ARMA-SVR, used its own residuals from the initial ARMA model, to build the hybrid 

model. Exogenous variables were often implemented into ARMA models using a 

statistical model (e.g the use of linear regression and develop ARMAX model). With 

this, it is safe to say that currently, there is no or there is lacking in studies, that models 

ARMA-ANN and ARMA-SVR, using input variables and external factors. Besides, it 

is important to explore the ability to construct a forecasting model that could help in 

both descriptive and inferential decision making. Comparison between these two 

methods could then be explored to find the most efficient method for forecasting 

medication utilisation. 

1.3 Research Questions 

1. What factors influence the outbreaks in the drugs usage? 

2. How to overcome the fluctuation in the usage of drugs? 

3. How to produce a hybrid of ARMAX, ARMA-ANN and ARMA-SVR with 

incorporation of external factors to forecast for stock replenishment? 

4. What is the best way to quantify the performance of the proposed ARMA, 

Machine Learning (ANN) and Hybrid Models (ARMAX, ARMA-ANN and 

ARMA-SVR)? 
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1.4 Objectives 

The objectives of the research are listed as follows: 

1. To identify the possible factors that correlate with the fluctuation of medication 

usage in the emergency trolley using correlation testing. 

2. To develop emergency medication model by employing the use ARMA and 

ANN Models. 

3. To incorporate external factors that could influence the model using ARMAX, 

ARMA-ANN and ARMA-SVR models. 

4. To validate and compare the proposed model efficiency using MAE & RMSE. 

 

1.5 Hypothesis 

1. External factors found to be correlated to the fluctuation of medication usage 

is able to allow the exogenous variable to be included into the ARMAX, 

ARMA-ANN and ARMA-SVR models. 

2. ARMAX, ARMA-ANN and ARMA-SVR model is able to reduce the volatility 

error due to the fluctuation in the univariate data. 

3. ARMAX, ARMA-ANN and ARMA-SVR model is able to produce a coherent 

value and estimate as to when the stocks should be replenished. 

4. The simulation is able to produce a good reflection of the data and the 

performance of ARMAX, ARMA-ANN and ARMA-SVR model is able to 

minimise errors. 
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1.6 Significance of Study 

Adequate stock management is important to ensure that every process requiring 

medication specifically in hospitals run smoothly in any given situations. Stock 

management depending on the value of means (or average usage) is not adequate to 

account for unpredictable situations that may cause fluctuations in drug utilisation. By 

identifying the variables that influence the fluctuations in drug usage, decision making 

process can be done in a more rationalised manner. In future, drug procurement can be 

done by considering the presence of variables caused by fluctuations in the drug usage. 

In addition, drug utilisation trends must be identified, analysed and carefully 

monitored from time to time to prepare for future scenarios. 

To date, studies that investigate the trends that are affecting the drug usage are 

still scarce. Studies that focus on the relationship between covariates or exogenous 

variables with drug utilisation is hoped to reduce the incidence of drug shortages 

within a healthcare facility. It can also assist the facilities to prepare adequate stocks 

of medication as one of the means of preventive action and proactive approach. 

The findings expected from this study would be beneficial and can be an eye 

opener in bringing the issues concerning stock usage fluctuations forward. The results 

would be useful to aid in the decision-making process of medication procurement by 

the pharmacists and to avoid the practice of just relying on the average usage of 

medication. 

1.7 Scope of Limitation of The Study 

In this study, the data from the usage of emergency medication from the year 

2006 to 2019 from Hospital Mersing, Mersing, Johor was used. These primary data 

was obtained from the unit supplying the medication which is the Unit Farmasi Pesakit 

Dalam, Unit Farmasi dan Bekalan, Hospital Mersing. Each transaction of the 

medication was recorded when supplied to the unit using KEW-PS 4. The data were 

collected using the recorded transactions on KEW-PS 4. The type of medication 
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selected for the purpose of this research was specifically related to respiratory 

emergency management that is Terbutaline 0.5 mg/ ml injection. Some limitations 

have been identified in the process of obtaining this data. One of the assumptions of 

the data was that each of the medication utilisation was recorded into kad kawalan stok 

and that each transaction was used for clinical management for the patients.  

Meteorological data were the secondary data and it was obtained from the 

Malaysian Meteorological Department (MMD) while daily emergency admission 

were obtained from the Unit Rekod of Hospital Mersing. The daily data for both 

admission and meteorological data were from January 2015 to 2019. Both data were 

recorded on a daily basis. In the study, the analysis for the drug use and meteorological 

data included descriptive statistics, Mann Kendall trend test and Pearson correlation 

coefficients. Autoregressive techniques were applied to model the association between 

medication use, emergency admission and weather conditions while Akaike’s 

Information Criterion (AIC) was used to select the best model. Among the limitations 

of the model developed was that it could not be generalised towards other healthcare 

facility. Local data must be obtained and developed for the forecasting of medication 

utilisation for other facility. 
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