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ABSTRACT 

The aim of this research work is to develop a new non-liner constitutive model 

and novel technique to estimate sand production volume for weak to moderate strength 

sandstone reservoir rocks.  Sand production due to rock failure can have a severe 

impact on the economics of an oil or gas field where the downhole or surface 

components erosion due to sand production can lead to loss of well integrity and 

hydrocarbon leakage.  Furthermore, if the drawdown increases, sand production 

volume is becoming more prevalent.  To facilitate best sand management over the life 

of a field, an accurate prediction of sand production volume is required to increase 

productivity of the well at low operating cost. The current method is unable to fully 

cater the industry’s need as most of the work related to sand production models are 

developed for onset failure but little on sand production volume estimation.  This 

research work was initiated to fill this industry gap by developing a new technique for 

sand production volume estimation.  The selection of failure criteria has a big impact 

on accurate predictability on sandstone failure and sand production volume prediction, 

thus an investigation on the needs for a new non-linear constitutive model has been 

performed.  A new constitutive model has been developed and validated to assist 

numerical model validation. A new workflow and method have been developed for 

accurate sand production volume prediction.  A novel approach has been developed in 

this study to enable continuum Finite Element Method (FEM) model to replicate as 

discontinuum model.  This was achieved by creating a new computer code to 

communicate with FEM solver to remove all failed grid cells (mesh) and allow stress 

stabilisation around perforation cavity. This technique is known as progressive 

perforation cavity failure and stabilisation (PPCFS).  The invented technique was 

tested on both laboratory test and field data.  A 3D FEM model developed using actual 

well and field data was used to validate and evaluate the robustness of the developed 

workflow and method.  The outcome of this study shows that the new constitutive 

model has better predictive capability on both the sandstone failure and sand 

production volume.  The combination of the newly developed Assef-Surej-Ariffin 

(ASA) constitutive model and the PPCFS FEM method is able to predict onset failure 

of sandstone and sand production volume accurately within 2.5% and 5% error margin 

respectively when compared to actual laboratory testing.  Meanwhile, field data yields 

an excellent match with actual observed sand production volume in the field within 

3% error margin.  The parametric analysis concluded that rock strength has 

proportional impact on sand production volume.  Meanwhile the combination of 

borehole deviation, smaller perforation diameter, and oriented perforation could 

reduce the sand production volume. This method also can be used to optimize the 

controllable parameters (well and perforation design) to eliminate sand production 

completely provided that the compressive strength and far field stresses of the reservoir 

permit.  Therein, it can be concluded that the developed model is novel and able to 

assist the oil and gas industry to estimate the possible producible sand volume for their 

planned drawdown for sandstone reservoirs using the geomechanical properties.  



 

vii 

ABSTRAK 

Tujuan kajian ini adalah untuk membangunkan satu model juzuk tak linear 

yang baharu dan teknik asli bagi menganggar isi padu pengeluaran pasir untuk batuan 

reservoir yang lemah hingga ke sederhana.  Pengeluaran pasir yang berpunca daripada 

kegagalan batuan memberikan kesan ekonomi yang teruk terhadap medan minyak dan 

gas dengan hakisan yang berlaku pada komponen dalam lubang dan komponen 

permukaan boleh menyebabkan telaga kehilangan integriti dan bocoran hidrokarbon. 

Jika surutan meningkat, isi padu pengeluaran pasir menjadi semakin ketara. Demi 

menghasilkan pengurusan terbaik pasir sepanjang hayat sebuah medan, peramalan 

yang tepat bagi isi padu pengeluaran pasir adalah diperlukan supaya boleh 

meningkatkan produktiviti telaga pada kos operasi yang rendah. Kaedah terkini tidak 

mampu memenuhi keperluan industri memandangkan kebanyakan model 

dibangunkan untuk kajian kegagalan permulaan dengan tumpuan yang terhad terhadap 

penganggaran isi padu pengeluaran pasir. Kajian ini dilaksana bagi memenuhi jurang 

itu dengan membangunkan satu teknik yang baharu untuk penganggaran isi padu 

pengeluaran pasir. Pemilihan kriteria kegagalan mempunyai kesan yang besar 

terhadap ketepatan dalam kebolehramalan kegagalan batu pasir dan penganggaran isi 

padu pengeluaran pasir. Oleh itu, kajian yang memerlukan penggunaan model juzuk 

tak linear telah dilaksana. Satu model juzuk yang baharu telah dibangun dan disahkan 

bagi mengesah model berangka. Alir kerja dan kaedah yang baharu telah dibangunkan 

bagi meramal secara tepat isi padu pengeluaran pasir. Pendekatan yang dibangun 

adalah untuk membolehkan model kontinum Kaedah Unsur Terhingga (FEM) diulangi 

sebagai model tak kontinum. Kajian ini berakhir dengan terciptanya satu kod baharu 

komputer yang boleh berkomunikasi dengan penyelesai FEM bagi menyingkir semua 

sel grid (jaringan) yang gagal dan membenarkan penstabilan tegasan di sekitar rongga 

penebukan. Teknik yang dikenali penstabilan dan kegagalan progresif rongga 

penebukan (PPCFS) itu telah diuji menggunakan data medan dan data uji kaji makmal. 

Model FEM 3D telah dibangun menggunakan data telaga dengan data medan 

digunakan bagi mengesah dan menilai kemampuan alir kerja dan kaedah yang terhasil. 

Hasil kajian menunjukkan bahawa model baharu juzuk mempunyai kemampuan 

ramalan yang lebih baik tentang kegagalan batu pasir dan isi padu pengeluaran pasir. 

Gabungan model baharu juzuk Assef-Surej-Ariffin (ASA) dan kaedah PPCFS FEM 

boleh meramal secara tepat kegagalan permulaan batu pasir dan isi padu pengeluaran 

pasir dengan masing-masing jidar selisih sekitar 2.5% dan 5% apabila dibandingkan 

dengan hasil pengujian makmal. Di samping itu, data medan memberikan hasil yang 

baik berbanding isi padu pengeluaran pasir sebenar di medan dengan jidar selisih 

sekitar 3%. Analisis parameter menunjukkan bahawa kekuatan batuan mempunyai 

kesan berkadaran terhadap isi padu pengeluaran pasir. Selain itu, gabungan lencongan 

lubang, diameter penebukan yang kecil, dan penebukan berarah mampu 

mengurangkan isi padu pengeluaran pasir. Kaedah ini juga boleh diguna untuk 

mengoptimumkan parameter-parameter boleh kawal (reka bentuk penebukan dan 

telaga) bagi menyingkir sepenuhnya pengeluaran pasir dengan bantuan kekuatan 

mampatan dan tegasan batuan reservoir. Kesimpulannya, model yang dibangunkan 

adalah asli dan boleh membantu industri minyak dan gas untuk menganggar isi padu 

pengeluaran pasir berdasarkan surutan yang dirancang bagi reservoir batu pasir 

menerusi penggunaan sifat-sifat geomekanikal. 
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INTRODUCTION 

1.1 Background 

In 2017 Wang, described that an estimated 50 percent of existing wells require 

sand control or sand management throughout their lifetime (Wang, 2017). This 

includes high porosity unconsolidated sandstone in conventional and unconventional 

reservoirs cause by high stress during the flowback. Most recent major hydrocarbon 

discoveries, from both transcontinental countries like Tunisia, Morocco, Egypt and 

countries in Africa (Mozambique, Angola, and Tanzania), North America (United 

States and Canada) and East Asia (Thailand, Vietnam, Myanmar and Malaysia), are 

offshore with soft formation sands and high-permeability with half of them being gas-

bearing reservoirs. Wang (2017) also concluded that, to ensure a successfully effective 

sand-management process deployment, a multidisciplinary engagement is necessary, 

especially the geomechanics modelling. The subsurface and engineering teams should 

be able to predict the sanding tendencies including volume and rate as well as detecting 

the sanding locations. This should be followed by selecting appropriate downhole 

sand-management and/or sand control devices as well as implementing the best 

operating practices for the life of the well. As the number of existing fields (weak 

and/or depleted sand reservoirs) around the world increases, these experiences are 

likely to become more widespread. The United Kingdom based British Petroleum (BP) 

operator, for example, estimated that more than 60% of its production comes from 

sand-prone reservoirs (Liou, 2014). To manage the economics of a field and minimize 

capital expenditure, it is useful to know at the outset whether sand failure is a 

significant risk. This allows decisions to be made on the most effective completion 

strategy to manage sand failure for the life of the field.  
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Sand production phenomenon can be described as hydrocarbon fluid 

production accompanied by sand grain particles when reaching the surface. In the 

event that the velocity of fluid production is not sufficient to carry the sand particles 

to surface, then the sand grain particles will fill up the wellbore. As a result, this 

eventually acts as gravel pack which may lead to loss of production (Subbiah et al., 

2014; Fuller et al., 2017). Sand failure can have a severe impact on the economics of 

an oil or gas field. Erosion of downhole or surface components by sand can lead to 

loss of integrity and hydrocarbon leakage. Production rates from screenless 

completions may need to be reduced to limit solids either flowing to surface or filling 

the wells. Sand handling, either at surface or flushed from a downhole, adds expense 

to lifting costs and significant disposal difficulties. Therefore, the sand production 

phenomenon either needs to be controlled or avoided in any circumstance.  

The sand production phenomenon is normally a two-stage process. The first 

stage is onset of failure caused by stresses acting on the rock which result in failure of 

the rock. The second stage is that the failed/spalled sand grains/solid are transported 

by producing hydrocarbon fluid to the surface or becomes deposited within the well 

system. With the onset of formation failure and evidence of mobilized sand (or solid 

particulates) through the formation, operators can opt to reduce flow to rates incapable 

of carrying solids, manage produced sand or create a barrier (a filter) to prevent sand 

movement from formation to wellbore. Stopping, or at least slowing, the flow of sand, 

while minimally impacting production, requires the operator to choose from among 

mechanical exclusion techniques such as cased-hole gravel packs, high-rate water 

packs, frac packs, open hole gravel packs or stand-alone screens. Additionally, 

screenless completions such as oriented perforation or a chemical consolidation can 

be applied (Acock et al., 2004). Therefore, the best completion strategy and field scale 

production development plan for each well of the reservoir can be further optimized 

by predicting both the locations and conditions that lead to the onset of sand production 

and the volume of sand that will be produced.  

During the ARMA (American Rock Mechanics Association) annual 

conference in 2017 at San Francisco, United States, a discussion was held on the topic 

of sand production volume and rate predictions and the industry’s current practises on 
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this subject. It was concluded that the current technology is good for initial sandstone 

failure but poses an unsolved challenge in predicting sand volume and rate. All 

delegates agreed that sand production volume and rate is very important for sand 

management. There is no proper toolkit and simulator currently available. However, a 

number of oil and gas operators and consulting organisations are using standard 

analytical models and Finte Element Method (FEM) code and are yet still unable to 

find a holistic solution to predict the volume of sand that will be produced (Cook, 

2017). On another occasion, during a technical meeting held in Schlumberger Gould 

Research at Cambridge, UK,  divulged that they worked a lot on sand production 

volume and rate prediction using FEM codes and were still unable to accurately predict 

the severity of sand production (Cook and Moffet, 2017). 

Sand control methods must be used if the well will be producing more than 5 

lb of sand per 1000 bbl/day (five pounds of sand per thousand barrels, pptb) of oil and 

much lesser for gas wells in the range of 0.3 to 0.5 lb for mmscf/day (Cook and Fuller, 

2005). Therefore, estimating the sand volume will be critical for many oil and gas 

operators for their CAPEX planning.  

1.2 Problem Statement 

Sand production erodes hardware, blocks tubulars, creates downhole cavities 

and must be separated and prior to disposal.  Petroleum industry has been struggling 

for a robust and accurate modeling technique to predict or estimate sanding propensity 

(volume and rate). The sand volume quantification has a big impact for field 

development planning, i.e., requiring an initial investment and its own rate of return 

(ROI). Cost for sand control remedial can range between 50,000 to 1 million US 

Dollars. This cost normally varies depending on field location such as onshore, 

offshore and deep-water (Cook and Fuller, 2005). Thus, the decision must be made 

based on sand production severity and long-term durability i.e., life of the field. 

Therefore, workflow and a computer simulator or modeling toolkit to predict and 

quantifying sand volume that will be produced is very essential for field developing 

planning in the petroleum industry. 
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As described, sand production can cause a loss of millions of dollars for oil and 

gas operators. This unwanted phenomenon needs to be quantified for (i) an optimum 

sand control method selection, (ii) operation planning and (iii) decision on overall field 

development plan investment and economic feasibility. Considerable efforts have been 

made in the past few decades in investigating the mechanisms and modelling approach 

involved in sand production while producing hydrocarbon fluid.  

Less effort has been put on modelling sand production volume and rate and 

few researchers investigate both analytical and numerical methods (Ranjith et al., 

2013; Rahmati et al., 2013).  Therefore, there is still room in improving the existing 

modelling methods in predicting sand production volume and rate. Rock failure that 

leads to sand production is a continuous and dynamic process and is discontinuous in 

nature. Such dynamic process is not captured by the models that are based on 

continuum approaches (FEM). Physical and mechanical rock properties appear to 

greatly influence the sand production volume and rate. Previous works are 

inconclusive in generating best methods in predicting sand production volume and rate 

as the work was either done using only the analytical or continuum approach or only 

the discontinuum approach. Therefore, effort required to investigate turning 3D FEM 

continuum method to discontinuum and allow stress stabilisation after failure.  

1.3 Research Objectives 

The objectives of the research are: 

1. To investigate reliable constitutive models for sandstone failure prediction and 

sand volume estimation.  

2. To develop a new reliable constitutive model for sandstone failure prediction 

and sand volume estimation. 

3. To develop a new workflow and method for accurate sand production volume 

prediction.  
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1.4 Scope of The Work 

1. To conduct series of laboratory tests according to ASTM/ISRM standard on 

the weak to moderate strength sandstone to investigate if non-linear 

constitutive model is required for better sand production failure and volume 

prediction. The laboratory tests conducted for various loading mechanism and 

standard core specimen size. 

2. Using the laboratory test results to develop a new non-linear constitutive model 

honoring full spectrum of sandstone mechanical behavior (elastic, 

plasticity/hardening, failure and softening). Followed by validation of 

developed model (ASA) using Finite Element Method (FEM) to reproduce the 

stress strain rock mechanical behavior.  

3. To develop a new workflow and computer simulation techniques to turn FEM 

continuum medium to discontinuum medium by newly implemented grid cell 

removal method during the simulation (known as progressive perforation 

cavity failure and stabilization namely PPCFS). Estimate sand production 

volume using PPCFS method and validate/verify numerically estimated sand 

production volume with both laboratory test data and actual field data.  

4. To develop customize subroutines codes for the numerical model simulation 

and analysis work, while industry recognized/commercial software such as 

Techlog, VISAGE, Petrel and GiD to ease field deployment of the proposed 

method.  

 

1.5 Significance of Study 

This study has its own uniqueness and novelty as it considered non-linearity 

behavior together with simulation techniques to turn FEM continuum medium to 

discontinuum medium. For this  study, grid cell (mesh) removal technique has been 

used in FEM for sand production volume prediction. In other word turning 
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conventional continuum FEM to replicate discontinuum method (as example, DEM is 

discontinuum method). A common FEM code or engine is not able to do this. Thus, 

an additional computer program code has been programed to communicate with 

VISAGE software to achieve the requirement known as PPCFS method (perforation 

cavity failure and stabilization). Furthermore, selection of the constitutive model is 

important for non-liner (plastic) sandstone rock. Most of researchers in petroleum 

geomechanics still using commonly available failure models which are not able to 

capture a proper post-yielding and post-failure (plasticity/hardening and softening) 

behavior. Capturing and modeling this behavior is important for onset sand production 

and sand production volume (stress at failure and stress stabilization after failure). In 

this study in order to honor a full spectrum of stress strain behavior in a single equation, 

a new/modified constitutive law for sandstone has been developed. The intention is to 

simulate for better failure estimation honoring the elasto-plastic non-linear behavior. 

In other word failure criterion that can handle both hardening and softening aspect of 

mechanical behavior of weak to moderate strength rock using single equation. These 

are two new additional contribution from this study to petroleum geomechanics, which 

has been validated using both laboratory test results and field data.  

As for sand production from onset failure, a new software has been developed 

using Python language for both open-hole and perforated cased hole completion. Three 

different constitutive models have been implemented in the software including the 

newly developed model from this study. Eventually, after satisfied with newly 

developed constitutive model validation, algorithm has been implemented within 

VISAGE software engine for finite element analysis.  

Combination of new constitutive model and PPCFS has been used for sand 

production volume estimation. Where, its honors the stress stabilization around the 

failed perforation cavity, and  newly developed PPCFS method able to remove for any 

failed material (grid cells). This study able to improve the prediction/estimation of 

producible sand volume more precisely for any given or planned drawdown pressure. 

Having better and accurate volume of sand production estimation is essential 

for decision making process for best type of completion option, which has direct 
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impact on the CAPEX planning and its Return of Investment (ROI). Some operators 

nowadays also opt to produced sand to the surface. The produced sand accumulated in 

vessels later will be cleaned and disposed. For this, they need to know accurately the 

quantity/volume of sand production. On other hand it is very important to estimated 

accurately the volume of sand production during well testing operation. Knowing the 

quantity of sand is key to mitigate any risk of operation failure and non-productive 

time (NPT). Sand filters can be blocked due to high amount of sand produced volume. 

Knowing this ahead of time using modelling, the well testing and completion engineers 

able to prepare the correct quantity and sizing of filters, this is essential especially for 

deep water operation. 

1.6 Research Gaps 

Despite the numerous efforts in sand production and modelling, there are still 

some significant gaps in knowledge that require to be filled. After studying the current 

projects reported in the literature, there is still much that can be done to improve 

sanding models. Some are listed below: 

1. Most of the conducted sand production study/research are mainly related to 

onset failure and not much work has been done on estimating the volume of 

sand production. 

2. Majority of sand production related work was done or simulated in 1D and 2D 

domains and used plan strain and axisymmetric assumption. 

3. No work was conducted in FEM using element or grid cell removal techniques 

and stabilization which could be more appropriate for sand production. 

4. Constitutive Model: Most of the models used were elastic model and a few 

modified to elasto plastic. No single researcher considered a full spectrum of 

rock mechanical behaviour such as elastic, hardening and softening which can 

provide more realistic representations of sand production (stress stabilisation). 

 



 

8 

1.7 Study Limitations  

This study has its own limitation listed below: 

1. Erosion aspect and bifurcation were not analysed. 

2. Sand production validation is for weak to medium rock strength only 

(approximately to 32 MPa). 

3. Effect of water-cut and capillary pressure are not considered in modelling the 

sand production volume. 

  

.
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