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ABSTRACT 

Diagnosing data or object classification for magnetic resonance images is 

important in image segmentation especially data which is less effective to be 

identified namely low-grade tumors or cerebrospinal fluid (CSF).The aim of this 

thesis is to address the aforementioned problems associated with missing data in 

MRI images and noisy of MRI images that required more processing times. This 

thesis focus on segmentation of brain tumor and CSF classification of four-

dimensional MRI images. Three datasets called Light Field Database (LFD) with 

improved accuracy of images and increased resolution have been created. A hybrid 

k-nearest neighbours (k-NN) framework with time complexity that consists of three 

techniques namely GrabCut support vector machine (GCSVM) and scale invariant 

feature transform (SIFT), hidden Markov model of k-mean clustering (HMkC) and 

k-NN, and correlation matrices of discrete Fourier transform (CM-DFT) have been 

proposed.  Firstly, GCSVM and SIFT technique is a combination of three methods 

namely the GrabCut, Support Vector Machine and Scale Invariant Feature 

Transform. This result of the technique is 99.9% for SVM accuracy, 4606 for 

GrabCut segmentation of Maximum Flow, 50625 and 50168 for Nodes of Image 

Pixel and edges respectively, and 2.29 seconds for computational time.   For SIFT by 

using LFD dataset, the performance of distance value in the segmentation is 1.464, 

1.215 and 1.23 for dataset-I, dataset-II, dataset-III respectively. Meanwhile, 

computational time for dataset-I, dataset-II and dataset-III is 1.47 seconds, 1.88 

seconds, and 1.35 seconds respectively.  Secondly, HMkC and k-NN resolves the 

classification problem using the Iterated Condition Mode (ICMM) with k-mean 

clustering algorithm and k-NN algorithm. The classification result of the technique 

for the accuracy, sensitivity, specificity and computational time is 99.83%, 99.99%, 

99.8%, and 14.9 seconds respectively. Thirdly, CM-DFT technique resolves the 

missing data imputation problem by using cross correlation of lagged hybrid k-NN 

with DFT (Hk-NN-DFT) to enhance the MRI images. The technique generates the 

not a non-missing values in terms of multiplication of 1100-3000 and 99.84% for the 

accuracy of missing data in the image. The missing ratio result of imputed missing 

data in the images after retrieving the missing ratio of dataset-I, II, and III is 0.9815 

with the 1.533 second of computational time. These three techniques are useful to 

improve the proposed hybrid k-NN framework to ensure that the classification of 

brain tumor (low grade tumors) and CSF in images is conducted easily. 
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ABSTRAK 

Mendiagnosis data dan klasifikasi objek bagi imej resonans magnetik (MRI) 

sangat penting dalam segmentasi imej terutama data yang kurang efektif untuk 

dikenalpasti iaitu tumor gred-rendah atau cecair serebrospinal (CSF). Matlamat tesis 

ini adalah untuk menangani masalah yang disebutkan di atas yang berkaitan dengan 

kehilangan data dalam imej MRI dan hingar dalam imej MRI yang memerlukan lebih 

masa pemprosesan.  Tesis ini fokus kepada segmentasi tumor otak dan klasifikasi 

CSF bagi imej MRI empat dimensi. Tiga set data dipanggil Pangkalan Data Medan 

Cahaya (LFD) dengan ketepatan imej yang diperbaiki dan resolusi yang ditambah 

telah dihasilkan. Satu rangka kerja hibrid kejiranan k-terhampir (k-NN) dengan 

kompleksiti masa yang terdiri daripada tiga teknik iaitu mesin vektor sokongan 

GrabCut (GCSVM) dan transformasi ciri invarian skala (SIFT), model Markov 

tersembunyi bagi pengklusteran k-min (HMkC) dan k-NN, dan matriks korelasi 

transformasi Fourier diskrit (CM-DFT) telah dicadangkan. Pertama, teknik GCSVM 

and SIFT ialah gabungan tiga kaedah iaitu GrabCut, Mesin Vektor Sokongan dan 

Transformasi Ciri Invarian Skala. Keputusan teknik ini ialah 99.9% untuk ketepatan 

SVM, 4606 untuk segmentasi GrabCut bagi Aliran Maksimum, 50625 dan 50168 

masing-masing untuk Nod Piksel Imej dan pinggir, dan 2.29 saat untuk masa 

pengiraan.  Bagi SIFT dengan menggunakan set data LFD, prestasi nilai jarak dalam 

segmentasi ialah 1.464, 1.215 dan 1.23 masing-masing untuk set data t-I, set data-II, 

set data-III. Sementara itu, masa pengiraan untuk set data-I, set data-II dan set data-

III masing-masing ialah 1.47 saat, 1.88 saat dan 1.35 saat. Kedua, HMkC dan k-NN 

menyelesaikan masalah klasifikasi menggunakan Mod Keadaan Berulang (ICMM) 

dengan algoritma pengkelasan k-min dan algoritma k-NN. Keputusan teknik 

pengkelasan bagi ketepatan, sensitiviti, spesifisiti dan masa pengiraan masing-

masing ialah 99.83%, 99.99%, 99.8%, dan 14.9 saat. Ketiga, teknik CM-DFT 

menyelesaikan masalah imputasi data yang hilang dengan menggunakan korelasi 

silang k-NN hibrid tertinggal dengan DFT (Hk-NN-DFT) untuk meningkatkan imej 

MRI. Teknik ini menghasilkan nilai bukan tidak hilang dari segi pendaraban 1100-

3000 dan 99.84% untuk ketepatan kehilangan data dalam imej. Keputusan nisbah 

kehilangan data bagi dalam imej selepas mendapatkan semula nisbah kehilangan data 

bagi set data-I, II, dan III ialah 0.9815 dengan masa pengiraan 1.533 saat. Ketiga-tiga 

teknik ini berguna untuk menambah baik rangka kerja hibrid k-NN yang 

dicadangkan untuk memastikan klasifikasi tumor otak (tumor gred rendah) dan CSF 

dalam imej boleh dijalankan dengan mudah. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Overview 

Digital image processing involves the use of digital computers to enhance 

images by employing algorithms (Chakravorty, 2018). Digital image processing has 

many benefits over analog image processing. It allows a vast range of algorithms to 

be applied to the input data and avoids noise production or distortion problem during 

processing. Several digital image processing applications exist in the military, 

agriculture, industry, and medical sciences (Rafael C, and Gonzalez, 2018). Medical 

images are captured and stored digitally (Elnakib et al., 2011), and the use of digital 

image processing in medical sciences has become necessary for identifying different 

types of diseases such as brain tumors and cerebral spinal fluid leakage.  

 

Image segmentation is one of the most exciting and challenging image 

processing techniques used in medical imaging applications, especially in magnetic 

resonance imaging (MRI), computed tomography (CT) scans, and X-rays (Khedaskar 

et al., 2018). Image segmentation is a vital part of image processing and computer 

vision applications. In recent years, the application of image processing techniques 

has rapidly increased in the computing and medical fields. However, diagnosing an 

image for a disease is a tedious and time-consuming task, especially in the 

identification of an object‘s regions, edges, and abnormal shapes and colors in MRI 

or CT scans by radiologists. Image segmentation divides the image into different 

region forms (Elnakib et al., 2011). Medical image segmentation plays a vital role in 
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many medical applications such as surgery, post-surgical assessment, classification, 

detecting abnormalities in the human body, etc. (Zhang, 2007).  

 

There are multiple methods of automatic and semi-automatic image 

segmentation, but most of them have weaknesses because of unknown noise 

presence, noisy images, poor image contrast, inhomogeneity, and fewer identified 

boundaries in medical images (Balafar et al., 2010). Typically, medical images 

contain complex structures, and their accurate segmentation results are necessary for 

clinical diagnosis (Balafar et al., 2010). The precise segmentation of an image is most 

important for classifying tumor, cancer, edema, cerebrospinal fluid (CSF), and 

necrotic tissues. One such complicated and challenging procedure is brain image 

segmentation. MRI is a unique imaging technique that helps radiologists classify the 

abnormalities in different brain areas in the early stages of their development. 

However, classifying tumor development in its initial stages or CSF in the brain is 

difficult to achieve by using MRIs. 

 

Classifying CSF location is one of the biggest challenges in medicine and 

neurosurgery (Prosser et al., 2011). MRI is less effective in tracking the location of 

CSF leakage and has difficulty showing where it is deposited in the brain. All MRI 

noisy image scans are susceptible to artifacts; the previous traditional three 

dimensional MRI image segmentation method is insufficient to find the location of 

CSF and low-grade tumor accurately (Kranz et al., 2016). Primarily health 

professionals suggest nasal fluid to identify the CSF leak by detecting a protein, but 

still, there is a need for MRI and CT scans so that the position and depth of the tumor 

and CSF leakage may be found. Due to this problem of low-grade tumor and CSF 

identification, numerous researchers have tried to find reliable techniques for tumor 

classification.  
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Another approach used in digital image processing is machine learning (ML). 

ML is the study of computer algorithms often characterized by how algorithms learn 

through experience to make more accurate predictions. There are four basic 

approaches used in ML: supervised learning, unsupervised learning, semi-supervised 

learning, and reinforcement learning. The type of algorithm data scientists choose to 

use depends on what type of data they want to predict. ML algorithms develop a 

model based on sample data known as training data to make predictions or decisions 

without being explicitly programmed to do so (Angra and Ahuja, 2017). Several 

applications of ML algorithms exist in situations where it is challenging to develop 

conventional algorithms and use them to perform tasks (Diksha et al., 2017).  

 

Tumor classification in MRI images is one of the common issues in the 

medical field, especially in neurosurgery (Rajasekaran and Gounder, 2018). MRI is a 

widely used medical technology for diagnosis of various tissue abnormalities and 

classification of tumors. Various techniques and classification methods have been 

developed to identify tumors in MRI images but these approaches have weaknesses 

when used to find a small or low-grade tumor. The active development in 

computerized medical image segmentation has played a vital role in scientific 

research. This helps doctors to quickly and easily decide the necessary treatment to 

give. Brain tumor and CSF leak segmentation is a hot point in the research field of 

information technology. The process of segmentation for brain tumor segmentation is 

motivated by assessing tumor growth, treatment responses, computer-based surgery, 

radiation therapy treatment, and developing tumor growth models. Therefore, a 

computer-aided diagnostic system is meaningful in medical treatments to reduce the 

workload of doctors and provide accurate results (Rajasekaran and Gounder, 2018). 

Due to the problem of accurate result, this thesis tries to improve the classification 

method. There are three different methods used in this thesis. The first method is 

producing the support vector machine (SVM) and GrabCut for segmenting low-grade 

tumors and CSF. The second method is used for feature extraction, matching the 

image distance and scaling the images using the scale invariant feature transform 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Training_data
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(SIFT). The third method is producing a combination of the hidden Markov model 

(HMM) and k-mean clustering algorithm for classification of tumor and CSF in MRI 

images. The combination of these methods will create a hybrid technique to classify 

low-grade tumors and CSF in MRI images. 

The k-nearest neighbours (k-NN) is a supervised machine learning algorithm 

used to interpret non-parametric machine learning algorithms. It produces relatively 

high quality and competitive results. The algorithm is multipurpose and can be used 

to figure out classification and regression issues. The k-NN algorithm is used to 

determine and apply good classifiers to classify tumor or CSF present or absent in 

MRI images. This thesis applied the k-NN algorithm for classifying segmented MRI 

images and identifying low-grade tumor pixel and non-tumor pixels as well; the same 

method was applied for CSF MRI segmented images (Maleki, 2021). HMM is also a 

good approach for classification although this thesis applied k-NN algorithm to 

achieve accurate results for low-grade tumor and CSF. The basic idea of this 

approach is the consecutive use of the HMM and KNN algorithms. To check for the 

existence or absence of a tumor, the probabilities of both transition states are first 

calculated using the HMM classifier. The KNN algorithm is used to choose between 

the two most likely possibilities of classification by HMM. In HMM, the difference 

between the maximum probability and the second is smaller than the threshold 

determined by HMM and training samples (Wang and Ju, 2008). 

Missing data imputation in MRI images is one of the common problems 

nowadays. Due to this problem, numerous researchers and scholars try to overcome 

the issue of missing data through different techniques and improve the k-NN 

classification. The idea of the k-NN algorithm is not new, but finding the missing 

values is mainly used in classification (Machhale et al., 2015). There are two methods 

to cope with tumor and CSF classification in MRI datasets and missing values in k-

NN algorithm classification. The first method is producing a hybrid k-NN algorithm 
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for classification and the second is overcoming the missing values in the k-NN 

algorithm.  

Developing and improving a hybrid k-NN algorithm for classification can be 

helpful to overcome these problems since the k-NN classifier is always easy to obtain 

for classification. Therefore, improving the k-NN classifier in the learning process is 

expected to result in higher image accuracy, better tumor and CSF classification, and 

improved missing data extraction and classification performance. This is the main 

idea behind all proposed approaches in this thesis. Classification of a hybrid k-NN 

algorithm is a well-known technique used for tumor and CSF classification to 

improve the accuracy of an image and reduce the imputation of missing data problem 

(Dritsas et al., 2018). Hybrid k-NN algorithm for classification aims to classify and 

remove noisy, nonlinear, and irrelevant data while other techniques are used to extract 

the missing data in MRI datasets. This thesis imputes the missing data of MRI 

datasets and increases the accuracy of images in the investigation of low-grade tumor 

and CSF classification. It improves the performance of the proposed hybrid k-NN 

based classification framework techniques to classify the missing data efficiently. 

 

1.2 Problem Background 

This section attempts to present low-grade tumor and CSF classification with 

their trends of development over time, and using the same approach of k-NN 

algorithm for classification. The other approach used and described in this thesis is 

missing data imputation using the k-NN algorithm. In this regard, this section is 

divided into three subsections to present the background of classification of low-

grade tumor or CSF in MRI through image segmentation approaches, k-NN algorithm 

classification and their missing values, and removal of irrelevant features and 

nonlinear data in MRI images. 
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1.2.1 MRI Segmentation of Tumor and CSF  

 

Various methods have been developed to handle the tumor and CSF 

segmentation method issues. Several methods already exist for efficient brain tumor 

segmentation but there is still a need to improve segmentation methods as few of the 

tumor diagnosing methods is still critical from MRI images to diagnose. The 

segmentation method extracts different types of tumor tissues like active tissues, 

tumor, necrosis, and edema from normal brain tissues such as white matter (WM), 

grey matter (GM), and CSF. Brain tumor can easily be segmented from MRI images 

but there is a present need for accurate results, reproducible segmentation, and 

classification of abnormalities which are not anticipated and not visible in MRI. Brain 

tumor segmentation is composed of multiple stages and the manual segmentation 

process of a brain tumor in MRI images is a time consumin and tedious task that 

presents many challenges. Therefore, there is a need for an automated segmentation 

process for a brain tumor. Multiple techniques exist to evaluate the performance of 

automated computerized brain tumor segmentation methods in the medical field 

(Deshmukh and Jadhav, 2014); these are as follows. 

 

Ibrahim et al. (2021) proposed a technique that was comprehensive in solving 

the k-NN classification of tumor in MRI datasets. The most common technique used 

for solving the classification is the SVM in k-NN algorithm. ML, k-NN and SVM 

illustrate various crucial transactions (Ibrahim et al., 2021). Even with a list of input 

variables, the SVM approach predicts exactly for all new observations. Hence, SVM 

is an instant and ready-to-use approach that many technicians use for brain imaging. 

SVM is a frequently used technique that fulfils the fundamentals of the k-NN 

algorithm. It enhances the gap or difference between the categories and leads to 

efficient overall performance. Therefore, SVM is used in this thesis to achieve 
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accuracy and clarity in the classification. 

 

Kalvakolanu (2021) developed a deep learning approach to classify tumor 

segmentation and classified tumors into meningioma, glioma, and pituitary tumors. In 

this research, the author used a skull stripping segmentation-based instrument from 

the MRI images to remove the skull and GrabCut method to check and verify the 

accurate classification for the retained feature of tumor from MRI skull stripped 

masks. This method uses GrabCut segmentation to diagnose tumors and various 

tissue abnormalities and is extensively used in medical technology worldwide as 

magnetic resonance imaging. The uses of medical imaging technologies are not only 

limited to visualizing and examining anatomic structures but they also render their 

services as tools for surgical and radiotherapy planning, simulation, locating the 

growth of diseases, and many more. This gives a preoperative plan to remove the 

tumor safely. To resolve this diagnosing issue, several researchers are suggesting 

various automated segmentation methods for treating and classifying brain tumor and 

cerebrospinal fluid leaks.  

 

This thesis applies a supervised four dimensional (4D) light field tool (LFT) 

segmentation method to the MRI datasets to increase the resolution of images and 

uses a graph cut algorithm for solving the segmentation of brain tumor. This method 

employs a graph cut algorithm and has comprehensive details and redundancy. This 

analysis evaluates spatial and angular neighbouring rays, in order to conserve 

redundancy in the MRI light field database (LFD) .The other part of this technique is 

the k-means clustering algorithm which is also adopted for image storing during 

segmentation. When the MRI images are taken, the clustering k-mean algorithm 

stores the images and makes the neighbouring values effortlessly visible in the k-NN 

algorithm which is not possible in other algorithms. The efficiency of the k-NN 

algorithm is also increased by using MRI datasets with increased accuracy as well 

(Valdés and Jesús, 2019).  
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The aforementioned approaches have two issues in common for tumor 

segmentation. First, they do not entirely segment the tumor in the MRI. Second, in 

most cases, their performance is highly affected by noisy data which is addressed in 

this section. 

 

1.2.2  Tumor and CSF Classification from MRI Images 

 

Song et al. (2020) proposed a new algorithm to deal with and generate better 

results of classification for noisy and inherently complex images which is still an 

existing and challenging problem in the segmentation method. This research has 

developed a new adaptive hidden markov model to explain the spatial and semantic 

relationship among pixels of an image. The method uses the HMM for tumor 

classification based on previous and subsequent segmentation results. This method 

uses probabilistic reasoning over time and space for brain tumor segmentation of MRI 

datasets. This spatio-temporal model improves the sensitivity and specificity of 

segmentation with an image-based transition model but still needs some improvement 

to accurately find a tumor in the segmentation method as it is still not properly visible 

in the images due to image noise. 

 

Li et al. (2021) discussed an important problem in medical image processing 

and proposed a new classification technique for brain tumors based on brain magnetic 

resonance imaging (MRI) results. A computer programme that can quickly and 

accurately classify tumors in patient brain MRI images and evaluate the data in real 

time may raise the chance that patients will survive by reducing the time it takes to 

make a diagnosis. The pituitary tumor, glioma, and meningioma are the three types of 

brain tumors accurately classified by this research's new statistical method, which is 

based on MRI images. The feature pixels of MRI images are achieved by the 
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implementation of a collection of convolutional operators to a pixel's neighbouring 

area in an MRI image that yields the features for that pixel. Furthermore, pixels that 

are in a tumor's background are also given a statistical profile. Using a dynamic 

programming approach for classification, the trained HMM is used to assign labels to 

individual pixels in an MRI image, and the tumor region's labels are analysed to 

determine the image's classification outcome. There is no need for a large number of 

computational resources for training and classification processes to be conducted 

efficiently. MRI images used in the proposed method were analysed to show that it is 

capable of providing accurate classification results for all three types of brain tumors. 

A comparison of the proposed method with current methods for classifying brain 

tumors suggests that it can be more accurate than other methods. Furthermore, real-

time analysis indicates that the proposed approach can probably be used to classify 

brain tumors in real-time. 

 

Huang et al. (2011) proposed a new method to deal with and generate better 

results of classification based on biomedical research and clinical applications which 

show that water and fat decompose during magnetic resonance imaging (MRI). Using 

a two-phase approach to solve the three-point water-fat decomposition problem, this 

research proposes a new approach. The research contribution consists of two main 

components: The local smoothness of field inhomogeneity is formulated using a 

background-masked Markov Random Field (MRF) energy model, and the MRF 

energy model is then optimized using a new Iterated Conditional Modes (ICM) 

approach. In order to prevent the incorrect propagation of background estimations and 

to increase efficiency, background masking is integrated with the MRF energy model. 

This research proposed a new ICM algorithm's Stability Tracking (ST) mechanism, 

which dynamically monitors pixel iterative stability so that computation of each 

iteration is only carried out on unstable pixels, which is its key element. ICM 

efficiency is greatly increased by the ST mechanism. In this research, a median-based 

initialization approach as well as an adaptive gradient-based method for parametric 

setup of the MRF model were developed. This technique uses high resolution mouse 
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datasets obtained from 7-Tesla MRI to assess the robustness of the proposed 

methodology. 

 

The aforementioned approaches have two issues in common for tumor 

classification. First, they do not entirely classify a tumor in the MRI. Second, in most 

cases, their performance is highly affected by noisy data which is addressed in this 

section. 

 

1.2.3 k-NN Algorithm and Its Missing Data Imputation 

 

One of the simplest and effective classification methods is the k-NN 

algorithm. It is a lazy learning method because of its lower accuracy and as it depends 

on choosing a good value for ―k‖, it cannot be used for large repositories like in 

dynamic web mining. Machine learning and k-NN algorithm are used in medical 

areas where the existence of missing data is a main and serious issue. Knowledge or 

information is drawn out according to the accuracy of data; if some values are 

missing in the data, it will affect the descriptive statistics along with inferential 

statistics and predictive analytics as well. Moreover, for data imputation, k-NN serves 

as an effective approach to predict the missing values. A model is developed for 

every feature that has missing values and taken as input values or perhaps for all other 

input values. K-nearest neighbour model is one of the popular techniques in which a 

new sample is imputed by determining the closest training set samples and the nearby 

points are averaged to complete the value (Po et al., 2020). 

 

Nowadays, many researchers are struggling to handle the problem of missing 

data values in the field of image segmentation. It is one of the most challenging 

problems in the field of research. Many reasons give rise to missing values. When an 
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algorithm is applied, these missing values provide insufficient and irrelevant data thus 

leading to invalid results and influencing the performance of any method. There are 

several imputation techniques based on the nature of the missing values. The demand 

for a proper technique arises as the data is getting bigger periodically so there is a 

higher chance of missing values (Po et al., 2020). This research explains the details of 

the existing models for solving the problem of the missing value, which helps in 

developing and applying a new method. As these are based on earlier research, they 

do not currently provide good outcomes in a 4D segmentation method. Many issues 

of missing values of the k-NN algorithm will be included in this research. Therefore, 

the main purpose of this research is to counter these missing values with minimum 

data loss, and tasks are performed under these demands. 

 

Chu et al. (2008) developed a new technique to deal with imputation problems 

in the k-NN algorithm. Missing data imputation of MRI datasets in the k-NN 

algorithm with Fourier transformation (FT) was also employed. The k-NN algorithm 

locates a complete data set for k number of neighbours or more identical cases that 

have patterns similar to the missing data row and column. There are many missing 

values in biomedical and clinical data of patients due to many circumstances like 

disassociation among various institutions, failure of images and sensor devices, etc. 

(Niranjana et al., 2021). Biased, invalid, and wrong outcomes will result if these 

missing values are not taken into notice. These dependencies occur over time, but the 

existing methods eventually have to integrate these secular connections and numerous 

samples of missingness. This research deals with the problem by suggesting an 

imputation method, namely Fourier k-nearest neighbours (Fk-NN), which is a 

combination and extension of two imputation methods, k-NN algorithm and Fourier 

transform. If all the data at a certain time point is missing and if different missing 

types appear within and across variables, this proposed method will allow the 

imputation of missing values.  
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Based on previous studies, a combination of the Fk-NN technique covers the 

imputation of missing data problems. However, these techniques still have some 

problems. Although Fk-NN performs better than other techniques, it only finds the 

missing data in one way at a time either rows or columns (Niranjana et al., 2021). Fk-

NN not only reduces the missing data problem but also removes the irrelevant 

features and nonlinear data which have been created due to incorrectly using Fk-NN. 

The presence of irrelevant features and nonlinear data is harmful for k-NN algorithm 

classification as it is creating errors during the reconstruction process. For instance, 

Fk-NN does not provide the best strategy for reducing the missing data in k-NN 

algorithm classification. Likewise, this classification method does not provide a 

robust technique to identify missing data efficiently in the k-NN classification 

procedure. However, for the missing data imputation issues, most studies had 

constructed other techniques and classifiers using the Fk-NN technique without 

considering image accuracy improvement. 

 

1.3 Problem Statement 

 

The images used in classification play an important role in achieving a higher 

accuracy of classification. Therefore, segmentation is important so that a higher 

accuracy of classification can be achieved for low-grade tumor and CSF MRI images. 

Since the structural changes of the tumor interact with other normal tissues, separate 

segmentation of each target of the tumor images would not be efficient for creating 

the maximum margin distance for the traditional segmentation method (Gessert and 

Nil Thorben, 2020). Normally, CT myelography or MR Myelography is more 

significant than MRI for segmenting the area of CSF leak and low-grade tumor, but 

there is still a need for MRI and CT scans so that the position and depth of the tumor 

and leakage may be found (Kranz et al., 2016). The issue of maximum margin 

distance is a major concern of this thesis to increase the resolution and also remove 

the noise in MRI images. This thesis aims to segment the CSF leakage and low-grade 

tumor (the initial stage of brain tumor) in MRI images and improve the resolution of 
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images using the GrabCut algorithm to enhance the maximum margin distance. When 

using segmentation, improving the accuracy of MRI images requires classification. 

The previous method cannot identify the exact location of a tumor and CSF. 

Therefore, identification of location is important based on segmented images. The 

accuracy of classification can be improved using the Hidden Markov Model with k-

mean and k-NN. Therefore, to validate the result of classification, k-NN is used in 

terms of accuracy, since k-NN does not deal with missing data imputation. This issue 

can be solved by the correlation method of time-lag with k-NN and DFT. The 

correlation matrices reduce the missing data imputation problem efficiently and 

replace the empty space with numeric values using the time-lagged with k-NN.  

 

 Enhanced the performance of hybrid k-NN based classification framework by 

employing to improve the accuracy of MRI LFD datasets of low-grade tumor and 

CSF leak and impute the missing values of classified MRI images. 

 

The Research Questions (RQ) are as follows: 

 

i. How to improve the result of segmented MRI images and how to identify exact 

the location of CSF and low-grade tumor? 

ii. How to enhance the accuracy of classification of MRI images and how to 

validate the result of classification of low-grade tumor and CSF area? 

iii. How to reduce the missing data imputation in classified MRI images? 

 

These questions formed the basis for undertaking this thesis and were 

simultaneously investigated. RQ (i) is linked with objective (i), while RQ (ii) is 

linked with objective (ii) and RQ (iii) is linked with objective (iii).  
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1.4 Research Aim and Objective 

The aim of this thesis is to develop an enhanced classification method based 

on k-NN that uses pre-processed segmented data and post-processed imputed missing 

data of low-grade tumor and CSF. The segmented data is a result of hybrid GCSVM 

and SIFT technique while the imputed missing data is based on HMkC and k-NN 

techniques. The following objectives are designed to achieve the aim. 

The objectives of the thesis are: 

i. To propose a GrabCut support vector machine and scale invariant feature 

transform (Hybrid GCSVM and SIFT) technique for segmentation of MRI 

images and identification of location of CSF and low-grade tumor. 

ii. To design a Hidden Markov Model with k-mean cluster (HMkC) model for 

classification of CSF and Hidden Markov Model with k-mean and k-NN 

model to validate the result of HMkC. 

iii. To develop a Correlation Matrix of Discrete Fourier Transform (CM-DFT) 

technique in reducing the missing data imputation of the improved image in 

hybrid k-NN based classification framework. 

 

1.5 Research Scope 

The research documented in this thesis is within the confines of the following 

concepts: 

 

i. The MRI images are taken from three different hospitals, namely 

National Cancer Care Institute (NMI) and Medicare hospital in Pakistan 

and the Cumming School of Medicine Lab at the University of Calgary, 
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Canada (the source of gathered data is https://cumming.ucalgary.ca/). 

ii. Implementations of algorithms are done by MATLAB. 

iii. Evaluation of the performance of the models is based on sensitivity, 

specificity, and accuracy. 

 

 

1.6 Research Contribution 

As mentioned earlier, the available data is related to classify the low-grade 

tumor and CSF in MRI images. It is difficult to identify low-grade tumor and CSF in 

the starting phase of disease inside of the brain. However, MRI can classify the tumor 

or cancer in images easily, but in the beginning phase, a tumor inside the brain is 

difficult to find and the location of CSF deposit inside the brain is still unknown. This 

is one of the biggest challenges in the neurosurgery field. Good data with multiple 

techniques are required to solve this problem. In the medical field, doctors and 

pathologists use the traditional method of CT myelography or MR Myelography 

instead of MRI because they provide better results if it is an in-sizable form of tear 

arises. 

 

Therefore, this thesis creates the improved MRI LFD to solve the lower 

accuracy MRI images and improve the resolution of MRI images through Lytro Illum 

Light Field Tool (LFT). This improved LFD helps doctors and pathologists so that 

they can see a low-grade tumor or find the location of CSF in MRI images. This 

thesis also solves the problem of missing data of MRI which is an urgent need and 

removes the irrelevant features and nonlinear data in k-NN algorithm. 

 

The main contributions of this research are achieved after implementing the 

proposed techniques in hybrid k-NN based classification framework given below: 

 

https://cumming.ucalgary.ca/
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1. Hybrid GCSVM and SIFT technique is used to improve the segmentation 

method of low-grade tumor and CSF in MRI images to increase the accuracy 

of improved LFD MRI datasets. This technique also increases the resolution 

of the images by developing the maximum margin distance space. SIFT is 

also included in this technique to identify the location of CSF and tumor as 

well. 

2. A hybrid HMkC technique is used to improve the classification method of 

low-grade tumor and CSF in images and the validation of classified images 

using HMkC and k-NN techniques.  

3. CM-DFT technique is used to reduce the missing data values efficiently and 

impute the missing data in the same numbers of rows and columns in 

sequence. Time Complexity (TC) is used to calculate the execution time of 

proposed hybrid k-NN based classification framework. 
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1.7 Thesis Outline 

Chapter 1, Introduction, starts with an introduction to the thesis topic. Thereafter, it 

presents the problem background, problem statement, research aims and objectives, 

scope and significance of the research. The chapter also describes the organization of 

the thesis. 

 

Chapter 2, Literature Review, interprets the research done previously, the current 

body of literature on this research‘s main topics, and presents the related work.  

 

Chapter 3, Research Methodology, provides the thesis approach, methodology, and a 

brief review of the framework adopted. It explicates six phases; the first phase 

explains the problem formulation, research question, objectives and scope. The 

second phase shows data collection and data preparation, and performance 

measurement. The third, fourth and fifth phases show the details of the hybrid 

GCSVM and SIFT techniques, hybrid HMkC and k-NN techniques, and CM-DFT 

techniques. The sixth phase shows the testing, analysis and evaluation. 

   

Chapter 4, the hybrid GCSVM and SIFT technique, addresses the first objective of 

the thesis. A Hybrid GCSVM and SIFT technique is proposed which is based on the 

segmentation method of low-grade tumor and CSF in MRI. This chapter uses three 

different methods that make up the hybrid technique and also increase the resolution 

of the proposed LFD MRI images.  

   

Chapter 5, the hybrid HMkC and k-NN technique, addresses the second objective of 

the thesis. A hybrid HMkC and k-NN technique is proposed which is based on the 

classification method of low-grade tumor and CSF in MRI. This chapter uses two 

different methods that make up the hybrid technique and also improve the hybrid k-

NN model for classification.  

    

Chapter 6, the CM-DFT technique, addresses the third objective of this thesis. CM-

DFT is proposed, which is based on a combination correlation matrix of time-lagged 

with hybrid k-NN algorithm and DFT. CM-DFT solves the missing imputation 

problem in the hybrid k-NN framework.  

 

Chapter 7, Conclusion and future works, displays the outcomes and contributions of 

this analysis, and future enhancement. It also highlights the achievements of the 

objectives along with the relative performance analysis. 
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