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A B S T R A C T   

Inconsistencies of the single multi-criteria decision making (SMCD) methods in criteria weight assessment make 
them unreliable and have led to the wrong siting of industrial parks, which are often abandoned as brownfields 
that emit GHG. Eco-industrial parks (EIPs) are replacing brownfields but require robust decision-making tools to 
weigh and rank suitable locations for industry clusters’ synergies. Integrated multi-criteria decision making 
(IMCDM) to address the weaknesses and strengthen the advantages of SMCDM methods, and a model to overlay 
criteria weights and spatial data easily and accurately were developed. The spatial criteria data for 2009 and 
2019 from Tanjung Langsat Industrial Area were collected and prepared by GIS to test the SMCDM and IMCMD 
consistency weighting and the model resilience. The SMCDM (AHP, ANP and F-AHP) and the IMCDM weights 
with the 2009 criteria data identified the entire water bodies around the brownfield as suitable sites, making 
them inconsistent. The 2019 data with the SMCDM weights identified tiny sites as best, also making them 
inconsistent. The integrated hierarchy network fuzzy analytic process (HN-FAP) and the hierarchy network 
analytic process (HNAP) with the 2019 criteria data identified part of the water bodies as suitable making it 
inconsistent. The hierarchy fuzzy analytic process (H-FAP) and the network fuzzy hierarchy analytic process 
(NFh-AP) identified larger suitable sites without overlaps making them consistent algorithms. The H-FAP and 
NFh-AP procedures eliminate the weaknesses and consolidate the strengths, giving optimally consistent criteria 
weights. The two algorithms’ consistency and the model efficiency can use different criteria weights and spatial 
data inputs from elsewhere for 4IR-driven EIP modelling to help brownfield-EIP stakeholders. Future research 
would address the reverse ranking of MCDM methods when alternatives are added or removed.   

1. Introduction 

Although industrialization is the greatest and most important eco-
nomic and technological progress in human history. It is not without its 
drawbacks; unsuitable site selection is one that led to industrial aban-
donment and/or underutilisation. Traditional industries started during 
the pre-industrial period, which were carried out on a small scale and in 
small workshops located in cities (Moreau et al., 2017). Spills, waste, 
and noise pollution were prominent (Sarmiento and Vargas-Berrones, 
2018), therefore, the industries were placed in an area – Industrial 
Park (IP), outside the city (Beers et al., 2019). IPs were examined using 
the Environmental Impact Assessment (EIA), which is a common 

practice of evaluating and identifying the potential effects of the project 
sites (Kolhoff et al., 2018). The EIA is reported to be inaccurate in 
assessment due to dependents, independents, manual operations (Singh 
et al., 2018), and incomplete acquisition of variables associated with 
industrial locations (Luthra et al., 2020). This led to unsuitable IP lo-
cations and hence the emergence of brownfield industrial parks (BIP). 

BIPs are partially inhabited, abandoned or underutilised IPs found all 
over the world (Rahmat et al., 2017). BIPs occurred due to insufficient 
land for industries expansion, poor transportation infrastructure (Bansal 
et al., 2017), no industry clusters, no established power source, lack of 
utility and amenities, waste and wastewater management challenges, 
material and energy inefficiencies, and linear production process (Das 
and Gupta, 2021). As a result, greenhouse gases (GHG) are generated 
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that pollute the environment, risk human health, destroy flora and 
fauna, trigger global warming and contribute to climate change (Avtar 
et al., 2019). Since BIP emit carbon dioxide, methane, and nitrous ox-
ides, which contribute to 28% of global GHG emissions (IPCC, 2019), 
there is the need to convert the brownfields into Eco-Industrial Parks 
(EIPs) for industrial symbiosis (UNIDO, WBG and GIZ, 2021). The 
anthropogenic carbon emissions from industrial zones and fossil fuel 
combustion release GHG into the atmosphere which agitates the air, and 
the air becomes heated on absorbing it causing climate change and 
global warming. The Keeling curve is used to find out the level of carbon 
in the air in parts per million by volume (ppmv) (Keeling, 1960). The 
carbon footprint in an industrial area can also be measured using the 
carbon application (Apps) calculator and carbon calculator which is 
easy and fast. Many measurements are conducted each year at Mauna 
Loa, Hawaii, to calculate the ppmv of carbon in the atmosphere 
(Showstack, 2013). When the Industrial Revolution began, the atmo-
spheric carbon level was at 270 ppmv (Keeling, 1960), and it rose to an 
average of 310 ppmv between 1958 and 2013 (Showstack, 2013). By 
2025, the level was projected to be around 418.81 ppmv (Showstack, 
2013). The mission of EIP is to bring together industries in a strategic 
location for a circular economy (UNIDO, WBG and GIZ, 2021), which is 
a new model that strives to systematically emulate natural symbiotic 
concepts of reducing, reusing, and recycling resources for cleaner 
manufacturing. With the launch of the EIP concept, water bodies, 
available land, developed infrastructure, existing industries, proximity 
to urban settlement, and favourable climatic conditions amongst others 
are examined and required for its location (Shine et al., 2020). 

The industrial site criteria weighting and ranking have a significant 
impact on the selection of suitable locations (Dos-Santos et al., 2019), 
hence strong multi-criteria decision-making (MCDM) and geospatial 
technologies are required. It is estimated that around 80% of the data 
used for EIP site selection decision-making is spatial and the non-spatial 
is 20% (Das and Gupta, 2021). As a result, the EIP site selection becomes 
an intricate spatial multi-criteria study. The multi-criteria spatial 
complexity demands the use of decision support systems (DSS) (Neves 
et al., 2020) such as geographic information systems (GIS) and inte-
grated multi-criteria decision-making (IMCDM) technologies. GIS is “a 
modern software used to obtain spatial criteria, processes, assesses, 
stores, and overlays the spatial data positioned on the earth for site 
suitability selection of a specific project” (Asadabadi et al., 2019). The 
data is used to analyze, model, simulate (Yuen, 2012) and imagine 
location, human environments, and societies on the planet (Avtar et al., 
2019). Multi-criteria decision-making (MCDM) is a technique for eval-
uating and ranking criteria weights for site suitability decisions (Monsef 
and Smith, 2019). 

The wrong choice of locations occurs mostly due to the use of single 

traditional (Valenzuela-Venegas et al., 2020) or weak assessment pro-
cedures (Luthra et al., 2020) that struggle with spatial and consistent 
decision-making abilities. The concept of criteria/attribute interdepen-
dence has not been addressed by single MCDM methods such as AHP 
(Saaty, 1977), F-AHP (Buckley, 1985), WLC (Malczewski, 1996), SAW 
(Fishburn, 1968), TOPSIS (Hwang and Yoon, 1981), Best-Worst method 
(Rezaei, 2016), and DEMATEL (Gabus and Fontela, 1973), which be-
comes the weakness of SMCDM techniques and can lead to in-
consistencies between criteria weighting and ranking (Penadés-Plà 
et al., 2016). Many researchers have reported that single multi-criteria 
decision-making (SMCDM) techniques used for site criteria weight 
assessment have some strengths (Chang et al., 2015) but are outweighed 
by the consistency problems (Donni et al., 2017), which resulted in the 
incorrect industrial site suitability selections (Valenzuela-Venegas et al., 
2020). For example, the analytic hierarchy process (AHP) is good for 
making decisions with independent criteria (Saaty, 1977), but has been 
significantly criticised for its disadvantage in uncertainty evaluation 
about the criteria level of preference (Paul, 2015). AHP is often com-
bined with other MADM tools because many do not have internal pro-
cedures to determine criteria weights. The Technique for order 
preference by similarity to the ideal solution (TOPSIS) has been criti-
cised for not considering Euclidean distance and link criteria (Buckley, 
1985). Fuzzy-analytical hierarchy process (F-AHP) has also been criti-
cised by Liu and Ma (2021) for not linking criteria, but considers the 
uncertainty of factors. Fuzzy is the complexity of variables or criteria in 
an uncertain environment in which the prioritization and selection of 
alternatives or projects are discerned by decision-making (Zadeh, 1975). 
Analytic network process (ANP) interlinks criteria (Saaty, 1977), and it 
does not eliminate uncertainty in the selection of criteria (Tavana et al., 
2017). Approximations by the weighted linear combination (WLC) have 
been found to not always have precise and realistic values in Euclidean 
distances (Moses et al., 2018). The simple additive weighting (SAW) 
only finds the weighted sum of each criterion, but cannot verify weight 
stability (MacCrimon, 1968). 

2. Literature review 

Inconsistencies among SMCDM methods in the assessment of criteria 
weights for site suitability selection can be grouped into three. First, 
there is the tendency to exceed the consistency threshold of 10% when 
more than three criteria are used (Chang and Lin, 2015). Secondly, the 
SMCDM methods do not manage decision problems when there may be 
uncertainty about the criteria level of preference (Tavana et al., 2017). 
Finally, the idea of criteria or attributes independence (no union) except 
ANP becomes a weakness and leads to inconsistencies between decision 
and ranking criteria (Penadés-Plà et al., 2016). The use of SMCDM 
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techniques has recorded inconsistencies in criteria weighting (Seyed-
mohammadi et al., 2018), leading to wrong choices of industrial sites 
and suboptimal decisions in the selection of industrial parks. For 
example, Yousefi et al. (2016) used AHP and investigated criteria 
weights for EIP site selection in Birjand city, Iran, where an indistinct 
suitable site was obtained. When WLC was used, results showed a wide 
criteria weights which may produce an unreliable industrial site. 
Ahmadipari et al. (2018) used Delphi and FAHP to select an industrial 
site in Markazi province, Iran, the Delphi results were dismissed due to a 
wide range of extents in weight values, and the FAHP weight values 
were relatively fair. Naghdi et al. (2017) used TOPSIS, SAW, and WLC to 
examine the industrial site’s quantitative suitability and proximity to 
faults, groundwater, communities, protected areas, and power trans-
mission lines in East Azerbaijan province, Iran. The outcomes of the 
three methods were inconsistent due to the number of criteria involved. 
It has also been noted that many studies that used SMCDM methods did 
not apply sensitivity analysis (SA) to evaluate the stability of the 
technique. 

In an attempt to solve the inconsistency of the SMCDM methods, 
Saaty (1977) introduced the eigenvalue in AHP to avoid the consistency 
ratio exceeding 10%, which examined the weight distribution consis-
tency of various criteria to have close values to the threshold. Chang 
et al. (2015) later criticised this suggestion and recommended that to 
rectify this shortcoming is to solve the AHP inconsistency with the 
concept of multi-attribute utility theory (MAUT). Paul (2015) argued 
that MAUT methods cannot be used to select criteria in the criteria hi-
erarchy. MAUT is a bottom-up or alternative/attribute focused approach 
instead of a criterion-propelled method (Kubler et al., 2016). According 
to Barzilai & Golany (1994), the inconsistency problem in SMCDM is 
caused by the additive aggregation rule, and no normalisation can 
prevent it except the weighted-geometric-mean (Chang, 1996). Ac-
cording to Buede & Maxwell (1995), employing the geometric mean 
does not reduce inconsistency; rather, normalising the ratio scale may 
solve it. Farkas et al. (2004) introduced linear algebra by establishing 
intervals on a 3 × 3 matrix and proposed a graphical tool that, according 
to them, boosted the level of certainty in the outcomes but cannot 
accommodate huge criteria. Rodríguez et al. (2013) used the technique 
and reported it to be inaccurate. Belton & Gear (1983) noticed the 
criteria rank reversal (RR) problem in SMCDM after presenting a new 
similar alternative. To remove the RR, a normalisation method known as 
reference-AHP (r-AHP) was devised (Belton and Gear, 1983). Following 
that, Schenkerman (1994) said that r-AHP may only be utilised for 
normalisation to maximum and minimum entry, as well as linking pins 
to avoid RR when the criteria are quantitative. Saaty (1987) discovered 
the RR’s resolution by modifying or expanding the set of alternatives. RR 
in the SMCDM is produced by changes in normalised attribute values in 
the SAW method (Chen and Chen, 2007), whereas changes in 
cross-efficiency cause it in the data envelopment analysis (DEA) method 
(Chen et al., 2017). The vector normalisation approach causes it in 
TOPSIS (Kong, 2011). García-Cascales & Lamata (2012) presented two 
hypothetical solutions and stated that they are insufficient to solve the 
RR problem. According to Ceballos et al. (2016), the weight assessment 
inconsistency does not only occur in AHP, TOPSIS, SAW, ANP, F-AHP, 
and WLC, it exists in all SMCDM methods. It also occurs in 
multi-objective optimization ratio analysis (MOORA) (Pramanik, 2016), 
and Viekriterijumsko Kompromisno Rangiranje (VIKOR), (Opricovic, 
1998). There are suggestions that the multiplicative geometric ratio 
technique (Chumaidiyah et al., 2020) or integrating the single methods 
(Fang and Partovi, 2021) may resolve the inconsistencies. 

Integrating the single traditional methods is worth trying which may 
overcome the inconsistencies to eliminate the limitations and enhance 
their strengths. Traditional SMCDM approaches from different group-
ings of scoring, distance-based, pairwise comparison, outranking, util-
ity, and uncertainty (fuzzy) assessment methods (Chumaidiyah et al., 
2020) have specific assessment goals which when combined may 
effectively and objectively provide consistent criteria and attribute 

eigenvectors for industrial site suitability selection (Ahmed et al., 2020). 
Brownfield industrial parks do not attract foreign direct investment 

(FDI) to drive industrial dynamics because of the absence of develop-
mental space that would encourage industry clustering and carbon 
emission control (Torabi-Kaveh et al., 2016). Industrial site selection is a 
strategic problem-solving process and the first step in the development 
of a successful EIP (Taye et al., 2019). The conversion of brownfield 
industrial parks into EIP will eventually drive EIP growth as the call for 
industrial symbiosis to control carbon emissions has intensified 
(Kucukvar et al., 2018). In Vietnam, for example, UNIDO has revolu-
tionised four brownfield industrial zones (IZ) into EIPs (Yap et al., 
2019). Research and development of IMCDM methods to produce robust 
algorithms for the evaluation of consistent criterion weights and ranking 
for the selection of suitable EIP locations are required to avoid the 
neglect or underutilisation of industrial parks. 

The aim of the research is to develop an integrated multi-criteria 
decision-making (IMCDM) algorithm and an MCDM-GIS model that 
can assess consistent criteria weights for the selection of brownfields to 
convert to EIP. To accomplish this, the SMCDM methods (AHP, ANP, and 
F-AHP) were used to assess and established criteria weight importance. 
The outcomes were integrated using a proposed procedure providing the 
IMCDM algorithm, which also was used to assess the criteria weighting, 
sensitivity analysis and standard deviations of the algorithm. To test the 
consistency of the IMCDM and the efficiency of the MCDM-GIS, a ten- 
year interval spatial criterion from a brownfield industrial site was 
collected, screened by the Boolean logic and the GIS prepared the 
Euclidean distance and reclassified raster layers. PLANMalaysia pro-
vided the spatial criteria of the land use land cover (LULC) layers. The 
weighted overlay analyses were performed in the model where EIP site 
suitability layers were generated and analysed. 

The choice of AHP, ANP, and F-AHP traditional methods in this study 
are the individual’s hierarchical, networking, and triangular fuzzy 
numbers (TFNs), also the pairwise comparison and fuzzy groups to 
which they belong. The AHP is a hierarchical approach that connects 
criteria from one level down the structure to the attributes or alterna-
tives (Saaty, 1977). ANP employs an interdependent/dependent 
network to generate interactions of criteria between the same criterion, 
and/or other criteria in a different loop, as well as criteria between at-
tributes (Saaty, 1977). To facilitate uncertainty defuzzification, the 
F-AHP uses linguistic variables as TFNs with lower (l), middle (m), and 
upper (u) weight values (Zadeh, 1975) incorporating wider weight 
values assigned to the criteria. These techniques with different specific 
goals when integrated may provide a mixed algorithm for the assess-
ment of consistent criteria weights for the selection of a suitable EIP 
location. 

3. Method 

3.1. Apparatus 

The tools employed in this study are Microsoft (MS) Excel for AHP 
and F-AHP criteria weights evaluation, and the Octave GNU 6.1 for ANP 
criteria weights assessments. The EarthExplorer free software, 
Kompsat–3 imager, ArcMap (GIS) 10.4 software and its extensions – 
Boolean logic, weighted overlay analysis (WOA), raster map calculator, 
and ModelBuilder were used. 

3.2. Site, data collection and preparation 

The macro location for the collection of the brownfield spatial 
criteria was Johor Bahru, Johor, Malaysia. The microsite was the Tan-
jung Langsat Industrial Area (TLIA), the specific community of interest 
where the brownfield is located with potential suitable factors for EIP. 

The download of the spatial criteria layer of roads, existing in-
dustries, water bodies and residential areas of 2009 and 2019 of the 
Tanjung Langsat Industrial Area used the GIS and prepared shapefiles (. 
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shp). The Shuttle Radar Topography Mission (SRTM) and Operational 
Land Imager (OLI) Landsat downloaded the slope and the land surface 
temperature layers in tagged image files (.tif) formats. The Landsat-7 
Enhanced Thematic Mapper (ETM) and Kompsat-3 Imager obtained 
the spatial data layer of 2009 and 2019 for the land use land cover 
through PLANMalaysia. The Boolean logic screened and selected the 
criteria (factors), where 1is acceptable and 0 is not acceptable, and the 
former gave the criteria for the assessment of the suitability of TLIA for 
EIP site selection. The Euclidean distance layers of roads, existing in-
dustries, water bodies, and residential areas were prepared. The GIS 
reclassified the six criteria, including slope and land surface temperature 
raster layers, where close or farther but preferred factors obtained 5 and 
allocated 1 to farther or close but undesired. The output cell used 30 m 
for the criteria raster layers. 

3.3. The analytic hierarchy process criteria weights assessment 

The AHP hierarchical structure was constructed into a goal, criteria, 
and alternatives levels. A pairwise comparison matrix was built based on 
the factors in the order of the 6-by-6 matrix. The diagonal elements in 
the matrix were kept at 1, while the triangular matrix above the diagonal 
was used as the decision triangle. The factors in the comparison matrix 
were pairwise and allocated weights according to the Saaty (1977) 1 to 
9-point scale based on their significance. The lower triangular matrix 
was reciprocally filled up and the criteria weights were assessed. The 
total of each column was evaluated and the weight value in each column 
cell was normalised by dividing each of the values in the column cell by 
its column sum using Eq. (1). Equations (1)–(4) were adopted from Saaty 
(1977). The sum of all the outcomes in each column was equal to 1. The 
Priority vector (Pvec) was evaluated by taking the averages of the nor-
malised elements in each row of the matrix and standardizing in which 
its sum was equal to 1. 

wi =
1
n

∑n

j=i

aij
∑p

i aij
(1)  

where ai = 1; if aij = n; then aji = 1/n; i, j = 1, 2, 3, … … …., n. 
n = the number of items being compared or the order of the matrix. 
The consistency ratio (CR) calculated the stability of the weight 

distribution (the possibility that the result is the measure of randomised 
and illogical choice processes) which has two steps: the Eigenvalue 
(λmax) and the consistency index (CI). To calculate for λmax, a new vector 
(Nvec) was obtained by multiplying the corresponding rows of the 
pairwise comparison matrix by the Pvec down the column. Eq. (2) 
calculated the sum of the ratio of all the elements of the weighted 
matrices Nvec to the corresponding Pvec factors 

( Nvec
Pvec

)
. 

λmax

(
1
p

)
∑p

i=1

[∑p
j=1aijwj

wi

]

(2)  

where λmax = the principal or maximum Eigenvalue of the matrix. 
Eq. (3) calculated the CI: 

CI =
λmax − n

n − 1
(3)  

where n = 6, the matrix size. 
Eq. (4) evaluated the CR: 

CR=
CI
RI

(4)  

where CR is the consistency ratio. 
RI is the random index, shown in Table 1 adopted from Saaty (1977) 

that corresponds to the number of criteria in consideration. 
A CR of greater than 10% is not acceptable, which means the eval-

uation needs review. Similarly, a comparison matrix of the alternative 
was created for every criterion and pairwisely assigned weights and 
evaluated. The multiplication of the Pvecs of the goal, the criteria, and 
the alternatives for each criterion obtained the overall Pvec (OPvec). 

3.3.1. Sensitivity analysis 
The sensitivity analysis (SA) was performed using Eq. (5) on all the 

OPvec weights altering them by ±2%, ±3%, and ±5%, which evaluated 
the level of change in the weights in the event of a computation error. If 
the level of change varied greater than ±0.85%, the technique is 
considered unstable; thus, the assigned weights must be readjusted and 
reassessed at the pairwise matrix. 

Wx =(±y% ×W1) + W1 (5)  

where Wx = new weight, y% = percent chosen, and. W1 =

assessed  weight 

3.4. The analytic network process criteria weights assessment 

The OPvec weights of the goal, criteria and the attributes for each 
criterion derived from the AHP pairwise comparison matrix procedure 
were used for ANP weight analysis. The arrangement of the OPvecs in 
the matrix columns formed the supermatrix, a two-dimensional matrix 
of elements by elements. The factors in the supermatrix (or non- 
weighted supermatrix) included all Pvecs for the node, which is the 
parent node in the cluster and may not be stochastic (numbers adding to 
1 or 100%). The transformation of the unweighted supermatrix from the 
matrix of cluster priorities into a column stochastic matrix {>> S = [ ]} 
evaluated inside a GNU Octave 6.1 software. The upload of the outcome 
into a null matrix {S = [ ] (0 x 0)} and RUN produced the weighted 
supermatrix. The weighted supermatrix was raised to the 10th power 
(Lim = Wk = 10; k→∞) (where W = weights) and obtained the limit 
supermatrix. The values remained constant to the limit of the sum of all 
the powers of the matrix, showing a steady state because of the identical 
numerals in the columns. 

The limit supermatrix provided the relative weights of importance 
for every element in the model. All the network’s final priorities were 
standardised [that is, normalising each block (cluster) of the limit 
supermatrix with the associated values of the elements calculated]. This 
step determined the weight values of the criteria by prioritising the 
structure of the entire system. The final priority weights, which 
accounted for component (element) interactions, were extracted from 
the limiting matrix, and the SA was conducted. 

3.5. Fuzzy-analytic hierarchy process criteria weights evaluation 

The fuzzy and AHP processes used the same structure for the criteria 
and attributes. Unlike the AHP, the F-AHP criterion pairwise comparison 
matrix has three columns, the triangular fuzzy numbers (TFNs) for the 
weight values. The TFN is a ratio of interval values that describes 
ambiguous comparative judgement with the lower value (l), middle 
value (m), and upper value (u), and has the advantage of identifying the 
possibility of various values within this interval. Using the TFNs of l, m, 
and u values, the columns in the right-hand triangle were assigned 
weights. The weight value of 1,1,1 in the diagonal shows the same 

Table 1 
Random index number of criteria.  

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.58  
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elements weighed against each other, while the reciprocal of the cor-
responding column weight in reverse order u, m, l was filled in the lower 
triangle. 

The calculation of the geometric mean used Eq. (6) by taking the 
product of the l, m, u values separately from each criterion in a row and 
raising the outcome to the inverse power of the number of criteria. The 
sum of the geometric ratios was arranged in the l, m, u, and their col-
umns’ total calculated. In ascending order, the outcomes of the re-
ciprocals of the total were arranged. Equations (6)–(9) were adopted 
from Zadeh (1975). 

r̃1 =

(

α̃i1 ⊗ α̃i2 ⊗ α̃i3… ⊗ α̃in

)1
n

(6)  

where ̃αi1 = first fuzzy dimension number; ̃αi2 = second fuzzy dimension 
number; α̃in = nth = fuzzy dimension number; ̃r1 = geometric mean. 

The fuzzy relative weight was evaluated using Eq. (7) where each 
geometric mean in the l, m, u was multiplied by the corresponding 
reciprocal of the sum provided in ascending order. 

w̃1 = r̃1 ⊗ (̃r1 ⊗ r̃2 ⊗ r̃3… ⊗ r̃n)
− 1 (7)  

where: r̃1 = first geometric mean, ̃r2 = second geometric mean, ̃rn = nth 

geometric mean, w̃1 = fuzzy weight. 
The fuzzy relative weights were defuzzified using the centroid rule in 

Eq. (8), and the sum of the defuzzification was a unit value. 

Mi =
li + mi + ui

3
, i = 1, …….., n (8)  

where: Mi = crisp value, l = lower value, m = medium value, and u =
upper value. 

The normalisation was performed using Eq. (9) when the sum of the 
defuzzified values was greater than 1. 

Ni =
Mi

∑n
j=1Mj

, j = 1, ……, n (9)  

where. 
∑n

i=1
N1 = 1, i = 1, ………, n 

In a like manner, the alternatives were also assessed for each crite-
rion, the overall criteria weights of importance were computed, and the 
SA was evaluated. 

3.6. Integration of single multi-criteria decision-making methods 

Due to the consistency constraints of single traditional criteria 
assessment approaches, this study designed an IMCDM algorithms pro-
cedure which is presently required for the consistent spatial criteria 
weighting and ranking for brownfields transformation to EIPs. Eq. (10) 
shows the process by which the overall priority vectors (OPvecs) of the 
methods can be assessed and integrated. Eq. (11) shows the normal-
isation of the IMCDM techniques when the OPvecs were not stochastic. 

ItgOPvec(1,2,3….n) =OPvec(1) + OPvec(2) + OPvec(3) + … + OPvec(n) (10)  

where ItgOPvec = Integrated overall priority vector; 1,2,3…n = SMCDM 
methods. 

OPvec(1); OPvec(2); OPvec(3); OPvec(n) = 1st method; 2nd method; 3rd 
method; nth method. 

normItgOPvec(1,2,3….n) =
ItgOPvec(1,2,3….n)

∑[
ItgOPvec(1,2,3….n)

] (11)  

where normItgOPvec(1,2,3….n) = normalised integrated overall priority 
vectors. 

To measure the consistencies of SMCDM and IMCDM methods 
criteria weights of importance, the standard deviation (SD) as shown in 
Eq. (12) was employed where the distances or spread of criteria weight 

Fig. 1. GIS-MCDM flowsheet.  
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values from the overall averages of a set of criteria were calculated. 

SD=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x − x)2

n − 1

√

(12)  

where SD = standard deviation; x = each value of the weights; X = the 
weights average; n = size of the criteria. 

3.7. Multi-criteria decision-making–geographic information system model 
building 

A ModelBuilder application in the ArcMap 10.4 software accom-
plished the development of the multi-criteria decision-making – 
Geographic information system (MCDM–GIS) model. The geoprocessing 
tools – input, processing, and output were dragged from the catalogue 
pane and emerged circular, rectangular, and circular. The input tools 
collected and accommodated the criteria layers where they were dis-
patched for processing. A drop-down box was created in the input for 
variable model parameters denoted by “P” to allow acceptance of 
additional data layers or values for the model to process. If a change in 
the parameter is required, the tool parameter can be double-clicked and 
change the parameter. The Euclidean distances layers were added to the 
processing tools, and the outputs were connected to the next processing 
tools and added reclassified raster layers. An “extent” tool was created 
and connected to the first processing tools, which are the geographic 
boundaries for displaying GIS information, such as features or rasters 
that a tool would process. The connection of the reclassified raster layers 
to the weighted overlay analysis (WOA) tool, where the weights percent 
importance from the SMCMD and IMCDM approaches, and 2009 and 
2019 spatial criteria data were separately added. A raster calculator 
connected to the output where the LULC layer was added/overlaid, run, 
processed, and generated the EIP suitability layer. 

The flowchart of the entire methodology is depicted in Fig. 1, which 
begins with the identification of brownfield industrial site spatial 
criteria. To evaluate the criteria weights (priority vectors), the single 
methods of AHP, ANP, and F-AHP were adopted, which were then in-
tegrated utilising defined equations that produced the IMCDM, and the 
priority vectors were evaluated. The distances between the priority 
vectors in the SMCDM and IMCDM and the average of the criteria sets 
were calculated using the standard deviation. The model was developed 
using ModelBuilder. The final stage was to verify the consistency and 
efficiency of the SMCDM and IMCDM algorithms’ criteria weights, 
where spatial criteria data for a ten-year interval were collected, 
screened, produced Euclidean distance, and reclassified raster layers. In 
addition, the LULC layers were obtained. Weighted overlay analyses 
(WOA) of the SMCDM and IMCDM weights with the spatial criteria data 
in the model were performed, and the BF-EIP site suitability layers were 
generated and compared. 

4. Significance of criteria and alternatives for eco-industrial 
park site selection 

The criteria and attributes for BF-EIP suitable site selection tech-
niques are based on the principles of industrial symbiosis, resource 
management and efficiency (Okada and Siddharthan, 2007), 
cost-effectiveness, and sharing of infrastructure and utilities to cut costs 
(Ajibade et al., 2019) and industrialization sustainability (Pichs-Ma-
druga et al., 2019). All of which are aimed at reducing pollution and 
increasing productivity. Six spatial criteria for brownfield-EIP site suit-
ability selection are evaluated through the SMCDM, IMCDM and GIS 
processes. The BF-EIP proximity to the available residential areas, 
existing industries, slope, roads, land surface temperature, and water 
bodies strongly support achieving suitable EIP site selection. The envi-
ronmental, economic, social, political, and technical attributes 
strengthen the criteria to achieve the goal. 

4.1. The residential area 

Residential areas accommodate important facilities such as banks, 
telecommunications, electricity, schools, hotels, recreational areas, 
public utilities, hospitals, worship centres, and labour. Azizi et al. (2014) 
emphasised that the proximity of the residential area to the EIP site is 
one of the important criteria requirements. Banks and other financial 
organisations close to EIP provide sufficient capital flow for transactions 
and obtain a supply of investment funds (Barzehkar et al., 2019). 
Research institutions near the EIP site inspire product research, devel-
opment, and cost reduction (Rahmat et al. (2017). It also encourages 
efficiency and sustainability in industrial activities. Close residential 
areas to EIP sites readily and adequately supply both skilled and un-
skilled labour force. The skilled, unskilled, attitude and the educational 
level of the workers near the EIP site determine the labour cost (Noor-
ollahi et al., 2016) and innovations (Babalola, 2018) in the EIP 
operations. 

4.2. Existing industries 

The existence of industries near the BFIP is critical for the exchange 
of a variety of resources, including materials, energy, treated waste-
water, by-products, services, and training. The presence of industrial 
clusters near a potential EIP site connects several separate industry 
clusters to promote factory symbiosis and the expansion of industrial 
operations (Susur et al., 2019). It also resolves resource management 
and pollution problems and produces solutions to abate carbon emis-
sions (Gao et al., 2019). 

4.3. Slopes 

The existence of highly concentrated and steeply gradient slopes 
characterised by hills and undulations close to the EIP site heavily adds 
to the cost of building and road construction for transportation. The EIP 
site terrain requires to be flat or the concentration and gradient of slopes 
to be between 1 and 12% (Reisi et al., 2018). 

4.4. Roads network 

Accessible and adequate road networks for transportation near the 
BF-EIP site are critical. Both major and internal roads enable vehicles 
and goods transportation to and from nearby locations and within the 
industry (Yang et al., 2008). This significantly reduces transportation 
costs which boosts the economic aspect of the industries. Muhsin et al. 
(2018) emphasised the need of having numerous transportation systems 
such as railways and airports close to the BF-EIP to have the lowest 
transportation costs and optimal conditions. 

4.5. Land surface temperature 

The land surface temperature is a crucial parameter for determining 
where an EIP should be located (Rizzo et al., 2015). EIP sites under 
favourable climatic conditions plan for solar, wind, and hydropower 
renewable energy (RE) generation to reduce the BF-EIP’s energy pro-
duction from fossil fuels, control environmental pollution and for in-
dustrial sustainability (Rizzo et al., 2015). BF-EIP sites, according to 
Stojcic et al. (2019), should be in locations with temperatures ranging 
from 20 ◦C to 30 ◦C, considerable annual rainfall ranging from 1778 mm 
to 3302 mm, and wind speeds reaching from 12 km/h to 14 km/h to 
generate cheap renewable power. 

4.6. Water bodies 

The presence of water bodies such as oceans, rivers, and streams 
close to the BF-EIP site link countries for easy transportation with bulk 
raw materials and finished goods (Valenzuela-Venegas et al., 2020). A 
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water body is also required by the utility organisations that treat the 
water required for domestic use, industrial cleaning and machinery 
cooling (Jangid et al., 2016). 

4.7. The attributes 

The proximity of raw materials and supply stability, as well as 
product competitiveness, are economic attributes considerations for 
selecting a suitable EIP site. According to Akther et al. (2019), the EIP’s 
continual supply of raw materials is heavily reliant on a readily available 
variety of transportation systems. The proximity of residential areas to 
the EIP site provides adequate labour, which is a significant social and 
economic benefit. A technical aspect of the selection of an ideal EIP 
location is the topography of the land for the industrial site (Erdogan 
et al., 2019). Industrial synergy, wastewater treatment and recycling, 
zero waste compliance, and RE generation all contribute to environ-
mental protection for industrial sustainability (Fang and Partovi, 2021). 
Any country or region that is politically unpredictable, regardless of 
whether it has good sites for EIP, has a detrimental impact on the 
prospect of industrial development. According to Ghobadi and Ahma-
dipari (2018), for EIP to flourish, the host country of a viable EIP site 
must be politically stable. 

4.8. The land use land cover 

The LULC around the EIP site usually depicts restricted areas, vacant 
land, and other uses. Industrial expansion is hampered by restricted 
areas near the BFIP. According to Kamali et al. (2017), given potential 

development expectations, the distance between BF-EIP and any 
restricted areas such as mining camps, archaeological sites, and faults 
should be considerable. This will keep BF-EIP sites far from ground vi-
brations and sinking (Erdogan et al., 2019). The low cost and the 
abundance of land create opportunities for potential industrial expan-
sion. The availability and affordability of land, as well as its use, are 
important factors to consider when selecting an EIP site (Maurice, 
2015). 

5. Results and discussion 

5.1. Study area 

The macro location (Malaysia–Johor–Johor Bahru) of the study area 
is shown in Fig. 2(a) and (b), while Fig. 2(c) shows the micro-location, 
Tanjung Langsat Industrial Area (TLIA). It is around 8 km from the 
Pasir Gudang Industrial Area (Kanniah et al., 2015). The climate is 
tropical, with recorded average monthly temperatures of 27.10 ◦C in 
June and 25.8 ◦C in January, and a yearly average rainfall of 2689 mm 
(Kanniah et al., 2015). Agriculture/forestry/fishery, palm oil-related, 
petrochemical, chemicals, oil and gas, steel fabrication, 
marine-related, rocks and minerals, construction, and services are pop-
ular in the area (Zailan et al., 2020). 

5.2. Euclidean distance raster, reclassified raster and land use land cover 
layers 

The output of the Euclidean distance raster layers of the spatial 

Fig. 2. (a) Extended macro location (Johor, Malaysia), (b) Narrow macro location (Johor Bahru, Johor), (c) micro location (Tanjung Langsat industrial area in 
Johor Bahru). 
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criteria for the study area was prepared in two parts in the span of a 10- 
year interval, 2009 and 2019 as shown in Fig. 3(a)–3(h). Fig. 3(a) shows 
a few roads in TLIA in 2009 connecting the small industries and the few 
residential areas. Fig. 3(b) presents the roads network in 2019 to have 
increased due to an increase in industries and residential areas. Fig. 3(c) 
shows the layer of a few existing industries in 2009 as against the 
expanded industries in 2019 shown in Fig. 3(d). The residential area in 
2009 as shown in Fig. 3(e) is only in one place of the residential area, but 
in 2019, three more residential areas increased as shown in Fig. 3(f). The 
water bodies are shown in Fig. 3(g) and (h) having no differences within 
the 10 years interval, which makes them a reliable source of water for 
the EIP site. 

The Euclidean distance assessed the assigned distances to the pixels 
of each criterion and used a simple differential calculation from every 
cell in the raster to the closest project suitable site. The 2009 and 2019 
data assigned the same distances to each criterion for the EIP Euclidean 

Fig. 3. Euclidean Distance Raster Layers of (a) Roads in 2009, (b) Roads in 
2019, (c) Existing Industries in 2009, (d) Existing Industries in 2019, (e) Res-
idential Area in 2009, (f) Residential Areas in 2019, (g) Water bodies in 2009, 
(h)Water bodies in 2019. 

Fig. 4. Reclassified Raster Layers of (a) Roads in 2009, (b) Roads in 2019, (c) 
Existing Industries in 2009, (d) Existing Industries in 2019, (e) Residential Area 
in 2009, (f) Residential Areas in 2019, (g) Water bodies in 2009, (h)Water 
bodies in 2019, (i) Slope in 2009, (j) Slope in 2019, (k) Land Surface Tem-
perature in 2009, (l) Land Surface Temperature in 2019. 
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distance layer analyses. A distance of 5 km was assigned to the roads 
network to the EIP site. Deswal and Laura (2018) suggested the distance 
between major roads and an industrial park to be between 5 km and 8 
km, and Muhsin et al. (2018) suggested between 5 km and 10 km. In-
dustries allocated 1.5 km to shield them from the negative effects of 
non-food industries. Their existence close to the EIP site plays a great 
role in cluster symbiosis (Khan et al., 2018), which is one of the main 
concepts of EIP. Water bodies as one of the key infrastructures for EIP 
site selection assigned 3 km from the EIP site to avoid unpredictable 
tidal waves, typhoons, or floods. Reisi et al., (2018) proposed the dis-
tance of water bodies from an industrial area to be 1.6 km, which was 
too close. Residential area(s) were allocated 8 km and should be in the 
non-suitable EIP site to prevent any escaping toxic effects from in-
dustries. However, Valenzuela-Venegas et al. (2020) reported it to be 5 
km and could not point out the location(s) to be sited. 

Reclassification reassigns a range of values to a raster to produce a 
uniform new output scale for ease of suitability analysis (Messaoudi 
et al., 2019). The reclassification divided each criterion into 1–5 making 
the closest or farthest but preferred criterion getting 5 and, if not 
preferred whether close or far, got 1. The maps used a resolution of 
300dpi during the reclassification. The output of the criteria reclassified 
raster layers of 2009 and 2019 data for roads, existing industries, resi-
dential areas, and water bodies are presented in Fig. 4(a) – 4(h). Fig. 4(i) 
– 4(l) show the reclassified layers of the slope and land surface tem-
perature. The slope in Fig. 4(j) did not change over ten years. The 
concentration/gradient of 10% was assigned to the slope layer. Fang and 
Partovi (2021) stated that the best slope concentration/gradient should 

be between 0 and 12% to reduce construction costs and speed up 
infrastructure development. The land surface temperature in Fig. 4(l) 
increased from the initial 27 ◦C–30 ◦C, however, a temperature of 29 ◦C 
was set for the land surface. Sedrati et al. (2019) emphasised that higher 
solar irradiance above 30 ◦C over-heats surfaces of solar panels 
hampering solar power production. Shine et al. (2020) remarked that 
areas with high surface temperatures between 30 ◦C and 35 ◦C can cause 
wind instability, resulting in wild winds such as a hurricane. According 
to Chang et al. (2015), if land surface temperature steadily increases 
within an industrial area, it may be due to the emissions coming from the 
factories. Or the climate change caused by global warming through the 
burning of fossil fuels and carbon emissions from industrial processes 
and/or other activities. Fataei et al. (2015) reported that the moderate 
the annual land temperature of between 25 ◦C and 30 ◦C of a potential 
EIP site the better supply of irradiation to solar panels, the more rainfall, 
and the stable the winds. 

Fig. 5(a) and (b) show the LULC of TLIA in 2009 and 2019 indicating 
water bodies, forests, agriculture, built-up areas, and bare soil. In Fig. 5 
(a), the built-up is dispersed across the central area towards the north-
eastern part. The agricultural area surrounds the built-up area, covering 
a broad field within the entire region. The northwest, south and 
alongside the major river moving up north are spotted with forest. The 
water bodies include the sea and the main river, while the empty land is 
prevalent between the built-up and agricultural areas and extends 
southward across the sea. This shows the availability of ample space for 
industrial expansion. Fig. 5(b) shows the reduction in forest area in the 
northeastern part and expansion in the south and laterally upward on 
the main river compared to 2009. The northeast along the coastline, the 
central, western, and northwestern parts of the TLIA are clustered with a 
built-up area (not dispersed as in 2009). The built-up area extended to 
the southern part of the sea, where there was an empty land in 2009. The 
agrarian area still held a huge fraction around the TLIA in 2019, while 
the empty land shrank to the buildings and other improvements. 

5.3. Analytic hierarchy process 

Fig. 6 illustrates the structure of the AHP and F-AHP approaches, 
where the goal is to design an MCDM algorithm for EIP site selection. 
The AHP criteria were assessed by a group of experts’ opinions using 
choices labelled as equally (1), moderately (3), strongly (5), very 
strongly (7), or extremely strongly (9) as provided by Saaty (1977). After 
developing the hierarchy structure for BF-EIP site suitability selection, 
the decision experts pairwisely analysed the criteria based on the goal. 
The alternatives were also evaluated based on the criteria, and their 
relative importance at the preceding levels. 

In the experts’ opinions, the criteria are important to EIP site selec-
tion, as the weights are very close to each other. For instance, roads are 

Fig. 5. Land use land cover of Tanjung Langsat industrial area (a) 2009, (b) 2019.  

Fig. 6. Structure of AHP and F-AHP.  
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moderately more important than existing industries, slope, and land 
surface temperature, and are equally important as water bodies and 
residential areas. Water bodies are equally important as roads, existing 
industries, and residential areas, and are also moderately more impor-
tant than slope and land surface temperature. The CR = 0.0517 shows a 
good distribution of the assigned weights at the pairwise comparison 
matrix. 

Similarly, the CR of alternatives based on roads, existing industries, 
water bodies, slope, residential areas, and land surface temperature are 
0.0982, 0.0668, 0.0830, 0.0833, 0.0404, and 0.0779. Fig. 7(a) presents 
the participants’ overall priority vector (OPvec) pairwise comparison 
opinions of the weight of importance based on the goal, criteria, and 
attributes. The criteria weight importance of the roads has the highest 

ranking of 25.75%, water bodies followed with 21.20%, residential 
(20.09%), existing industries (15.49%), land surface temperature 
(10.81%) and the slope (6.66%). The alternative weights of economic, 
environmental, social, technical, and political aspects generated 
28.54%, 22.10%, 20.90%, 19.76%, and 8.70%. As stated by Zailan et al. 
(2020), roads, water bodies, residential and existing industries are 
important to a brownfield for conversion into EIP, and the achievement 
of eco-industrial symbiosis centres on several attributes assessed to 
support the criteria to achieve the EIP aim. 

The SA uses the OPvecs results to measure the stability of the MCDM 
method should an error occur during the evaluation. Fig. 7(b) shows the 
error bar generated from the SA results. If a ±2% criteria OPvecs error is 
calculated, roads will have a change by ±0.52%, water bodies will 
change by ±0.42%, and land temperature will alter by ±0.22%. If the 
error is ±3%, the existing industry and the slope will change by ±0.46% 
and ±0.20%. The SA at ±5% shifts the weight of roads by ±1.29%, 
which with this alone cannot affect the EIP site suitability. Any error 
between ±2% and ±5% is insignificant, as shown by the error bars. 
Rikalovic et al., (2018), provided that insignificant changes in weights 
assessment by MCDM tools are inevitable but should not be more than 
±0.85%. The study used the assessed OPvecs for the EIP site suitability 
analysis. Criteria weight SA is important since it shows the extent of 
changes indicating the stability of the method (Li et al., 2020). Sellitto 
et al. (2021) applied the error interval and measured the error per-
centage in the AHP criteria weight assessment. 

5.4. Analytic network process 

Fig. 8 depicts the structure of the ANP, in which the network spreads 
out in all directions and the criteria (element) clusters are not arranged 

Fig. 7. (a) overall AHP criteria weight of importance, (b) AHP sensitivity analysis error bar.  

Fig. 8. Network structure of ANP  

Table 2 
Unweighted supermatrix.   

Goal Roads Existing 
Industries 

Water 
Bodies 

Residential Slope Land Surface 
Temp. 

Economic Environ- 
mental 

Technical Political Social 

Goal 0 0 0 0 0 0 0 0 0 0 0 0 
Roads 0.2575 0 0 0 0 0 0 0 0 0 0 0 
Existing 

Industries 
0.1549 0 0 0 0 0 0 0 0 0 0 0 

Waterbodies 0.2120 0 0 0 0 0 0 0 0 0 0 0 
Slope 0.0666 0 0 0 0 0 0 0 0 0 0 0 
Residential 0.2009 0 0 0 0 0 0 0 0 0 0 0 
Temperature 0.1081 0 0 0 0 0 0 0 0 0 0 0 
Economic 0 0.2427 0.2900 0.3390 0.2831 0.2239 0.3180 1 0 0 0 0 
Environmental 0 0.1923 0.2900 0.2240 0.1835 0.1170 0.3180 0 1 0 0 0 
Technical 0 0.2865 0.1521 0.1524 0.2199 0.1580 0.1223 0 0 1 0 0 
Political 0 0.0794 0.1157 0.0809 0.0669 0.1412 0.0803 0 0 0 1 0 
Social 0 0.1992 0.1521 0.2037 0.2466 0.3599 0.1614 0 0 0 0 1  
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in any specific sequence. The arrows between the nodes show the 
interaction of criteria, attributes and goal, whose orientation shows the 
direction of the influence between two or more nodes. Loops denote 
inner dependencies amongst nodes (criteria) of the same cluster. There 
were dependencies between the roads, water bodies, and residential, as 
well as between the land surface temperature, slope, and existing in-
dustries. There were also internal dependencies within slope and 

existing industries, and feedback of all criteria to the alternatives and 
goal. 

Table 2 shows the unweighted supermatrix filled with the AHP 
overall eigenvectors and assessed by the GNU Octave 6.1 software, 
where all the criteria of the unweighted supermatrix are multiplied by 

Fig. 9. (a) ANP overall normalised weight, (b) ANP sensitivity analysis error bar.  

Fig. 10. (a) F-AHP criteria weight importance; (b) F-AHP sensitivity analysis error bar.  

Fig. 11. The integrated algorithms criteria weight importance.  

Fig. 12. Single and integrated algorithms criteria weights standard deviations.  
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the corresponding cluster weights. According to Hassaan et al. (2020), 
each criterion yields the global eigenvector (priority vector) of the ANP. 
The impact of the criterion is shown on the left-hand side of the matrix 
and a criterion at the top of the matrix is based on the study area site 
selection control criterion. The unweighted supermatrix comprised all 
the network clusters and nodes and represented its interrelationship, 
which was based on the flow of effect from one criterion to another, or 
from a cluster to itself in the loop, as shown in Fig. 8. The column for a 
node covered the priorities of all the nodes pairwisely compared and 
influenced it to the control criterion of brownfield EIP site selection. The 
corresponding priority vector of a criterion recorded zero because it did 
not have input. If there was a relationship, the entry would have a value, 
showing that there was an external dependency. 

The content of Table 2 was uploaded into a null matrix in the GNU 
Octave 6.1 Software, run and the weighted supermatrix was obtained. 
The weighted supermatrix was raised to the power 10 = k, again run and 
yielded the limit supermatrix which had the same values as the weighted 
supermatrix because of the interaction of elements, nodes and loops that 
finally took place. Although any exponential could be chosen until it 
produced the same values as in the weighted supermatrix. The limit 
supermatrix signified all criteria connected in the ANP network struc-
ture. The priority vectors were obtained, and the total was required to be 
stochastic, which in this case it was not. Each criteria weight column 
sum was normalised, and the result is presented in Fig. 9(a). The ANP 
normalised criteria eigenvectors have water bodies and land surface 
temperature at 17.1% each indicating the most important criteria. 
Residential has 16.9% followed by existing industries (16.5%), roads 
(16.4%), and slope (16.1%). 

Fig. 9(b) shows the error bars from the SA, which ±2% shows roads 
with ±0.33, industries had ±0.23%, water bodies measured ±0.34%, 
the slope got ±0.34%, and land temperature weighed ±0.25%. For 
±3%, roads changed by ±0.49%, industries by ±0.50%, water bodies by 
±0.51%, slope indicated ±0.51%, residential areas stood at ±0.48%, 
and land surface temperature measured ±0.42%. Roads, industries, 
residential areas, and land surface temperature were altered by ±0.82%, 
0 ±0 .83%, ±0.81%, and ±0.76% when ±5% was assumed as the error. 
The SA, as reiterated by Rikalovic et al., (2018) shows that ANP error 
between ±2% and ±5% in criteria weight importance assessment is 
insignificant. The sensitivity analysis (SA) is an important step that 
measures the extent of changes (Nguyen et al., 2016) if there is a weight 

evaluation error (Kamdar et al., 2019). The attributes assessed were 
economic at 35.95%, social at 22.65%, environmental at 21.45%, 
technical at 15.77% and political at 4.18%. 

5.5. Fuzzy-analytic hierarchy process 

The Fuzzy Analytic Hierarchy Process (F-AHP) uses fuzzy theory to 
basic AHP, which was introduced firstly by Buckley (1985). The lin-
guistic variables, which are represented by triangular integers, are used 
in F-AHP to execute evaluations of both criteria and alternatives. The 
triangular membership functions (TFNs) lower, medium, and upper (l, 
m, u) quantities use the nine-level scale in the pairwise comparison 
matrix. To incorporate the uncertainty, participants in this study 
employed the numerical triangular fuzzy numbers (TFNs) 1̃ – 9̃, 
reflecting it to the subjective pairwise comparisons of BF-EIP site suit-
ability choices. The TFN lower (l), middle (m), and upper (u) values set 
the weight of a criterion to include a broader boundary as compared to 
AHP, which has a single value. Its significance is to detect the likelihood 
of several values within this interval. For example, if 2, 3, and 4 repre-
sent the l, m, u weights, the geometric ratio solves the problem if any 
weights from 2.01, 2.02, 2.03, 2.04, …, 4.0 is preferred rather than only 
the median, which is usually required in AHP. 

The experts’ judgements show the roads are between moderately- 
less-important and moderately-more-important than the existing in-
dustries and water bodies. The existing industries are equally important 
as water bodies and moderately–strongly important than the slope. 
Water bodies are measured very strongly as more important than resi-
dential, and moderately important to land surface temperature. The land 
surface area was evaluated as less important to existing industries and 
residential areas, but moderately strong and more important than roads 
and slopes. The residential is moderately more important than the land 
surface temperature. The slopes are strongly more important than the 
residential areas. 

The geometric mean values of the assigned criteria weights, the fuzzy 
relative weights, the defuzzification and the normalisation were 
assessed, as well as the weights importance of the attributes for each 
criterion and the overall priority vector. Fig. 10(a) shows the weight of 
water bodies at 27.56% as the most important criteria, followed by roads 
(21.60%), residential areas (15.42%), existing industries (13.75%), land 

Fig. 13. MCDM-GIS model for EIP site selection suitability.  
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surface temperature (11.89%), and slope (9.78%). The alternatives of 
economic, environmental, social, technical, and political aspects 
weighed 27%, 23%, 20%, 17%, and 13%. 

The error bars in Fig. 10(b) show the extent of change evaluated 
using ±2%, ±3%, and ±5% assumed errors in the weight assessment. 
The error percentages for roads (±1.08%) and water bodies (±1.38%) 
are higher than the acceptable ±0.85% if an error of ±5% occurs. This 
shows that the error goes with the magnitude of the criterion weight. 

5.6. The integrated multi-criteria decision-making algorithms 

The MCDM integration is a novel approach to developing a reliable 

algorithm to address the inconsistent criteria weight evaluation prob-
lems of SMCDM. The overall criteria weights given by the AHP, ANP and 
F-AHP approaches were alternately integrated using Eq. (10) which 
provided the IMCDM methods of hierarchy network-fuzzy analytic 
process (HN-FAP); hierarchy network analytic process (HNAP); 
hierarchy-fuzzy analytic process (H-FAP), and network-fuzzy analytic 
process (NFh-AP). The criteria weights integration was not stochastic; 
therefore, Eq. (11) achieved the normalisation. 

Fig. 11 shows the integrated weights of criteria assessed by each 
algorithm. There are fluctuations in criteria weights comparing the 
SMCDM methods and IMCDM methods. For example, H-FAP assessed 
roads at 23.68% are lower than the weight produced by AHP (26%), and 

Fig. 14. TLIA Suitable EIP Site Selection using (a) AHP with 2009 Data, (b) ANP with 2009 Data, (c) F-AHP with 2009 Data, (d) AHP with 2019 Data, (e) ANP with 
2019 Data, (f) F-AHP with 2019 Data. 
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water bodies at 24.38% are above by AHP (21%). The weights for roads 
(16.4%) and water bodies (17.1%) by ANP fall short of the H-NAP 
method, while F-AHP measured water bodies 28% above the H-NAP. 
The instability of the methods as measured by the sensitivity analyses 
between ±2% and ±5% increases from AHP, ANP and F-AHP as shown 
by the error bars in Figs. 7(b), 9(b) and 10(b), while for all the IMCDM 
methods is highly stable. 

The standard deviation (SD) values in Fig. 12 show the consistency of 
the IMCDM (HN-FAP, HNAP, H-FAP, and NFh-AP) and SMCDM (AHP, 
ANP, and F-AHP) approaches. The SD compares the dispersion of the 
value of a criterion given by the technique to the average of the values of 
the set of criteria to determine the consistency of a technique in weight 
evaluation. In other words, if the SD value is larger, the criteria value 
deviates greatly from the average of the set, making the approach un-
reliable; otherwise, it is consistent and dependable. In the ranking of 
spatial criteria and decision-making methods, SD values of less than 5.0 
and more than 6.5 reflect measurements of criteria values that are too 
close and far from the average of the set of criteria (Pacheco and 
Krohling, 2018). As a result of this issue, criteria become more 
competitive and tougher to rate, posing consistency issues. Fig. 12 in-
dicates that the SD of AHP and F-AHP are 7.08 and 6.68 higher than the 
acceptable limit of 5–6.5, whereas ANP (0.38) is significantly lower, 
indicating that consistency issues exist. The SD of HN-FAP and HNAP is 
below the consistency index because both contain AHP and ANP, which 
are from the same MCDM scoring group. The SD values of the H-FAP 
(6.54) and NFh-AP (5.42) methods are within the reliability index, 
which improved against the SMCDM methods due to the hierarchy-fuzzy 
and network-fuzzy methods from different MCDM groups, which have 
neutralised the weaknesses of each and enhanced their advantages. 

5.7. The MCDM-GIS model 

Fig. 13 shows the MCDM–GIS model built for the criteria weight and 
spatial data layers overlay analysis. The input tools initially appeared 
grey, indicating no data, but by adding data, they changed into blue 
colour. The processing and output tools also changed into yellow and 
green, ready to process and give results. The “P” indicates a dialogue box 
for a parameter to be added by a third party to process a larger dataset. 
The criteria raster layers and the criteria weights were overlaid, RUN, 
and the EIP suitable sites layers were generated. Only the model pa-
rameters added to the map became the model outputs, and each output 
tool formed a shadow indicating a successful run. 

5.8. EIP site layers produced by single criteria weights in weighted overlay 
analysis 

The EIP site suitability was grouped into 5 namely: very-highly- 
suitable, highly-suitable, moderately-suitable, low-suitable and unsuit-
able sites. As shown in Fig. 14(a) and (b) and 14(c), the TLIA 2009 
spatial data with AHP, ANP, and F-AHP weights display the same site 
suitability of 17% shown in dark green for very-highly-suitable, 21% for 
highly-suitable in light green, 42% moderately-suitable in yellow, 15% 
in pink as low-suitable, and 5% non-suitable sites noticeable in red. The 
three SMCDM techniques identified the whole of water bodies as a 
suitable EIP. Identifying the entire water bodies by AHP, ANP, and F- 
AHP weights with 2009 spatial criteria data shows that either the 
methods have inconsistency in criteria weighting and difficulty in 
detecting sparse criteria or the model has a deficiency. Fang & Partovi 
(2021) reported that water bodies can only be closed to the EIP site 
which is important for easy and cheap transportation of bulk raw and 

Fig. 15. Superimposed criteria layers (a) AHP with 2009 data, (b) AHP with 2019 data; (c) ANP with 2019 data, and (d) F-AHP with 2019 data.  
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finished products. 
The spatial criteria data of 2019, a ten-year interval, was used to test 

the efficiency of the model while maintaining the same criteria weights 
of importance for the three methods. Fig. 14(d) generated by the AHP 
method shows 5% as the very-highly suitable site, 24% as highly- 
suitable, 26% as moderately-suitable, 16% as low-suitable, and 29% 
as non-suitable. Fig. 14(e) shows ANP with 2%, 24%, 26%, 15%, and 
33% for the very-highly-suitable, highly-suitable, moderately-suitable, 
low-suitable, and non-suitable sites. F-AHP in Fig. 14(f) ranked the 
very-highly-suitable, highly-suitable, moderately-suitable, low-suitable, 
and non-suitable EIP site as 3%, 23%, 26%, 20%, and 28%. The AHP 
identified a little larger very-highly-suitable sites compared to ANP and 
F-AHP. The SMCDM methods responded to concentrated spatial criteria, 
generating well-defined EIP suitability maps. However, the weaknesses 

are the tiny areas (in thick green) identified as very-highly-suitable EIP 
sites found in the northern part. SMCDM approaches are weak with 
concentrated criteria for computing spatial criteria weights for indus-
trial site selection. Nevertheless, Danesh et al. (2017) reported that they 
are useful for comparing non-spatial quantities. 

5.9. Criteria layers superimposed on EIP suitability maps produced by 
SMCDM 

Fig. 15 shows the superimposed roads, residential area, and industry 
spatial criteria on the EIP site suitability layers. Fig. 15(a) is a repre-
sentation of the layers in which the weights assessed by SMCDM 
methods weights overlaid with 2009 spatial data. The roads and in-
dustries aligned with the very-highly-suitable sites, while the residential 
consumed part of the very-highly-suitable site in the north-eastern part. 
Fig. 15(b), (c), and 15(d) generated using 2019 criteria data with AHP, 
ANP, and F-AHP methods show very-highly-suitable locations outside 
the existing industries. This is a drawback of the SMCDM methods. 
Asadabadi et al. (2019) emphasised the importance of geospatial tech-
nologies in the investigation and selection of industrial sites, as they help 
in determining site suitability. 

5.10. Suitable EIP site layers produced by integrated criteria weights in 
weighted overlay analysis 

The criteria weight consistencies were further tested, where the 
IMCDM weights were run into the model with the 2009 and 2019 spatial 
criteria data, while the MCDM-GIS model was also further tested for 
efficiency. As shown in Fig. 16(a) and (b), 16(c) and 16(d), the HN-FAP, 
HNAP, H-FAP, and NFh-AP with the 2009 data generated the same sizes 
of EIP sites identified at 17% as very-highly-suitable, 21% highly- 
suitable, 42% moderately-suitable, 15% low-suitable, and 5% non- 
suitable sites. These methods also scored the entire water bodies as 
suitable sites, suggesting the scarcity of the criteria compelled the al-
gorithm to pick on water bodies. When the same IMCDM criteria weights 
were overlaid with 2019 spatial criteria data, large and varied sizes of 
the suitable EIP sites layers were generated. Fig. 16(e) and (f) show HN- 
FAP and HNAP ranked 24%, 33%, 21%, 12% and 10% each as very- 
highly-suitable, highly-suitable, moderately-suitable, low-suitable, and 
non-suitable EIP sites. These tools also measured about 12% of parts of 
the water bodies as low-suitable EIP sites, showing a slight weakness of 
the techniques. Water bodies can only be closed to the potential EIP site, 
which this study assigned 3 km to the Euclidean distance layers. The 
inside of an ocean cannot be used to build an industry even if the suitable 
sites get exhausted. According to Reisi et al., (2018), water bodies near 
the EIP location are one of the most important factors for establishing an 
industrial park. 

The H-FAP and NFh-AP in Fig. 16(g) and (h) identified equal sites of 
very-highly-suitable, highly-suitable, moderately-suitable, low-suitable, 
and non-suitable sites of 24%, 33%, 4%, 18%, and 21%. These tech-
niques distinctly identified the five categories of suitability without 
overlapping and marked the water bodies to be non-suitable but must 
only be close to the EIP sites. These integrated tools have used and 
consolidated the hierarchical, networking, and fuzzy reasoning to 
overcome the weaknesses and improved the strengths of the tools which 
assessed consistent criteria weights. As Pourahmad et al. (2015) sug-
gested, the integrated MCDM tools eliminated the disadvantage and 
improved the advantages of another. The overlay of the reliable MCDM 
algorithm weights with spatial criteria in the GIS makes a powerful 
approach for the selection of the best EIP site (Pourahmad et al., 2015). 

5.11. Criteria layers superimposed on EIP suitability maps produced by 
IMCDM 

Fig. 17(a) and (b) show the existing industries exactly in the very- 
highly-suitable sites. Residential area engulfed part of the highly- 

Fig. 16. Selection of Suitable EIP Sites Using Integrated MCDM Weights of (a) 
HN-FAP and 2009 Data, (b) HNAP and 2009 Data, (c) H-FAP and 2009 Data, (d) 
NFh-AP and 2009, (e) HN-FAP and 2019 data (f) HNAP and 2019 Data, (g) H- 
FAP and 2019 Data, (h) NFh-AP and 2019 Data. 
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suitable areas in the eastern part, which of course could have been built 
in the moderately-suitable site of the north-east in Fig. 17(a) and (b), 
and in the low-suitable site of north-east in Fig. 17(c) and (d). The 
precise location of existing industries in the very-highly-suitable sites in 
Fig. 17(c) and (d) further demonstrated the H-FAP and NFh-AP 
weighting consistencies and the model efficiency. Ahmed et al. (2020) 
informed that suitable EIP sites increase for industry expansion when 
features such as residential areas are established in the low or 
non-suitable sites. 

SMCDM methods with scanty or concentrated spatial criteria have 
been indicated to be unreliable for brownfield and greenfield investi-
gation for EIP sites. Since AHP and ANP belong to the same paired 
comparison group, it is difficult to provide a consistent MCMDM algo-
rithm when combined. Integrating hierarchical, geometric ratios and 
networking which formed paired comparison and uncertainty, produced 
weights optimally away from the average of the set of the criteria as 
shown by the SD. This resulted in the consistent integrated H-FAP and 
NFh-AP algorithms that expressed the strengths in eliminating the re-
strictions and produced consistent weights. The H-FAP and NFh-AP 
demonstrated to be the best integrated algorithms along with concen-
trated spatial criteria for the investigation of brownfield industrial parks 
for EIP development. This is because of the distinct separation of all the 
five suitable sites which showed the water bodies as unsuitable but 
should be closed to the suitable site. The model in its part is efficient 
since it defined different categories of suitable sites as expected under 
various weights and spatial criteria conditions. In comparison to Yousefi 
et al. (2016), who used AHP and WLC independently and obtained wide 
criteria weights with unreliable industrial sites, these algorithms and the 
model performed well in providing better and more specified BF-EIP 
suitable sites. When Ahmadipari et al. (2018) employed Delphi and 
FAHP to choose an industrial site, the conclusions were rejected due to a 
large spectrum of variances in weights. When TOPSIS, SAW, and WLC 

was applied to analyze the suitability of the industrial site and its 
proximity to restricted areas, the outcomes of Naghdi et al. (2017) re-
ported inconsistencies due to the high number of criteria involved. The 
IMCDM approaches solved the limitations and strengthened the ad-
vantages of the associated tools (Nuhu et al., 2021). H-FAP and NFh-AP 
algorithms eliminated the uncertainties of criteria having near weights, 
few number of criteria and permitted interdependence which produced 
consistent weights for decision-making. 

The IMCDM is simple to design once the SMCDM methods can be 
constructed and evaluated. The standard deviation helps in checking the 
consistency which decreases multiple trials for modelling. The evalua-
tion and integration of the SMCDM methods can be done without the use 
of complex software. The advantage of the MCDM-GIS model is that it 
allows a third party to add additional criteria spatial layers for model-
ling. It also detects incorrect spatial criteria layer upload, which results 
in no shadow at the processing and outcome tools, indicating an un-
successful execution. The disadvantage of both the IMCDM and the 
model is that the knowledge and understanding of GIS for the conversion 
of spatial criteria to raster layers are essential, otherwise, the analysis 
can be impossible. 

Selecting a suitable location is the basic approach to EIP develop-
ment (Pramanik, 2016), and it is a decision that has an important impact 
on the environment (Chumaidiyah et al., 2020), which can make EIP 
attain or fail its goals. The transformation of BFIP to BF-EIP is increasing 
general recognition due to the 2015 Paris Agreement for reduction of 
carbon footprint and improved cleaner production, and the UNIDO 
effort for industries synergies. The development and usage of the 
IMCDM techniques for the evaluation of consistent criteria weights and 
combined with the GIS to identify accurately suitable EIP sites is 
strongly required. Suitable EIP sites attract industry clusters whose 
companies seek not only to go beyond the sustainable green goals of 
re-using or decreasing waste, energy, and pollution management but 

Fig. 17. Superimposed criteria layers of (a) HN-FAP with 2019 data, (b) HNAP with 2019 data, (c) H-FAP with 2019 data, (d) NFh-AP with 2019 data.  
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also to make profits and take part in innovation strategies to gain viable 
benefits (Sellitto and Hermann, 2016). 

6. Conclusion 

The purpose of this study was to build a consistent IMCDM algorithm 
from SMCDM traditional methods which have limitations in evaluating 
consistent spatial criteria weights, also to design an MCDM-GIS model 
for easy and accurate weighted overlay analysis to select brownfields for 
suitable EIP sites. The AHP, ANP, and F-AHP were used to assess the 
spatial criteria weights and were subsequently integrated into four al-
gorithms. The MCDM-GIS model overlaid the criteria weights with the 
2009 and 2019 spatial layers of Tanjung Langsat Industrial Area (TLIA) 
and tested for EIP site suitability selection. All SMCDM and IMCDM 
criteria weights using 2009 spatial data recorded 17% for very-highly- 
suitable sites. Using the 2019 spatial data, AHP, ANP and F-AHP iden-
tified 5%, 2% and 3% tiny very-highly-suitable sites in the northern part. 
The SMCDM methods included the water bodies as suitable sites and 
identified tiny best suitable sites in the northern part. These show 
consistent criteria weight assessment limitations even by using both 
scarce and concentrated criteria. The weighting consistency, the criteria 
insufficiency, and the model efficiency were further verified using the 
IMCDM weights. The HN-FAP and HNAP algorithms with the 2019 
spatial data identified 24% very-highly-suitable sites but included about 
12% of water bodies as low-suitable sites. Water bodies themselves 
cannot be suitable criteria because industries cannot be built inside 
water. Rather, water bodies need to be close to the EIP suitable site. The 
H-FAP and NFh-AP scored 24% for the best suitable site using the 2019 
spatial data showing a clear partition of the various suitable sites. 

The integrated H-FAP and NFh-AP algorithms achieved the purpose 
of the integration for generating well defined and larger EIP suitable 
sites. The criteria weights of the two methods show nearness to the 
averages of the criteria sets, making them robust, but only with dense 
brownfield spatial criteria. The algorithms can be put to test using 
spatial criteria collected from any part of the globe. The MCDM-GIS 
model is efficient and owing to the drop-down menu (P), a third party 
can add new spatial criteria. The H-FAP and NFh-AP integrated algo-
rithms and the model will assist the government, EIP investors/de-
velopers, and researchers in evaluating consistent criteria weights for 
the selection and conversion of brownfield to EIP sites for industry 
clusters symbiosis, pollution control, and industrial sustainability. The 
addition/withdrawal of alternatives leading to a rank reversal of MCDM 
could be future research. 
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