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ABSTRACT 

Explosive increases of features in high dimensional datasets remains a 

challenge for data analysis in various research fields, especially the medical diagnosis 

sector, as it may affects the treatment received by the patients. Besides data 

dimensionality, classifiers such as Support Vector Machine (SVM) still lacks 

consistency in achieving an optimal performance due to improper kernel parameter 

settings. Commonly, the filter algorithm is frequently used for selecting relevant 

features due to its simple ranking strategies. However, most independent filter 

algorithms do not consider the intercorrelation between features, where a less 

dependent feature is the leading cause of why some features render irrelevant. 

Consequently, an imbalance number of features that could degrade the classification 

accuracy was produced. This problem can be alleviated using ensemble feature 

selection approach to identify the appropriate number of features by considering 

features dependency. In this study, an ensemble filters feature selection with 

harmonize classification algorithm has been proposed. The ensemble filters using 

Information Gain, Gain Ratio, Chi-squared and Relief-F are utilized with occurrence 

rate evaluation to identify the initial top-ranked features relevant for classification. A 

harmonize classification method is implemented using Particle Swarm Optimization 

(PSO) and SVM to synchronously determine the optimum kernel parameters and 

significant features as the optimal solution. The proposed method is evaluated on four 

medical datasets with different sizes in terms of accuracy, sensitivity, specificity, and 

Area under the Curve (AUC). Experimental results showed that the accuracy of the 

proposed method successfully increases significantly in each dataset by 96.15%, 

95.41%, 96.62% and 96.50% with an optimal solution than conventional SVM. Via 

10-fold cross-validation, the proposed method also signifies better classification 

performance compared to other existing methods. Therefore, the proposed method 

applies to handle high dimensional medical datasets for accurate disease prediction.  
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ABSTRAK 

Peningkatan ciri dalam set data berdimensi tinggi kekal sebagai cabaran 

terhadap analisis data dalam pelbagai bidang kajian terutamanya sektor diagnosis 

perubatan kerana ia boleh menjejaskan rawatan yang diterima pesakit. Selain dimensi 

data, pengelas seperti Mesin Sokongan Vektor (SVM) masih kurang tekal dalam 

mencapai prestasi yang optimum akibat ketidaksesuaian penggunaan parameter 

kernel. Kebiasaannya, algoritma tapisan lebih kerap digunakan untuk mengenalpasti 

ciri-ciri relevan kerana strategi peringkat yang mudah. Namun, kebanyakan algoritma 

tapisan tunggal tidak dapat mengambil kira interaksi antara ciri, dimana ciri yang 

kurang kebergantungan ialah punca utama sesuatu ciri menjadi tidak relevan. 

Akibatnya, ketidakseimbangan jumlah ciri yang boleh merendahkan ketepatan 

pengelas dihasilkan. Masalah ini boleh diatasi menggunakan pendekatan pemilihan 

ciri gabungan untuk memilih jumlah ciri yang optima dengan mengambil kira 

kebergantungan ciri. Dalam kajian ini, satu gabungan pemilihan ciri tapisan dengan 

algoritma pengelasan harmoni telah dicadangkan. Gabungan tapisan menggunakan 

Dapatan Maklumat, Nisbah Dapatan, Persegi Chi dan Lepasan-F digunakan bersama 

pengiraan kadar kekerapan untuk mengenalpasti ciri awal berperingkat tinggi yang 

relevan untuk pengelasan. Kaedah pengelasan harmoni diterapkan menggunakan 

Pengoptimuman Kerumunan Zarah (PSO) dan SVM untuk mengenalpasti parameter 

kernel dan ciri relevan yang optimum secara serentak sebagai solusi optimal. 

Keberkesanan kaedah cadangan telah dinilai menggunakan empat set data perubatan 

yang berlainan saiz dari segi ketepatan, kepekaan, kekhususan dan kawasan dibawah 

keluk (AUC).  Hasil kajian mendapati ketepatan kaedah cadangan berjaya meningkat 

kepada 96.15%, 95.41%, 96.62% dan 96.50% dengan solusi optimal oleh setiap set 

data berbanding SVM.  Melalui keesahan bersilang 10 lipatan, kaedah cadangan juga 

menandakan prestasi pengelasan yang lebih baik berbanding kaedah sedia ada. Oleh 

itu, kaedah cadangan ini dapat digunakan dalam mengendalikan set data perubatan 

berdimensi tinggi untuk diagnosis penyakit yang lebih tepat. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Overview 

Medical data analysis plays a significant role to diagnose various diseases and 

abnormality in different parts of the body such as breast cancer, blood cancer, 

lymphoma cancer, skin cancer, brain cancer, hearing disabilities and etc (Chugh, 2021; 

Saba, 2020; Gupta and Garg, 2020).  In recent times, machine learning has been widely 

adopted in medical sector to revolutionize the clinical decision making due to its 

capabilities to discover the hidden patterns of massive medical data as the supportive 

methods for common biopsies.  As examples, cancer is the top leading cause of tumour 

related deaths among people in the world including Malaysian (Cancer Research 

Malaysia, 2021).  Though, the survival rates can be improved if earlier diagnosis is 

conducted for early detection.  Moreover, several clinical reports stated that the 

common imaging tests such as computerized tomography (CT) scan, magnetic 

resonance imaging (MRI), positron emission tomography (PET) scan, mammography, 

ultrasound, and X-ray are sometimes lack of high diagnostic capability and painful 

procedures (Adane et al., 2019 and Oskouei et al., 2017).  Through machine learning, 

the human errors made by medical experts during diagnosis can be reduced by 

extracting and processing the information in medical data precisely in less required 

time. 

One of the prevalent machine learning models that have been widely applied 

in medical data analysis is classification.  Due to explosive increase of medical data, 

the amount of disease information has become accumulated into high dimensional data 

which resulting a complexity issues in medical diagnosis (Gupta and Garg, 2020; 

Garba and Harande, 2018).  Such massive amount of data could not be processed 

efficiently for an accurate prediction.   Furthermore, the presence of irrelevant features 

and redundant information in medical data are not considered properly in most studies.  
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Consequently, the classification accuracy may be degraded by the existence of 

irrelevant features and indirectly increase the computational time for diagnosis 

(Ghorbani and Ghousi, 2019).  Thus, the extraction of useful information from medical 

data is highly required for improving diagnosis and treatments.  

Apart from data dimensionality, the performance of classifier still can be 

influenced by the settings of kernel parameters in the training process (Raja and 

Pandian; 2020; Zhong et al., 2017; Sallehuddin et al., 2016).  This shows that a proper 

medical data analysis performance particularly relied on the quality of input data and 

the parameters of classifiers (Oskouei et al., 2017; Omar et al., 2012).  Therefore, this 

research attempts to improve the classification performance by utilizing feature 

selection prior to classification to first identify the irrelevant or redundant features and 

then determine the optimum significant features and classification parameters for 

optimal solution.  Support Vector Machine (SVM) is employed as classifier based on 

its robust performance in avoiding local minima and overfitting solutions.  

1.2 Problem Background 

Generally, various features are used in medical datasets to represent various 

disease prediction and medical diagnosis through classification.  Data pre-processing 

such as feature selection is a significant process to explore the medical information 

since the performance of classifier influenced by the quality of medical data known as 

the training samples (Omar et al., 2013; Ubaidillah et al., 2013).  However, such 

training samples tend to be ambiguous when an explosive number of input features 

expands.  In addition, certain features may consist of irrelevant and redundant 

information that increases the dimensionality of medical data.  An increased of 

dimensionality also resulting a complexity in processing the algorithm (Ali et al., 2019; 

Miao and Niu, 2016).  As a result, the memory space and computational time are highly 

consumed in processing the algorithm which indirectly degrade the accuracy of the 

classifier.  This situation has resulting challenges in diagnosing disease and 

interpreting data due to the inconsistency and confusing data patterns (Singh et al., 

2016; Taylor and Kim, 2011; Wang and Ma, 2009). 
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Several reports stated that the irrelevant and redundant features in high 

dimensional data are required to be eliminated to address the dimensionality issues 

(Zhong et al., 2017; Ghaemi et al., 2016; Singh et al., 2016).  In contrast, features with 

highest significance need to be identified in order to improve the classification 

performance.  Thus, an improved classification model with intelligent feature selection 

is required for handling and exploring the high dimensional medical data.  The 

classification model should perceive the ability to perform an accurate and 

computationally effective diagnosis with significant number of input features.  Since 

large amount of data can negatively affect the classification process, it is observed that 

a reduced set of features is sufficient to improve the accuracy of prediction.  This 

suggested that not all input features are relevant to be include in the training task as 

the classification may result a low performance when massive input features increase 

in the classifier (Prasad et al., 2018; Ghaemi et al., 2016).  For such reasons, feature 

selection approach is important to pre-process the data before classification task and 

must be considered to produce an effective medical data analysis. 

Feature selection refers to the process of selecting subset of features from a set 

of original features to represent the data.  It is an important process in reducing data 

with high dimensionality by eliminating the redundant and irrelevant features that may 

misguide the classification performance.  Feature selection can be categorized into 

filter, wrapper, and embedded algorithms (Zhong et al., 2017; Miao and Niu, 2016; 

Canedo et al., 2014; Guyon and Elisseeff, 2003).  Based on literature review 

conducted, the filter algorithm has outperformed the wrapper and embedded 

algorithms in terms of less computational complexity (Lyu et al, 2017; Chandrashekar 

and Sahin, 2014; Hira and Gillies, 2014; Shardlow, 2011).  The filter algorithm 

perceives the ability of improving the classification accuracy by evaluating the 

significance value of each input features using specific statistical measure or ranking 

evaluation.  This made the filter algorithm less complex and computationally faster 

since it does not involve any classifier algorithm which  is suitable for handling high 

dimensional data with explosive number of features (Bommert et al., 2020; Zhang et 

al., 2019; Hancer et al., 2018).  Listed are examples of the common filter algorithms 

recommended for medical data analysis such as Information Gain, Gain Ratio, Chi-
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squared and Relief-F (Bommert et al., 2020; Zhang et al., 2019; Urbanowicz et al., 

2018; Fahrudin et al., 2016).  

However, independent filter algorithm can be afflicted by several limitations.  

The major disadvantage of independent filter algorithm is the limited correlation 

between features (Chandrashekar and Sahin, 2014; Omar et al., 2014; Miao and Niu, 

2016; Bommert et al., 2020).  This is because most independent filter algorithms only 

focused on evaluating the intrinsic characteristics of features and neglecting the 

interactions between each input features.  As a result, the intercorrelation between 

features and features dependency is not considered in selecting features, but it 

produced less correlated features (Bommert et al., 2020; Hira and Gillies, 2015; Nancy 

and Balamurugan, 2013).  Moreover, imbalanced number of significant features are 

produced which causing the classifier to produce inaccurate prediction.  For this 

reason, this research is motivated to utilize an assemble of multi filters algorithm for 

feature selection to effectively eliminate any irrelevant and redundant input features 

prior to classification.    

Apart from the imbalance number of features, the performance of classifier 

such as SVM can also be influenced by the settings of kernel parameters values in the 

classification tasks (Wang and Chen, 2020; Huang et al., 2018; Yan and Jia, 2018).  

The commonly used kernel in SVM classifier is known as Radial Basis Function 

(RBF), where it requires two kernel parameters named kernel function parameter (y) 

and soft margin constant or the penalty factor (C) in order to perform the training task 

(Wang and Chen, 2020; Huang et al., 2018; Hsu et al., 2016).  The classification 

accuracy of SVM can dramatically decrease if the selection of these parameters is not 

properly selected.  At the same time, the selection of significant features can also be 

affected due to improper values of C and y.  Hence, it is necessary to optimize the 

selection of kernel parameters for accurate and optimal SVM classification.   

Various optimization algorithms have been employed to provide the optimum 

searching solution in determining the best kernel parameters for SVM classification 

model.  According to recent studies, Particle Swarm Optimization (PSO) is one of the 

most recommended searching methods for optimization due to its easy implementation 



 

 

5 

and adaptability to integrate with any classifier algorithms (Ghorbani and Ghousi, 

2019; Raj et al., 2018; Zhang et al., 2018).  Due to its less parameter usage and faster 

convergence rate, PSO can perceive better optimization ability effectively compared 

to other algorithms such as Genetic Algorithm (GA) and Ant Colony Optimization 

(ACO) which consumed much higher memory space due to high parameter usage and 

computational complexity (Moslehi and Haeri, 2019; Sakri et al., 2018; Neha and 

Vashishtha, 2016).  Based on this advantage, PSO is employed synchronously with 

SVM classification for optimizing the kernel parameters of SVM in order to obtain the 

optimal solution.  

At the same time, the process of optimizing SVM kernel parameters may also 

influenced the selection of significant features (Zhang et al., 2019; Huang et al., 2018; 

Neha and Vashishtha, 2016; Huang and Dun., 2008).  Recently, several studies 

reported that solution for synchronous optimization on both processes are highly 

suggested to determine the optimum number of significant features and kernel 

parameters simultaneously without affecting the classification accuracy.  Due to the 

imbalance selection of features, poor settings in kernel parameters and the incremented 

of computational complexity, the requirement for harmonize classification has 

becomes essential (Wang and Chen, 2020; Zeng et al., 2018; Tarle et al., 2016).  For 

this reason, this research is motivated to implement a harmonize classification method 

using PSO and SVM to optimize the selection of significant features and kernel 

parameters synchronously without minimizing the accuracy so that an optimal solution 

of high dimensional medical data classification can be achieved. 

Based on aforementioned problems and issues, several research gaps have been 

identified.  Firstly, most independent filter algorithm only focused on evaluating the 

intrinsic characteristics of features and neglecting features interactions (Bommert et 

al., 2020; Ali et al., 2019; Zhong et al., 2017 & Singh et al., 2016).  This indicates that 

independent filter algorithm still lack consideration on features dependency.  In 

consequence, imbalance number of selected features that contribute to inaccurate 

classifier prediction accuracy are produced, which made it difficult to observe features 

that truly significant for classification.  Secondly, the tuning of SVM parameters using 

grid search method required high parameters range which could led to computationally 
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prohibitive and sometimes infeasible (Wang & Chen, 2020; Huang et al., 2018; 

Srisukkham et al., 2017).  Hence, an optimal classification accuracy is impossible to 

be achieved when the optimization and classification processes are performed 

separately.  For this reason, this research is motivated to propose an ensemble filters 

feature selection using Information Gain (IG), Gain Ratio (GR), Chi-squared (CS) and 

Relief-F (RF) to effectively eliminate irrelevant features prior to classification without 

neglecting features dependency by considering the features occurrence and implement 

a harmonize classification method using PSO and SVM to synchronously optimize the 

selection of significant features and kernel parameters without degrading the accuracy 

based on Centre Composite Design (CCD) search method for optimal solution.  

In brief, the selection of optimum significant features from high dimensional 

data and a proper setting of SVM parameters relatively contribute an impact towards 

the classification accuracy performance.  It is highly important to control the quantity 

of input features for producing an accurate prediction and computationally low 

intensive classification model (Wang et al., 2019; Raj et al., 2016; Zhang et al., 2013).  

Besides, with an optimal number of features and kernel parameters, the classification 

model such as SVM can be generalized easily (Moslehi and Haeri, 2019; Huang et al., 

2018; Aladeemy et al., 2017).  Thus, the utilization of ensemble filters feature selection 

is highly necessary to identify the top significant features candidates for enhancing the 

efficiency of synchronous optimization as the optimal solution.  Overall, the proposed 

method aims to improve the classification accuracy of high dimensional medical data 

by effectively determine the optimal solution of SVM parameters and optimum 

number of significant features appropriate for classification without decreasing the 

accuracy. 

1.3 Problem Statement 

In machine learning, SVM classifier is one of the best predictive models that 

have been widely applied in medical data analysis due to its robust performances.  

However, an explosive increase of information and various input features has resulting 

high dimensionality issues with the existence of redundant and irrelevant features 
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which indirectly diminish the classification performance (Zhang et al., 2019; Prasad et 

al., 2018).  Regarding this, an appropriate diagnosis prediction has become challenging 

since the classification accuracy is highly depends on the quality of the medical data.  

Thus,  a reliable data pre-processing technique such as feature selection is required to 

improve the classification accuracy performance since it perceives the ability in 

handling features ambiguity and relevancy by evaluating the significance value of each 

input features before entering the classification process.  

An independent filter feature selection often selected an unbalance number of 

features which made it difficult to observe the features which are truly significant for 

classification (Wang and Chen, 2020; Yan and Jia, 2018; Huang et al., 2018).  Due to 

the unbalance selected features, SVM consequently failed to select a proper settings of 

kernel parameters and tends to produce a low classification performance when the data  

dimensionality increases (Zhang et al., 2019; Raj et al., 2016).  This observed that the 

unbalanced number of selected features and improper selection of SVM parameters 

may consequently degrade the accuracy of classification performance (Prasad et al., 

2018; Han and Bian, 2018).  Hence, an improved classification model that could 

dynamically produce the highest classification accuracy with optimal solution of 

classification parameters and optimal significant features is highly demanded. 

In addition, the process of feature selection and kernel parameters settings are 

dependent, in which an optimal SVM classification accuracy are most likely 

impossible to be achieved when both processes are performed separately (Wang and 

Chen, 2020; Huang et al., 2018).  This problem can be alleviated by implementing 

optimization method in searching for optimal solution.  According to studies, PSO is 

the most recommended searching method for optimization due to its capability for 

parallel processing (Wang & Chen, 2020; Huang et al., 2018; Srisukkham et al., 2017).  

Since the value of SVM parameters may influence the selection of significant features, 

it is necessary to determine the best SVM parameters and optimal number of 

significant features simultaneously.  Thus, an improved SVM classification model 

with reliable feature selection and parameter optimization method must be developed 

to produce an accurate medical diagnosis prediction without degrading the 
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classification accuracy.  The following hypothesis were derived to support the problem 

statement:  

“The accuracy of SVM classification model can be improved effectively by 

utilizing ensemble filters feature selection with occurrence rate evaluation and 

harmonize classification of PSO and SVM for optimal solution in high dimensional 

medical datasets.” 

1.4 Research Questions 

The research questions to support the hypothesis statement are as follows: 

(a) How does the ensemble filters feature selection identify the top ranked features 

and eliminate the irrelevant features from medical datasets?  

(b) How does the harmonize classification algorithm of PSO and SVM optimize 

the SVM parameters and selected features synchronously without affecting the 

accuracy?  

(c) Does the proposed method successfully improve the accuracy using optimum 

SVM parameters and significant features as the optimal solution of medical 

datasets? 

 

1.5 Research Aim 

This research aims to improve the classification accuracy with optimal solution 

in high dimensional medical datasets using ensemble filters feature selection with 

harmonize classification algorithm.  Ensemble filters feature selection using IG, GR, 

CS and RF is developed with occurrence rate evaluation to identify the initial top 

ranked features significant for classification.  Then, harmonize classification using 

PSO and SVM algorithm is employed as the optimal solution of medical datasets to 
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synchronously determine the optimum classification parameters and significant 

features without degrading the accuracy.  

1.6 Research Objectives 

The research objectives are presented as follows: 

(a) To propose ensemble filters feature selection using IG, GR, CS and RF with 

occurrence rate evaluation in order to identify the initial top ranked features 

from medical datasets relevant for classification. 

(b) To implement a harmonize classification algorithm using PSO and SVM to 

synchronously determine the optimum SVM parameters and optimum 

significant features from medical datasets with the highest training fitness. 

(c) To improve the classification accuracy of medical datasets using ensemble 

filters feature selection with harmonize classification algorithm of PSO and 

SVM in searching for optimal solution. 

 

1.7 Research Scopes 

The scopes of this research are presented as follows: 

(a) This research is analysed on four standard medical datasets with different 

dimensionality such as Breast Cancer dataset, Wisconsin Diagnostic Breast 

Cancer (WDBC) dataset, Lymphography dataset and Audiology dataset 

retrieved from UCI Machine Learning Repository at 

https://archive.ics.uci.edu/ml/datasets.php. 

(b) This research utilized four filter algorithms such as Information Gain (IG), 

Gain Ratio (GR), Chi-squared (CS) and Relief-F (RF) as ensemble feature 

selection to identify the initial top ranked features of medical datasets.  
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(c) This research implemented PSO and SVM algorithm for harmonize 

classification to determine the optimal solution of medical datasets.  

(d) This research is focused on employing SVM classifier to train and classify the 

optimum features of medical datasets into respective medical diagnosis. 

 

1.8 Research Significance 

Generally, the research is conducted to discover solutions to a certain issue in 

medical data analysis.  This research proposed a machine learning approach using 

ensemble filters feature selection with harmonize classification of PSO and SVM to 

improve the classification accuracy in high dimensional medical datasets.  The 

privilege of adopting machine learning in medical data analysis will contributes to 

medical center, medical institution and hospitals to significantly improve the reliability 

of high dimensional medical datasets in diagnosing diseases.  The utilization of 

ensemble filters feature selection will assists the medical experts in identifying the top 

ranked relevant information out of the existing information.  The significance of this 

research is to observe whether is it possible that medical data provides an important 

indicator to determine certain diseases as well as improving the prediction accuracy.  

Most research are focusing on classifying the medical data without emphasizing about 

the optimum number of significant information and improper classification parameters 

that must be address for establishing a reliable classifier with useful information.  

Another significance of this research is to discover how successful a classifier 

with ensemble filters feature selection and harmonize classification based on the 

improvement of classification accuracy in obtaining the optimal solution from the high 

dimensional medical datasets.  Besides that, the percentage of dimensionality 

reduction and classification performance are evaluated to illustrate the unseen 

interrelationship between optimal significant features in high dimensional medical 

datasets and accuracy performance for understandable clarification.  This research is 

highly beneficial in healthcare industry especially the Malaysia’s Ministry of Health, 

or Cancer Research Malaysia, where the prediction of disease probability such as 
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cancer, coronavirus disease 2019 (COVID-19) and other diseases are highly 

concerned.  Based on the human perspectives, a reliable medical data which consists 

of patients’ health information can be referred by both patients and families so that any 

possibilities regarding the disease progress can be prepared properly.  Therefore, the 

proposed method using ensemble filters feature selection with harmonize classification 

algorithm of PSO and SVM is essential in determining the optimal solution of medical 

datasets and possible in providing alternatives for disease diagnosis in Malaysia. 

1.9 Organization of Thesis 

The thesis is organized into six chapters. Chapter 1 presents a brief explanation 

on research overview, problem background, problem statements, research questions, 

research objectives, research scope and research significance.  Chapter 2 presents 

literature reviews on related machine learning algorithms where the reviews of current 

techniques and limitations on medical data analysis are described.   Based on the 

literature gathered, the solution to address the problems is presented.  Chapter 3 

explained the research methodology where all steps and processes involved in each 

phase is presented.  Chapter 4 presents the development of ensemble filters feature 

selection.  Chapter 5 presents the development of harmonize classification of PSO and 

SVM. The evaluation and validation of classification performance towards 

experimental datasets are presented in this chapter.  Lastly, the research findings and 

recommendations for future works are discussed and concluded in Chapter 6. 
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