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ABSTRACT 

The low strength at early ages poses a major challenge to cement replacement 

with high volume fly ash of concrete (HVFA). The attempts to address strength 

reduction of HVFA concrete have not yet framed as radical solutions, considering the 

engineering solutions and the economic cost. So, this study aimed to investigate 

strategies to use local waste materials, which are more abundant and less expensive, 

to compensate for the strength loss associated with using HVFA as cement 

replacement. Both glass bottle waste nano-powder (GBWNP), and effective 

microorganisms (EMs) may offer a promising material for increasing strength at early 

ages due to their availability and minimal cost. In addition, GBWNP has sufficient 

pozzolanic properties to assist the pozzolanic reaction that can compensate for the 

early age strength reduction associated with HVFA concrete. To achieve the study 

goals, a series of modified concrete were prepared with 50% fly ash (FA), as cement 

replacement, 10% EMs as mixing water replacement, and 2%, 4%, 6%, 8%, and 10% 

of GBWNP as nano additives. The fresh properties of the new synthesized mixes were 

tested in terms of slump value and fresh-state density. The hardened properties 

examined are mechanical strength including compressive, flexural, and split strengths 

at 3, 7, 28, 56, and 90 days. The modulus of elasticity and water absorption were 

evaluated at 28 days. To generate more knowledge about the microstructures of the 

new modified specimens, various technical tests, including scanning electronic 

microscope (SEM), the energy dispersive X-ray spectra (EDS), X-ray diffraction 

(XRD) and thermogravimetric analysis (TGA) at ages of 7 and 28 days. Results of the 

examined specimens show that the integrated addition of GBWNP and EMs 

significantly improves strength indexes at all the tested ages. The specimens with 10% 

EMs as mixing water replacement and 4% GBWNP demonstrate mechanical 

performance comparable with that of the control samples at almost all curing ages, 

whilst the mix prepared with 6% GBWNP outperformed the control mix of normal 

concrete at all curing ages. The microstructural analysis showed that hydration 

products increase, and the microstructure compactness and homogeneity enhance by 

inclusion both GBWNP and EMs, especially in case of the inclusion of 10% EMs and 

6% GBWNP. Furthermore, a decreasing trend of calcium to silicon ratio (Ca:Si) and 

calcium to aluminium ratio (Ca:Al) due to the inclusion of GBWNP while an 

increasing trend of silicon to aluminium ratio (Si:Al) was observed, which confirm the 

role of GBWNP to boost FA to react faster, hence, improving strength properties. By 

employing fly ash and glass bottle waste, this study also seeks to contribute to the 

improvement of the environment by encouraging the recycling of waste in concrete 

sectors, providing efficient solutions to the landfill problems. 
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ABSTRAK 

Kekuatan yang rendah pada usia awal menimbulkan cabaran besar kepada 

penggantian simen dalam konkrit dengan kandungan tinggi abu terbang (HVFA). 

Percubaan untuk menangani pengurangan kekuatan konkrit HVFA belum lagi 

dirangka sebagai penyelesaian radikal, memandangkan penyelesaian kejuruteraan dan 

kos yang ekonomi. Jadi, kajian ini bertujuan untuk menyiasat strategi untuk 

menggunakan bahan buangan tempatan, yang lebih banyak dan lebih murah, untuk 

mengimbangi kehilangan kekuatan yang berkaitan dengan penggunaan HVFA sebagai 

pengganti simen. Kedua-dua serbuk nano sisa botol kaca (GBWNP), dan 

mikroorganisma berkesan (EMs) mungkin menawarkan bahan yang menjanjikan 

untuk meningkatkan kekuatan pada peringkat awal umur kerana ketersediaannya dan 

kos yang minimum. Di samping itu, GBWNP mempunyai sifat pozzolanik yang 

mencukupi untuk membantu tindak balas pozzolanik yang boleh mengimbangi 

pengurangan kekuatan pada usia awal yang dikaitkan dengan konkrit HVFA. Untuk 

mencapai matlamat kajian, satu siri konkrit yang diubah suai telah disediakan dengan 

50% abu terbang (FA), sebagai pengganti simen, 10% EMs sebagai pengganti 

bancuhan air, dan 2%, 4%, 6%, 8%, dan 10% daripada GBWNP sebagai bahan tambah 

nano. Sifat segar campuran tersintesis baharu ini kemudian diuji dari segi nilai 

kericihan dan ketumpatan dalam keadaan segar. Sifat keras yang dikaji adalah dari segi 

kekuatan mekanikal termasuk kekuatan mampatan, lenturan, dan tegangan pada 3, 7, 

28, 56, dan 90 hari. Modulus keanjalan dan penyerapan air telah dinilai pada 28 hari. 

Untuk menjana lebih banyak pengetahuan tentang mikrostruktur spesimen baharu 

yang diubah suai, pelbagai ujian teknikal, termasuk pengimbasan elektronik 

mikroskop (SEM), spektrum sinar-X penyebaran tenaga (EDS), pembelauan sinar-X 

(XRD) dan analisis termogravimetrik (TGA) pada umur 7 dan 28 hari. Keputusan 

daripada spesimen yang diperiksa menunjukkan bahawa penambahan bersepadu 

GBWNP dan EM meningkatkan indeks kekuatan dengan ketara pada semua peringkat 

umur yang diuji. Spesimen dengan 10% EMs sebagai pengganti air bancuhan dan 4% 

GBWNP menunjukkan prestasi mekanikal yang setanding dengan sampel kawalan 

pada hampir semua umur pengawetan, manakala campuran yang disediakan dengan 

6% GBWNP mengatasi prestasi campuran kawalan biasa konkrit pada semua 

peringkat umur pengawetan. Analisis mikrostruktur menunjukkan bahawa produk 

penghidratan meningkat, kepadatan dan keseragaman mikrostruktur bertambah 

dengan kemasukan kedua-dua GBWNP dan EMs, terutamanya dalam kes kemasukan 

10% EMs dan 6% GBWNP. Tambahan pula, corak penurunan nisbah kalsium kepada 

silikon (Ca:Si) dan nisbah kalsium kepada aluminium (Ca:Al) disebabkan oleh 

kemasukan GBWNP manakala corak peningkatan nisbah silikon kepada aluminium 

(Si:Al) telah diperhatikan, yang mengesahkan peranan GBWNP untuk menggalakkan 

FA untuk bertindak balas dengan lebih pantas, oleh itu, meningkatkan sifat kekuatan. 

Dengan menggunakan abu terbang dan sisa botol kaca, kajian ini juga bertujuan untuk 

menyumbang kepada penambahbaikan alam sekitar dengan menggalakkan kitaran 

semula sisa dalam sektor konkrit, menyediakan penyelesaian yang cekap kepada 

masalah tapak pelupusan. 
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CHAPTER 1       

 

 

INTRODUCTION 

1.1 Introduction and background of the problem 

Globally, diverse concretes are still the major manufactured materials that are 

predominantly consumed worldwide other than water [1, 2]. Cement is a vital 

component in concrete production, but in recent decades many challenges facing 

concrete completely based on Ordinary Portland Cement (OPC) have begun to appear.  

As a result of the increase in the complexities of construction environments, durability 

became represents a concern for conventional concrete. Besides that, the 

environmental concerns related to cement production increase continuously, especially 

in terms of carbon dioxide (CO2) footprint. In accordance with the 2015 Paris 

Agreement, global carbon emissions from the cement industry must be reduced by at 

least 16% by 2030 if Earth is to remain within 1.5 °C or 2 °C of pre-global warming 

[3]. However, with continuous urban land expansion, population growth and economic 

development, statistics indicate that global cement production will increase from the 

current 4.08 billion tonnes to 5 billion tonnes in the next 30 years [4]. Furthermore, in 

accordance with the Global Commission on the Economy and Environment, if 

developing countries increase their infrastructure to the current global average levels, 

then the construction industry will emit 470 gigatonnes of CO2 into the atmosphere by 

2050. Apart from producing massive amounts of greenhouse gases (e.g. CO2, SOx and 

NOx emissions) and consuming high amounts of energy during the heating process, 

cement contributes to rapid landscape degradation, dust production during 

transportation, noise generation in quarries and raw material exhaustion [5]. All these 

conditions are major environmental issues that exert an impact on ecosystems that is 

critical to human well-being [6].  

Conventional concrete demonstrates poor performance in hostile 

environments, particularly in the case of marine, coastal, and acid rain-exposed 
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structures. Dams, concrete sidewalks, bridge posts, underground concrete foundations, 

and highway tunnels, especially those submerged in soil or seawater or near coasts or 

manufacturers that release chemical oxides, have deteriorated dramatically due to acid 

and sulphate attacks in recent decades. Cement-based concrete is sensitive to chemical 

attacks because of the calcium compounds present. In addition, the high porosity and 

crack ratio can encourage water and chemical ions to infiltrate into the matrix of the 

concrete, which can result in damage to the components of the concrete as well as 

corrosion of the reinforcing steel bars. In the case of the freeze-thaw cycle action, water 

trapped inside concrete matrix induces internal stress inside the matrix, leading to the 

development of further cracks. Furthermore, the enhanced microstructural instability 

and rapid disintegration that arise from calcium compounds dissolving rapidly in the 

acidic environment further complicates the situation. As a result, the chemical attack 

raises worries about the durability of cement-based concrete, which places a threat on 

a significant number of structures that are composed of concrete. As a result, the 

development of supplementary cementitious material-based concrete is one of the 

radical solutions to meet the challenges of durability. 

Using a low percentage (<30%) or a high percentage (>30%) of fly ash (FA) 

in concrete is a pioneering move that has already approach to develop high durable 

concrete [7].  Even though FA has been the subject of extensive research over the past 

few decades, experts have found some contradictory findings regarding the mechanical 

and durability properties of concrete. Furthermore, the characteristics of FA vary based 

on the source. It is accepted that FA qualifies as an supplementary cementitious 

materials (SCM) and can be substituted for cement in the production of cementitious 

materials[8]. Several studies revealed FA enhances workability, reduces hydration 

heat and thermal cracking in cementitious materials at early ages, and improves the 

mechanical and durability properties of cementitious composites primarily at later 

ages[9, 10]. FA also decreases bleeding, which makes concrete more workable[11]. 

During the hydration process, the binder causes the concrete to shrink, where high 

shrinkage can lead to significant cracks in the structure of the concrete. So, the slow 

pozzolanic nature of FA is advantageous for shrinkage reduction[12]. Using high 

volumes of FA in concrete, specifically around 50% as cement replacement, reduced 

shrinkage by 30% [13]. On another aspect, Calcium hydroxide (CH) is considered a 

compound that has a high propensity to react with aggressive ions, which leads to the 
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rapid deterioration of concrete due to  a series of undesirable reactions. However, by 

converting CH to cementitious gels, through reacting with silica and aluminum present 

in FA, leads to fill pores and refine cracks, thus enhance concrete durability. Beside 

consumption of CH, filling pores and cracks, concrete resistance to aggressive ions 

penetration enhances, thus concrete durability increases [14]. However, since FA 

content's pozzolanic reaction is slower than OPC, high−volume fly ash (HVFA) 

concrete exhibits a marked decline in strength properties at early ages[7]. Even though 

the strength decreases at early ages, the strength gain is maintained for a significantly 

longer period of time compared to normal concrete [15]. That means FA requires an 

extended curing period to hydrate, which causes delays in the pursuance of 

construction applications. Overcoming the decline in strength at early ages is still a 

challenge, and no precise solutions have yet been framed with clear standards and 

limitations. 

Several studies have provided various solutions to overcome the reduction in 

strength of  HVFA at early ages. Some studies have suggested increasing the fineness 

of FA particles to increase its surface area, accelerating the pozzolanic reaction and 

forcing the fine FA particles to act as seeds and fillers [16-18]. Other studies have 

proposed increasing the alkalinity of the concrete mixture by adding extra lime (CH) 

to catalyse FA particles and make them react faster [19]. Amongst all these methods, 

nanomaterials have sparked the most interest due to their remarkable capability to fix 

concrete flaws at early ages, particularly those caused by FA. A wide range of nano-

additives, such as nano-SiO2, Al2O3, Fe2O3, Fe3O4, ZnO2, ZrO2, Cu2O3, CuO, CaCO3, 

SF and CTs [20-25], have been harnessed due to their remarkable effects on improving 

the strength properties and durability of nano-modified concrete. Recently, the trend 

is to using waste materials sush as waste ceramic and glass, which have pozzolanic 

properties,  as nanomaterials to overcome the flaws of concrete including HVFA 

concrete.  The presence of noncrystalline aluminium and silicon (with high amorphous 

silica content) in pulverised glass waste from bottles makes such waste an effective 

pozzolanic material [26, 27]. Research on using glass bottle waste as nanomaterial 

additive to improve the early strength properties of cement is still insufficient. 

However, the studies that conducted on using glass bottle waste nano powder 

(GBWNP), including Huseien et al. study [28] revealed that adding glass bottle waste 

nano-powder exerts a positive effect on compressive, flexural and splitting tensile 
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strengths, modulus of elasticity (MOE) and water absorption (WA). In accordance 

with the aforementioned studies [27-30], the improvement in strength and 

microstructure properties may be attributed to the pozzolanic reaction process, the 

production of extra C−S−H gel and the physical filling effect of pores and cracks, 

which reflect positively on the strength properties, homogeneity and  compactness of 

cementitious systems.  

In the last decade, the concept of self-healing concrete based on effective 

microorganisms (EMs) have developed. Effective microorganisms have shown a 

significant ability to improve concrete durability and restore the strength of damaged 

concrete. Besides, the EMs were also exhibited an ability to improve the strength 

properties even if undamaged concrete [31, 32].  Several researchers reported that 

incorporating 3%–15% EMs into the concrete matrix enhanced mechanical properties 

and microstructure at early ages [31, 33-35]. The enhancement of strength properties 

and microstructure at early ages was hypothesised to be due to calcite precipitation by 

EMs inside the matrix, increasing compressive [31, 36], splitting tensile and flexural 

strengths [36-38]. However, most studies that indicated the effect of microorganisms 

on mechanical strength were conducted on cement pastes, mortars or low-volume FA 

concrete. Besides, there is lack in understanding the mechanism of the EMs role in 

improving the strength performance of undamaged concrete. Furthermore, the 

investigation of the efficacy of effective microorganisms in improving the strength 

properties of HVFA concrete at early ages still not exist. 

1.2 Problem statement 

Fly ash (FA) is considered a pozzolanic material. It contains high content of 

silica and aluminium content that can react chemically with calcium hydroxide (CH) 

in presence of water to produce extra cementitious gels. However, the reactivity of 

silica and aluminium content embedded in FA is lower than cement particles, which 

means that the pozzolanic reaction of FA particles takes long time to react more than 

that in cement. Furthermore, the activation FA content depends on the concentration 

of calcium hydroxide that raise the alkalinity of concrete, thus forcing FA particle to 
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react faster. However, when the replacement level of FA increases the calcium content 

decreases, thus, the CH formed by cement hydration became insufficient for activating 

all the FA contents to trigger pozzolanic reaction [39, 40]. Consequently, many 

unreacted FA particles remained in the paste, causing weaker bonds between 

aggregates, increasing the pore size and total porosity of the matrix, reducing 

mechanical strengths in consequence [19]. However, with time progress, more CH 

content precipitated around the unreacted FA particles, and the pozzolanic process 

continuous, thus the unreacted FA particles react [41]. But the long time required to 

reach the targeted compressive strength hinders progress in the implementation of the 

construction applications. Therefore, the search for cost-effective solutions to 

overcome the reduction associated with replacing OPC with high-volume fly ash 

(HVFA) has become an urgent need. 

Several previous studies addressed various solutions to overcome the reduction 

in strength in early ages of concrete containing a high-volume fly ash such as increase 

the fineness of FA particles [16-18] and increasing the alkalinity of the concrete 

mixture by adding extra lime (CH) [19]. Among all of these methods, nanomaterials 

have sparked the most interest due to their remarkable ability to fix concrete flaws at 

early stage, particularly those caused by fly ash. However, most of the nanomaterials 

that have been introduced are rare or expansive to prepare. So, the utilize of local waste 

such as GBWNP and  EMs seems to be more effective solution. Studies focusing to 

use GBWNP and EMs to improve the early strength properties of HVFA concrete is 

still not sufficient. Besides, the previous studies had examined the effect of the EMs 

and nanomaterials on mechanical performance of cement-based concrete separately. 

Thus, this research aims to improve the mechanical and microstructure properties of 

HVFA concrete by the integration of both glass bottle waste nano-powder and 

effective microorganisms.  

1.3 Research Objectives 

Based on the abovementioned problem statement the following objectives are 

set: 
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(a) To determine the optimum percentage of GBWNP that achieved better 

strength performance of HVFA concrete at early ages. 

(b) To overcome the reduction in mechanical performance resulting due to 

replacing cement with 50% of FA by using GBWNP and EMs.  

(c) To investigate the role of both GBWNP and EMs in enhancing the 

microstructure properties of HVFA concrete. 

1.4 Research Scope and Limitation 

This research (experimental) examined the influence of co-adding both glass 

bottle waste nano powder and effective microorganisms on the possibility of 

developing a new modified concrete with enhanced mechanical strength and 

durability. This novel modified concrete were made by combining OPC, FA, and 

GBWNP as binders with a mixture of tap water and EMs broth as a mixing solution. 

The high-volume fly ash modified concrete has been synthesized by replacing 50% of 

OPC with FA, that has been collected from the Tanjung Bin power station in Johor 

(Malaysia). Based on a literature review, fly ash as cement replacement levels of more 

than 50% leads to lack of calcium  content, thus not guarantee achieving the target 

strength. Therefore, FA content has been fixed at the level of 50%. The water-cement 

ratio also was fixed at 0.50 to achieve a comparison purpose between the different 

synthesized mixes and avoid the side effects of change of w/c ratio. Similarly, based 

on a literature review, effective replacement levels of EMs have been indicated in the 

range of 5-15% of the mixed water content, so the content of the EM solution has been 

kept at 10 % wt. of water mixing. Then, various percentages of glass bottle waste (2, 

4, 6, 8 and 10% wt. of binder) have been added to achieve the target strength between 

30-40 MPa at 28 days. 

The physical, chemical, and mineralogical characteristics of raw materials 

were determined in order to get a better understanding of their properties. The effects 

of co-addition of glass bottle waste nano-powder (2, 4, 6, 8 and 10% wt. of binder) and 

EMs on workability, mechanical properties and microstructures of synthesized 
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modified concrete were examined,  and the optimum percentage of glass bottle waste 

nano-powder has been determined. The proportions of the mix were calculated using 

the method described in Marsh (2007), also known as the Department of Environment 

(DOE) method. The control mix were then calibrated to achieve a compressive 

strength higher than 30 MPa after 28 days with a slump between 30−60 mm. 

The workability of concrete was evaluated in terms of slump to provide an 

assessment of the ease of handling of concrete in its fresh state in accordance with 

ASTM C143 [42]. Compressive strength test was conducted in accordance with ASTM 

C109 specifications [43], and due to the compressive strength is the most critical factor 

in concrete, the optimal percentage of GBWNP was determined on the basis of 

compressive strength results. Depending on these results, the flexural strength, 

splitting tensile strength, modulus of elasticity (MOE) and WA tests and 

microstructural tests were preceded with the optimal percentage of GBWNP. Flexural 

strength was tested in accordance with ASTM C78 [44]. Tensile strength was 

evaluated in accordance with ASTM C496 [45]. MOE was examined in accordance 

with ASTM C469/C469M [46]. The compressive , splitting tensile, flexural strength 

were determined at 3, 7, 28, 56 and 90 days. The modulus of elasticity, hardened 

density and water absorption were determined at 28 days. Thermal Gravimetric 

Analysis (TGA), X-ray Diffraction (XRD), and scanning electron microscopy (SEM) 

measurements were used to evaluate the microstructures of the designed mixes at 7 

and 28 days. In evaluating the available literature, the International Union of 

Laboratories and Experts in Construction Materials, Systems, and Structures (RILEM) 

was used. Furthermore, the findings of the study have been compared to similar 

research to provide further evidence of their precision. 

1.5 Significance of study 

As abovementioned, this research intends to generate new information on the 

use of glass bottle waste nano powder, which is considered widely available, 

inexpensive, and provides environmental solutions to reduce solid waste. Furthermore, 

it will contribute to the advancement of standard requirements for multi-blend 
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modified concrete through systematic techniques of sample preparation from waste 

materials, suitable and meticulous materials characterizations, and subsequent data 

analysis. This understanding is likely to spur the development of environmentally 

friendly and low-cost modified concrete for a wide range of applications in the 

construction industry. This would be extremely beneficial to Malaysia's long-term 

growth, as waste disposal issues related to landfilling would be avoided and 

minimised. The novel findings of this study are expected to provide a foundation for 

future research and improved understanding of the behaviour of a multi-blend 

modified concrete made from waste in a cost-effective and environmentally friendly 

manner. 

1.6 Thesis Organization 

Chapter 1 provided introduction, background of the problem, problem statement, 

study's objectives, scope and limits, and significance of the study. 

Chapter 2 conducted a thorough analysis of the available relevant literature and 

covered the features of modified concrete and pozzolanic materials. It also summarised 

prior researches on FA, EMs, and nanomaterials-based modified concrete. This 

chapter was also outlined the study's gaps.  

Chapter 3 highlighted a thorough discussion of the materials and sample synthesis 

procedures, as well as the tests utilised to characterise the samples. The basic principles 

of several tests were emphasised, which are important for evaluating the performance 

of modified concrete. Furthermore, characterized the physical, mineral and chemical 

properties of OPC, FA, EMs, and GNP in details. The characterization of coarse and 

fine aggregate also provided in this chapter. 

Chapter 4 presented the significant experimental outcomes and discussions on the 

fresh and hardened properties of modified concrete. The results of workability/slump, 

the compressive strength, splitting tensile, flexural strength, modulus elasticity and 

water absorption were presented in discussed. Moreover, the microstructures of the 
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new designed concretes were revealed using SEM images, EDS analysis, TGA/DTA, 

and XRD spectra, and describing the percentage and type of hydration products for 

each mixture. 

Chapter 5 concluded the thesis and provided some recommendations for further 

research in modified concrete using waste materials.  
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