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ABSTRACT 

Advanced automatic control technologies have brought significant benefits to 

the chemical industry. This is however, hampered by the inefficiency in providing 

effective detection and diagnosis of process faults that may emerge from various 

aspects of plant operation. Among the available techniques, unknown input observer 

(UIO) method has been highlighted as a potentially effective approach as it offers 

effective capability to deal with residuals between the model estimation and actual 

measured values of the process variables. UIO modeling strategy creates a specific 

residual signal that carries information of specific faults, as well as model uncertainties 

and exogenous disturbances decoupled from fault features. With this characteristic, 

process faults can be effectively detected, isolated, and identified. The UIO technique 

was tested on a multi-variable distillation system configured with multiloop feedback 

control. For this purpose, various scenarios of sensor faults were introduced, and a 

bank of unknown input observers was designed. Successful results were obtained to 

detect, isolate, and identify faults. The UIO based fault detection and diagnosis (FDD) 

system was further tested on case studies involving sensor faults, in open and closed-

loop conditions in a non-linear exothermic continuous stirred tank reactor. The 

proposed FDD scheme was proven robust enough to deal with model uncertainties and 

exogenous disturbances introduced in the case studies. The results obtained in this 

study proved the suitability of the UIO modeling approach to be used in FDD system 

to provide effective early warning feature in process plant alarm management. 
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ABSTRAK 

Teknologi kawalan automatik termaju telah membawa faedah yang ketara 

kepada industri kimia. Walau bagaimanapun, ia dihalang oleh kegagalan dalam 

menyediakan pengesanan dan diagnosis ralat proses yang mungkin muncul dari 

pelbagai aspek operasi loji. Di antara pelbagai teknik yang ada, teknik pemerhati 

masukan tidak diketahui (UIO) telah ditonjolkan sebagai teknik berkesan yang 

berpotensi kerana ia menawarkan kemampuan dalam menangani baki di antara nilai 

yang dianggarkan oleh model dengan nilai sebenar pembolehubah proses yang diukur. 

Strategi permodelan UIO menghasilkan isyarat baki yang spesifik yang mengandungi 

maklumat khusus mengenai ralat proses. Dengan ciri-ciri ini, ralat proses akan dapat 

dikesan, diasing dan dikenalpasti dengan efektif. Teknik UIO ini diuji dengan 

menggunakan sistem penyulingan berbilang pemboleh ubah yang dilengkapkan 

dengan kawalan berbilang gelung. Untuk tujuan ini, pelbagai senario kegagalan 

penderia telah diperkenalkan dan satu bank pemerhati masukan yang tidak diketahui 

telah direkabentuk. Keputusan yang berjaya telah dicapai bagi mengesan, mengasing 

dan mengenal pasti kegagalan. Sistem pengesanan dan pengenalpastian (FDD) yang 

telah dibina seterusnya diuji dengan lebih lanjut dengan kajian kes yang melibatkan 

kegagalan penderia dalam gelung terbuka dan gelung tertutup pada reaktor tangki 

teraduk berterusan eksotermik yang tidak lelurus. Keputusan yang diperoleh 

membuktikan skema FDD yang dicadangkan itu cukup lasak dalam menghadapi 

ketidakpastian model dan gangguan proses. Penemuan yang diperoleh dalam kajian 

ini membuktikan kesesuaian pendekatan permodelan UIO untuk digunakan dalam 

FDD bagi menyediakan sistem amaran awal yang berkesan dalam pengurusan 

penggera loji proses. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Motivation 

Managing process plant operation involves many challenging tasks including 

the needs to ensure safety, efficiency, reliability, and profitability, thus requiring all 

key variables to stay withing specified operating windows. This is exacerbated by the 

fact that today’s process plants are becoming increasingly more complex, highly 

integrated, and heavily instrumented due to increased demands to achieve higher 

performance and profitability. In dealing with these complexities, features like fault 

detection and diagnosis (FDD) are now a necessity.  This is to facilitate human 

interventions whenever needed and to create synergy between operator’s action and 

plant automation. 

The key objective of the FDD system is to facilitate plant operators in making 

decision towards taking the appropriate course of actions when larger deviations 

emerge. This can be the results of extreme disturbances or failure of certain 

components of the plant operation system including sensors and actuators. Early 

detection of these faults is important to avoid the process to drift out of the specified 

operating window, resulting in hazardous condition and the need to shut down the 

plant, both of which are very costly. In order to manage process faults efficiently, it is 

important for the plant operation system to be able to detect and diagnose all potential 

faults as early as possible.  In complex integrated and automated process, ignoring a 

small fault can lead to terrible consequences (Liu, 2006). 

Generally, FDD approaches can be classified into three wide-ranging 

categories based on a first principle process knowledge such as quantitative based 

models, qualitative based models, and process history-based methods 

(Venkatasubramanian et al., 2003c; Venkatasubramanian et al., 2003b; 



2 

Venkatasubramanian et al., 2003a). Most of FDD studies for chemical plants are 

focussed on process history methods using techniques such as artificial neural network, 

fuzzy logic, statistical process monitoring, and qualitative based models that includes 

multi-level flow, fault trees analysis, and signed digraphs. These two classes of 

techniques are relatively easier to apply and develop but limit accuracy and analytical 

depth. Also, they require a large history data that is specific to the operating condition 

for which the models were developed (Rahoma, 2021; Tian et al., 2012; Rajaraman, 

2006). In order to overcome these weaknesses, the quantitative based models that rely 

on state-space, input-output, and first-principles models have received more attention 

in real plants (Patel et al., 2020; Simani et al., 2003). These models have techniques 

such as parameter estimation, state estimation, and parity relations.   

Quantitative model-based methods are based on residual generation from the 

differences between the measured process variables and their estimates from the 

model, the fault information could be extracted from the evaluation of this residual 

(Tangirala, 2018; Wang et al., 2017b). However,  this method require theoretical 

derivation of the process model, which lead to more complexities and can be more 

computationally intensive if it is compared with process history and qualitative based 

model approaches (Katipamula and Brambley, 2005). Moreover, the design of an 

effective and reliable scheme needs to account the modelling uncertainty and the 

sensitivity of the faults (Yu et al., 2014; Isermann, 2006; Zarei and Poshtan, 2010). 

Despite these challenges, the urge to have clarity in model predictions that is akin to 

physical meaning has led to continued developments in this class of FDD approach. 

Unknown input observer (UIO) is considered to be among the most popular 

approaches to achieve decoupling of state estimation error from modelling 

uncertainties and exogenous disturbances, which makes the residuals insensitive to 

unknown disturbances, whilst sensitive to the faults (Ahmadizadeh et al., 2014; 

Hosseini et al., 2020; Guo et al., 2009; Zarei and Poshtan, 2010; Zarei and Poshtan, 

2011). This is a powerful feature that can be exploited within the FDD framework to 

establish better reliability and robustness to avoid false alarms and detection time 

delay. Examples of similar applications include the work of (Liu, 2016; Sotomayor 

and Odloak, 2005), in which, the application of UIO in dealing with sensor failures are 
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reported. These early works require further extensions to examine cases involving 

process systems with larger number of control loops and more process interactions.  

Motivated by these considerations, a robust design procedure for FDD using 

UIO is proposed. The main contributions of this thesis are UI distribution matrix is not 

known a prior like the previous works and the technique is applied on nonlinear large-

scale process (Multivariable distillation column) integrated with PI-control. The 

robustness and performance of the proposed FDD scheme are investigated and 

evaluated under several scenarios of abrupt faults occurring in the sensor. 

1.2 Objectives of the Study 

The main objective of this research is to develop an effective and reliable FDD 

method as a part of alarm system management for chemical process industry using the 

advantage of UIO. The objective can be detailed out as follows:  

1. To formulate a multi loop feedback control configuration for a 

multivariable distillation column and evaluate closed loop performances 

based on set point tracking and disturbance rejection. 

2. To evaluate the proposed multi loop control system in managing the 

abnormal process situation carried out due to sensor failures. 

3. To propose a fault detection and diagnosis scheme using unknown input 

observer (UIO) for sensor fault detection and diagnosis based on the 

modelling uncertainties and exogenous disturbances in nonlinear process 

and implement it in the multivariable distillation column as a case study. 

4. To study the effects of feedback control on the generated residual of faulty 

sensors in non-linear CSTR reactor and apply the improved UIO on open-

loop non-linear CSTR reactor. 
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1.3 Scope of the Research 

To satisfy and achieve the objectives of this study, the scope and limitations of 

this research work are as follows: 

a. The multi-variable distillation column for aromatic compounds (benzene, 

toluene, and xylene) was constructed based on mass and energy balance 

equations, laws of basic thermodynamics, and algebraic energy equations. 

The relative volatility and pressure inside the column are constant. The 

hold-up in the vapour phase was neglected. 

b. The control configuration selected based on a systematic method called 

Relative Gains Array (RGA) and the control system are based on multi-

loops of PI-control. 

c. The unknown input observer (UIO) for fault detection and diagnosis are 

designed based on modelling uncertainties and exogenous disturbance. By 

using a bank of UIOs to generate the residuals which are sensitive to the 

faults and insensitive to modelling uncertainties and exogenous disturbance 

and are implemented on several sensor fault scenarios with neglected the 

sensor noise.  

d. The non-linear exothermic CSTR reactor was designed based on the data 

provided by (Liu, 2016) and control system was built on PI-control.  

 

1.4 The Research Contribution 

The main contribution of this thesis is improving the design of UIOs via 

calculated modelling uncertainties and exogenous disturbances distribution matrix 

from the process plant input and output data and model equations. This procedure 

should increase the robustness and reliability of the FDD scheme, hence reducing the 

rate of missing and false alarms. Furthermore, the novelty of this work is applied the 
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designed UIOs to a large-scale chemical process such as a nonlinear multivariable 

distillation column and nonlinear exothermic CSTR reactor integrated with feedback 

PI-control. 

The improved UIO technique was tested to detect and diagnose the sensor fault 

occurrence as an abrupt fault. The obtained results have highlighted the robustness, 

reliability, and efficiency of FDD to track and monitor the process and provide an early 

warning mechanism to plant operators before the fault reaches a critical situation. 

Issues associated with generated residuals resulting from the effects of feedback 

control on the faulty sensor residual are also highlighted. 

1.5 Layout of Thesis 

Following this introductory chapter, the literature review that outlines key 

developments in relevant topics is presented as chapter 2. The foundation of the work 

is established in chapter 3 where the development of mathematical model of a 

multivariable distillation column is presented. This is followed by the analysis of 

dynamic response, control loop developments and closed loop performance 

evaluation. Then process abnormalities are introduced to further evaluate the adequacy 

of the control system. Then in chapter 4, UIO is introduced and the formulation of an 

FDD strategy is described. The scheme is implemented on multivariable distillation 

column. In chapter 5, the robustness of the proposed UIO based FDD is illustrated on 

a CSTR test bed.  Finally, chapter 6 summarises the overall framework of the research, 

outlines the conclusion and recommends some important extensions of the current 

works. 
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Figure 1.1 Thesis Flow chart organization 
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