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ABSTRACT

It is desirable in industry to optimize the production yield from olefin plant, for
instance, to achieve the highest profit from the yield of ethylene. However, there are
gaps associated with the restricted usage of the proprietary simulation software and the
lack of a specific model to correlate the relationship between variables that has a
significant impact on the processing parameters. In this study, response surface
methodology (RSM) was used to evaluate the impact of critical operating parameters
from large scale naphtha pyrolysis cracking. Those parameters include hearth burner
flow, integral burner flow, naphtha feed flow, dilution steam flow, and coil outlet
temperature (COT), with the addition of propylene yield towards the ethylene yield.
The data was collected at the steam cracker furnace using process information
management system (PIMS) software, PI process book version 2015. The analysis was
conducted for naphtha feedstock with paraffins content at 57.60 — 70.73 vol % to
evaluate the impact of operating at different naphtha feedstock compositions on the
ethylene yield. Propylene yield, hearth burner flow, and naphtha feed flow consistently
showed a significant relationship with ethylene yield from surface response analysis
with the interaction factor ranges at -10.07 to 192.3, -0.001698 to 0.01938, and -2.383
to 820, respectively. The final equation models were successfully concluded in the
form of quadratic with 2-way interaction at the high paraffins content and linear
relation at the lower paraffins content after the models’ validation using probability
plot, scatterplot, and Mann-Whitney hypothesis test. The maximum ethylene yield
generated from response optimizer was observed dissimilar at 31.46 — 34.97 % for
different paraffins content in naphtha feedstock, with the highest reading observed for
the naphtha feedstock having the highest paraffins content. The best ethylene yield
with consideration to the production cost for the naphtha with the highest paraffins
content of 70.73 vol % was identified at the range 34.41 — 34.97 %, using the
recommended process ranges at 12.22 — 12.25 % of propylene yield, 11033.90 —
11816.40 kg/hr of hearth burner flow, 66.67 — 67.05 t/hr of naphtha feed flow and
816.38 °C of COT. It is recommended for other large scale plants to adopt the same
methodology that was proven successful in this study, for process monitoring and

optimization.
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ABSTRAK

Proses mengoptimumkan hasil pengeluaran daripada loji olefin adalah suatu
keperluan di industri, antaranya untuk mendapatkan keuntungan tertinggi daripada
hasil etilena. Walau bagaimanapun, terdapat kekangan disebabkan oleh keterbatasan
pemilikan perisian simulasi, serta kekurangan model untuk menghubungkaitkan
pembolehubah-pembolehubah yang mempunyai kesan ketara terhadap parameter
proses. Kaedah tindak balas permukaan (RSM) telah digunakan dalam kajian ini untuk
menilai kesan pembolehubah operasi kritikal daripada proses pemecahan pirolis nafta
berskala besar. Parameter yang dimaksudkan adalah aliran penunu perapian, aliran
penunu integral, aliran nafta, aliran wap pencairan, suhu salur keluar gegelung (COT)
dengan penambahanan hasil propilena ke arah keberhasilan etilena. Data dikumpul di
relau stim menggunakan perisian sistem pengurusan maklumat proses (PIMS), buku
proses PI versi 2015. Analisis dijalankan kepada bahan mentah nafta pada kandungan
parafin 57.60 — 70.73 vol % untuk menilai kesan operasi komposisi nafta yang berbeza
terhadap hasil etilena. Hasil propilena, aliran penunu perapian, dan aliran nafta secara
konsisten menunjukkan hubungan signifikan terhadap hasil etilena semasa analisis
tindak balas permukaan dijalankan, dengan julat faktor interaksi masing-masing dalam
-10.07 hingga 192.3, -0.001698 hingga 0.01938, dan -2.383 hingga 820. Model akhir
berjaya diwujudkan dalam bentuk model persamaan kuadratik dengan interaksi 2 hala
pada kandungan parafin tinggi, dan hubungan linear pada kandungan parafin rendah
selepas pengesahan model dijalankan melalui plot kebarangkalian, plot serakan, dan
ujian hipotesis Mann-Whitney. Hasil etilena maksimum yang dijana daripada tindak
balas pengoptimum diperhatikan tidak sama pada kadar 31.46 — 34.97 % untuk
kandungan parafin dalam nafta yang berbeza, dengan bacaan tertinggi dicatatkan oleh
nafta yang mempunyai kandungan parafin tertinggi. Hasil terbaik etilena pada
kandungan parafin tertinggi iaitu 70.73 vol % dengan mengambil kira kos pengeluaran
dikenal pasti pada kadar 34.41 — 34.97 %, menggunakan julat proses yang disyorkan
pada 12.22 — 12.25 % hasil propilena, 11033.90 — 11816.40 kg/j aliran penunu
perapian, 66.67 — 67.05 t/j aliran nafta dan 816.38 °C COT. Adalah disyorkan kepada
loji berskala besar lain untuk menggunakan metodologi yang telah terbukti berjaya

dalam kajian ini, untuk pemantauan dan pengoptimuman proses.
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CHAPTER 1

INTRODUCTION

1.1 Preface

Olefins are unsaturated hydrocarbons comprised of a single double bond with
a chemical formula of CyH2n. They are one of the most important chemicals in the
petrochemical industry that form the basis for most of the essential applications such
as pharmaceuticals, insulation, plastic, cosmetics product, and synthetic fiber (Bender,
2014; Fakhroleslam & Sadrameli, 2020; Rahimi & Karimzadeh, 2011; Sadrameli,
2015, 2016; Zhu et al., 2017).

Olefin plants utilizing steam cracking in the steam cracker furnace are often
defined as the core of the petrochemical industry (Fan et al., 2015; Nikolaidis et al.,
2018). Its plant performance is important in indicating the development of the
chemical industry in the country and region (Gong et al., 2017) due to its significant

contribution to the industry.

Ethylene and propylene are examples of the most important olefins produced
widely in the olefin plants to meet the demands in the petrochemical industry. Their
yield monitoring from the steam cracker furnace is therefore essential as their values
translate to the profit generation and sustainability of the olefin plant, especially to the
steam cracker furnace performance (Diaz & Bandoni, 1996; Gholami et al., 2021;
Khor et al., 2014; Lashkajani et al., 2016; Leo et al., 2018; Luo et al., 2015, Petracci
et al., 1993; Ruckaert et al., 1978).

Previous studies had been established to utilize various process simulations to
improve the olefins' yield (Geng et al., 2016; Leo et al., 2018; Song & Tang, 2018; Yu
et al., 2018). These simulation studies were successfully developed and significantly

improve the olefins’ yield by controlling various controlled variables in the olefin



process. The effort to enhance the olefin process continues, targeting various operating
parameters for steam cracking utilizing gaseous and liquid feedstocks. Most of the
studies were carried out using olefin simulation software, with some being verified at

the lab or small pilot plant.

Besides the well-utilized simulation software for olefin process evaluation and
improvement, there is also a bright prospect to utilize statistical software that was
proven robust such as Minitab (Arminian & Ozgur, 2020; Martin & Roberts, 1996;
Ozgur, 2019), Stata (Fuad et al., 2015; Shim et al., 2016), SSPS (Cuesta-Lozano et al.,
2020; Ozgur, 2019; Sahud Alotaibi, 2020), SAS (Gunst, 2012; Ozgur, 2019; Sullivan
& Greenland, 2012), and GraphPad Prism (Mavrevski et al., 2018; Mitteer et al., 2019)
as they seem more practical to be practiced by Operation personnel compared to the
complex and expensive simulation software equipped by Olefin Licensors that come
with a high price and restricted access to safeguard the proprietary design knowledge

by Olefin Licensors.

ABB Lummus, KTI-Technip, Linde AG (Pyrocrack), Stone and Webster, M.W.
Kellogg (Brayden et al., 2008; Sadrameli, 2015), and Sinopec (Pu & Shi, 2013; Wang
et al., 2021) are examples of the established Olefin Licensors which having mature,
reliable, and proven olefin technologies. There are also various available simulation
software from Olefins Licensors and simulation companies that is currently available
such as SPYRO (Dente et al., 1979; Van Goethem et al., 2001), SHAHAB (Toufighi
et al., 2004), CRACKER (Joo et al., 2000; Joo & Park, 2001), CHEMKIN (Kee et al.,
2006; Reyniers et al., 2017; Van Cauwenberge et al., 2017) and CRACKSIM
(Hillewaert et al., 1988; Van Geem et al., 2008; Willems & Froment, 1988).

Surface response analysis is an example of established mathematical and
statistical approaches used for modeling and analyzing a process (Haladu et al., 2022;
Montgomery, 2017) that may utilize the available statistical software in the market. In
surface response analysis, the response of interest is affected by the number of
variables (Braimah et al., 2016) in multi-relations. The recent studies conducted for
various normal type furnaces utilizing surface response analysis (Ganesh et al., 2018;

Sun, Yang, et al., 2016; Sun, Zhang, et al., 2016) had also successfully improved the



related process. However, the surface response implementation towards the ethylene
yield from special type furnaces, such as steam cracker furnace in the actual fluctuating

large scale olefin plant with non-normal data, is not found in the literature.

This study was conducted with a focus on ethylene yield at the newly
commissioned olefin plant with the design capacity to produce 1,100 KTA of polymer
grade ethylene from the steam cracker furnace, Short Residence Time (SRT) VII type.
The feedstock used in the studied plant is a straight run naphtha (SRN) from the
upstream plant and is cracked in the SRT VII with the operating tube metal temperature
(TMT) of 1,050 °C - 1,180 °C. Conducting the study in actual olefin plant conditions
is challenging, resulting from various process fluctuations (Feli et al., 2017; Lin et al .,
2021; Zakria, 2018; Zakria et al., 2016) and variations in the upstream process,
downstream readiness, utility shortage, and frequent changes in the feedstock
compositions. Figure 1.1 shows the configuration of the SRT VII furnace with its

support auxiliaries at the studied plant.
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Figure 1.1 Configuration of SRT VII in the studied plant



This study is essential as a baseline and provides the guidelines to the
Operations personnel in the actual olefin plant to systematically monitor and improve
the ethylene yield. It adopts practical statistical software from both academic and
industrial perspectives, providing a reliable alternative to the simulation software

oftered by Olefin Licensors.

1.2 Problem Statement

Surface response analysis is the established statistical multi-response analysis
proven successful in improving the process (Ganesh et al., 2018; Sun, Yang, et al,,
2016; Sun, Zhang, et al., 2016). However, it is not widely discussed at the large scale
olefin process as the olefin plant often relies on the Olefin Licensors to run their
proprietary simulation software should there is any process upset. This causes process
troubleshooting and evaluation to become longer and more challenging, especially for
the fluctuating process with non-normal data that is frequently observed at the large
scale olefin plant (Feli et al., 2017; Lin et al., 2021; Zakria, 2018; Zakria et al., 2016).
No surface response analysis study was found from the literature on the steam cracker
furnace in the large scale olefin plants to find various variables' significant and
interaction factors towards the ethylene yield focusing on non-normal data from
fluctuating plant conditions. Besides, the output provided from Olefins Licensor’s
simulation software is in the form of a few operating cases which require further
interpretation, without a specific linear or quadratic equation model with coefficient
factors that can directly correlate the relationship of controlling variables for faster
decision by Operations personnel. In addition, due to the dynamics of naphtha
feedstock compositions in the olefin plant, a fast but reliable analysis tool to handle
the evaluation of different naphtha feedstock compositions, especially on the paraffins
content towards ethylene yield, is also required. Furthermore, previous studies on
improving the olefins process mostly focused on increasing the olefin yield (Berreni
& Wang, 2011; Khor et al., 2014; Riverol & Pilipovik, 2007; Song & Tang, 2018) via
increasing the Coil Outlet Temperature (COT) with less focus to the operating cost at
the large scale application. However, operating a large scale steam cracker furnace at

the highest COT is impractical where it may cause a higher fuel gas consumption and,



therefore largely increase the production cost. The practical guideline to be established
for Operations personnel at the large scale olefin plant to monitor and improve the

ethylene yield effectively and economically.

1.3 Objective of Study

This study focuses on evaluating the ethylene yield from steam cracking using
naphtha as a feedstock at the actual plant condition with various process fluctuations.
The study is conducted at the newly commissioned steam cracker furnace, SRT VII

type, with the objectives as follows:

1) To analyze the significance and interaction factors for the controlled

variables in the SRT VII furnace.

i1) To establish the linear or quadratic equation model with two-way
interactions between significant variables for the ethylene yield from

the actual fluctuating plant condition using surface response analysis.

i) To investigate the impact of operating the SRT VII furnace at different

naphtha feedstock compositions towards ethylene yield.

v) To evaluate the process condition in achieving the best ethylene yield
with consideration to the production cost through the proposed

operating parameters in Response Optimizer.

1.4 Scope of Study

The scope of study mainly focuses on developing the ethylene yield model
using surface response analysis at one dedicated SRT VII furnace in the studied plant.

The study also will cover the following scopes:



iii)

Analysis of the significance and interaction factors for the selected
operating variables towards the ethylene yield. The process range for
data analysis was limited to the actual plant operating condition for the
studied variables during the study duration with hearth burner flow
(10.08 — 12.19 t/hr), integral burner flow (0.61 — 0.74 t/hr), dilution
steam flow (40.59 — 40.79 t/hr), naphtha feed flow (61.33 — 72.89 t/hr),
COT (809.27 — 816.38 °C) and propylene yield (10.63 — 12.25 %). The
analysis proceeded regardless of the non-normal data was extracted
from PI Process Book to represent the actual large scale operating plant
condition using the Box-cox data transformation approach throughout

the data analysis.

Establishment of final equation model based on the linear or quadratic
equation model for the ethylene yield. The data validation for the final
model utilized the existing plant data used for the analysis and also the
new data. For existing data, the validation covered a full range of
ethylene yield using Probability Plot of residuals and Scatterplot with
the support of Mann-Whitney hypothesis test for actual versus
predicted ethylene yield. For model validation using the new data, the
analysis is limited to only 1.5 days (36 hours) of actual plant data,
established after the surface response analysis was completed. This was
due to the studied SRT VII limitation resulting from coke continuous
built-up in the coils which may interfere on the validation of the

established model.

Investigation of ethylene yield from different naphtha feedstock
compositions at 3 cases based on the main component, which was
paraffins, ranging from 57.6 — 70.7 vol %. Only paratfins content was
studied for comparison as this study did not intend to evaluate the full
aspect of naphtha feedstock composition towards ethylene yield. The
analysis of the relationship between identified significant variables
towards the ethylene yield was presented using the available graphical

tools in Minitab, which are Interaction Plot, Surface Plot, and Response



Optimizer. In this step, the maximized ethylene yield comparison
between these cases was established using Response Optimizer without

considering the production cost.

v) Evaluation of ethylene yield considering the production cost, limited to
the proposed operating conditions in Response Optimizer. The actual
costs for the significant variables were inserted into the evaluation table
and calculated based on the previously validated final equation model
to see the impact of the production cost from the identified significant
variables on the ethylene yield. The range of most profitable process
conditions at the studied SRT VII was determined from the evaluation
table, limited to the identified significant variables in the validated final

equation model.

1.5  Significance of Study

Analyzing the non-normal process data is practical to be applied at the large
scale olefin plant due to frequent process fluctuation (Feli et al., 2017; Lin et al., 2021;
Zakria, 2018; Zakria et al., 2016) observed at the steam cracker furnace, such as SRT
VIL It will also significantly reduce the time from excessive data clearance, which is
not practical to be conducted due to time-consuming. Besides, deleting the vast non-
normal data to make the data normal may also unnecessarily remove the essential
actual process variability at the actual plant condition. Minitab software version 21 can
run the analysis to find the significance and interaction factors of the studied variables
in the SRT VII directly by transforming the non-normal data using the Box-cox
transformation approach (Minitab, 2022).

Besides, the established equation model using surface response analysis will
show the impact of each significant variable in the form of the coefficient factors on
the linear or quadratic equation model. The coefficient factors on this equation model
may guide Operations personnel to focus on which controlled variables to be given

closer attention to in generating a better ethylene yield. Besides, the capability of



surface response analysis in Minitab to establish the multiple response relationships in
the form of the equation model is practical and may help Operations personnel to act
fast and avoid unnecessary opportunities lost for the studied plant compared to waiting

for the response from Olefins’ Licensor on their proprietary simulation result.

Surface response analysis may also investigate the ethylene yield under various
conditions, including the different paraffins content in naphtha feedstock using a large
amount of data. This flexibility ensures various conditions at the studied steam cracker
furnace can be analyzed using the surface response analysis without the need for
integration with other methods. Besides, the graphical tools in the Minitab, such as
Interaction Plot, Surface Plot, and Response Optimizer, are effective in evaluating the
impact of operating the steam cracker furnace at different naphtha feedstock
compositions towards the ethylene yield. These graphical representations are also
practical for Operation personnel to directly assess the effect of each studied naphtha
composition towards the ethylene yield through the graphical representation without

the complex evaluation through the calculations and additional detailed analysis.

The evaluation of ethylene yield with consideration to the production cost is
important in the actual plant condition. Achieving the maximum olefins yield is
usually the goal for any operating olefin plant, as the higher olefins yield typically
translates to higher profit generation (Diaz & Bandoni, 1996; Gholami et al., 2021,
Khor et al., 2014; Lashkajani et al., 2016; Leo et al., 2018; Luo et al., 2015, Petracci
et al., 1993; Ruckaert et al., 1978). The actual large scale olefin plant depends on
various operating parameters to remain profitable. Therefore, the operational process
evaluation based on profit generation is essential. This study also will evaluate the
ethylene yield with consideration to the production cost from the established
significant variables using the validated final equation model. This approach is
necessary to achieve the best olefins’ yield with consideration to the production cost

to keep a healthy financial flow to the studied plant.



1.6 Thesis Qutline

The thesis is organized into six chapters. Chapter 1 starts with a brief
introduction about the olefins, information on the steam cracker furnace, and the
background of the surface response analysis. Besides, this chapter also presents the
problem statement, objectives, scope of work, and significance of the study. Chapter
2 discusses the detailed literature taken from previous, current, and future works in
improving ethylene yield. This chapter presents the information on the olefins
production, reaction mechanism, steam cracker furnace, statistical analysis focusing
on surface response, and previous olefin yield improvement studies. Chapter 3
describes the detailed research methodology, starting from selecting controlled
variables, data transformation from non-normal data, and methods used to illustrate
the impact of the process on the production cost. This chapter also discusses the basic
procedure for data analysis using surface response analysis with the validation steps
for the final equation model. Chapter 4 discusses the detailed analysis results of the
study's significant factors and equation model establishment. This chapter critically
explains one-by-one variable elimination using surface response analysis for all
studied cases: Case 1, Case 2, and Case 3. Chapter 5 focuses on the ethylene yield
relationship from the final equation model validated in Chapter 4. It explains the
investigation findings on the relationship between the significance variables assisted
by graphical tools in Minitab for the maximized and optimized condition (further
evaluation considering production cost). Finally, Chapter 6 summarizes the research
conclusion and responds to all the objectives planned for the study. It also provides
recommendations for future studies on ethylene yield valuation at the end of the

chapter.
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