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ABSTRACT 

Field cases revealed that cuttings transport optimization from the bit towards 

the surface eventuates in the cutback of drilling costs. In deviated and horizontal wells, 

cuttings transport is more complicated and has unremittingly been investigated due to 

complex fluid profile and the limitation of precise data on pipe rotation, hole angles, 

annular velocities, and cuttings sizes, which have to be considered concomitantly. 

Partially hydrolyzed polyacrylamide (PHPA), an extensively used polymer for cuttings 

transport due to its sterling drag-reducing feature, good viscosifying properties, and 

ease of solubility in water–based mud (WBM), has the problem of flocculation and 

viscosity at high temperature, which hinders the cuttings transport efficiency. Recently, 

polymer nanocomposite (PNC), a novel material formed from the hybrid of polymer 

and nanoparticle has received growing interest and is propounded for drilling 

operations because of its exceptional and intriguing properties. However, the behaviour 

of this material for drilling mud in a typical cuttings transport process is lacking in 

open literature. Herein, polypropylene–nanosilica composite (PP–SiO2 NC) was 

synthesized by hot emulsion sol–gel method, and its surface charge was modified using 

(3–Aminopropyl) triethoxysilane. The modified (PP-SiO2 NC-NH2) and unmodified 

(PP–SiO2 NC) were characterized by different investigative techniques to study their 

dispersion, micromorphology, bonding, and thermal stability. The PP–SiO2 NC–NH2 

drilling muds were compared with those of the PHPA to investigate their effects on 

cuttings transport efficiency (CTE). The effect of annular velocities (between 66.1 and 

234.1 ft/min), hole inclinations (from 45 to 90°), cuttings sizes (between 0.50 and 4.00 

mm), and concentrations (between 0.4 and 1.2 g) of PP–SiO2 NC–NH2 and PHPA on 

CTE in a field‒oriented cuttings transport flow loop with dimensions of 2.4–in.×1.2–

in., 16–ft. long annulus were exclusively examined. Characterization data showed that 

amine layers were effectively deposited on the surface of the PP–SiO2 NC–NH2 

particles and these particles were distributed between 80 and 390 nm, which signifies 

long term stability of drilling muds, especially at high temperature applications. All the 

mud samples of PP-SiO2 NC-NH2 were within the recommended operating limits, 

unlike 0.8 and 1.2 g of PHPA - their properties were greatly flocculated due to the 

PHPA’s anionic character. The properties of WBM enhanced when PP-SiO2 NC-NH2 

and PHPA were added, but higher CTEs occurred with the PP-SiO2 NC-NH2 drilling 

muds due to their uniform distribution and increased colloidal interactions with drilled 

cuttings. Concentrations of 1.2 g PP-SiO2 NC-NH2 and 0.4 g PHPA demonstrated the 

optimum concentrations for enhancement of rheological properties and were the most 

suitable choices for enhanced cuttings transport. With the highest annular velocity of 

234.1 ft/min at the horizontal annulus (90°), the CTE of the WBM related to the largest 

cuttings size (2.80–4.00 mm) was enhanced from 82.4 to 96.2% by 1.2 g concentration 

of PP-SiO2 NC-NH2 with pipe rotation. Similarly, 0.4 g optimum PHPA concentration 

increased the CTE of the WBM from 82.4 to 94.6%. The transport of larger cuttings 

depends more on annular velocity, unlike that of the smaller cuttings, which was more 

influenced by mud viscosity. Furthermore, rotation of inner drill pipe and increase in 

annular velocity effectively increased the drag effects leading to higher cuttings 

transport. This study is advantageous for expanding the frontiers of knowledge in PNC 

application for drilling operations, especially for cuttings transport. 
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ABSTRAK 

Kajian kes menunjukkan bahawa pengoptimuman dalam pengangkutan 

rincisan dari bit gerudi ke permukaan boleh mengurangkan kos penggerudian. Bagi 

telaga yang melencong dan mendatar, pengangkutan rincisan adalah lebih rumit dan 

kurang dikaji secara mendalam berikutan profil cecair yang rumit dan data putaran paip 

gerudi, sudut lubang, halaju annulus, dan saiz rincisan yang terhad. Poliakrilamida 

terhidrolisis separa (PHPA) merupakan polimer yang digunakan secara meluas dalam 

pengangkutan rincisan berikutan kehebatan ciri pengurangan seretan dasar, sifat 

peningkatan kelikatan yang baik dan kebolehlarutan yang baik dalam lumpur dasar air 

(WBM). Walau bagaimanapun, bahan ini mempunyai masalah penggumpalan dan 

kelikatan pada suhu tinggi yang menjejaskan kecekapan pengangkutan rincisan. Kini, 

komposit nanopolimer (PNC), bahan novel yang terbentuk daripada hibrid polimer dan 

nanopartikel terus mendapat perhatian dan digalakkan penggunaannya dalam operasi 

penggerudian berikutan sifatnya yang menarik. Walau bagaimanapun, kesan bahan ini 

terhadap lumpur gerudi dalam proses pengangkutan rincisan adalah terhad 

perbahasannya. Dalam kajian ini, komposit polipropilena-nanosilika (PP–SiO2 NC) 

disintesis menggunakan kaedah sol-gel emulsi panas dengan permukaannya diubah 

suai menggunakan (3-Aminopropil) trietoksisilan. Permukaan partikel terubah suai 

(PP-SiO2 NC-NH2) dan partikel tidak terubah suai (PP-SiO2 NC) diciri menggunakan 

teknik penyelidikan yang berbeza bagi mengkaji penyerakan, morfologi mikro, ikatan, 

dan kestabilan haba. Lumpur gerudi PP-SiO2 NC-NH2 dibandingkan dengan PHPA 

bagi mengkaji kesannya terhadap kecekapan pengangkutan rincisan (CTE). Kesan 

halaju anulus (dari 66.1 hingga ke 234.1 kaki/min), kecondongan lubang (dari 45° 

hingga ke 90°), saiz rincisan (antara 0.50 dengan 4.00 mm), dan kepekatan PP-SiO2 

NC-NH2 dan PHPA (antara 0.4 dengan 1.2 g) terhadap CTE telah dikaji menggunakan 

gelung aliran berdimensi 2.4 inci × 1.2 inci, 16 kaki panjang. Data pencirian 

menunjukkan bahawa lapisan amina telah terlekat secara berkesan pada permukaan 

partikel PP-SiO2 NC-NH2 yang bersaiz dari 80 hingga ke 390 nm, yang menandakan 

kestabilan jangka panjang lumpur gerudi, terutama pada pengaplikasian suhu tinggi. 

Semua sampel lumpur PP-SiO2 NC-NH2 berada pada had operasi yang disyorkan 

berbanding 0.8 g dan 1.2 g PHPA yang mudah tergumpal berikutan sifat anioniknya. 

Sifat-sifat WBM berjaya dipertingkat apabila PP-SiO2 NC-NH2 dan PHPA ditambah, 

tetapi CTE yang lebih tinggi berlaku dengan lumpur gerudi PP-SiO2 NC-NH2 

berikutan taburannya yang seragam dan meningkatnya interaksi koloid dengan rincisan 

gerudi. Kepekatan 1.2 g PP-SiO2 NC-NH2 dan 0.4 g PHPA ialah kepekatan optimum 

bagi peningkatan sifat-sifat reologi dan pilihan paling sesuai untuk meningkatkan 

pengangkutan rincisan yang berkesan. Dengan halaju anulus tertinggi 234.1 min/kaki 

pada anulus mendatar (90°), CTE WBM bagi diameter rincisan terbesar (2.80–4.00 

mm) meningkat dari 82.4 hingga ke 96.2% dengan dibantu kepekatan 1.2 g PP-SiO2 

NC-NH2 dan putaran paip. Serupa juga, 0.4 g kepekatan optimum PHPA meningkatkan 

keupayaan pengangkutan WBM dari 82.4% ke 94.6%. Pengangkutan rincisan yang 

lebih besar bergantung pada halaju anulus berbanding rincisan lebih kecil yang 

dipengaruhi oleh kelikatan lumpur. Selain itu, putaran paip gerudi dan peningkatan 

halaju anulus telah meningkatkan kesan seret serta menghasilkan pengangkutan 

rincisan yang lebih tinggi. Kajian ini berfaedah dalam memperkasa pengetahuan 

tentang aplikasi PNC untuk operasi penggerudian, terutama terhadap pengangkutan 

rincisan. 
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INTRODUCTION 

1.1 Background of the Study 

The rapid growth of industrialization and population has led to increasing 

global energy demand, while the primary energy sources, such as oil and natural gas 

are fast depleting (Li et al., 2018; Dhinesh and Annamalai, 2018; Vigneswaran et al., 

2018; Nanthagopal et al., 2019). The petroleum industry is constantly searching for 

novel additives for drilling fluids and safer drilling practices that can drill in 

challenging wellbores. The essence for the novel additives in the challenging wellbores 

(deviated, highly deviated, horizontal, or extended reach wells) is to recover more 

hydrocarbons to meet the ever-growing global demand for energy. Nonetheless, 

drillings in these wells are met with one of the biggest challenges, which is the 

problems of poor cuttings transport (Boyou et al., 2019; Yeu et al., 2019).  

During drilling, the velocity of the drilling mud must exert a sufficiently high 

force to overcome the effects of gravity. Normally, drilling mud contains enough mud 

velocity to carry out this function efficiently in vertical hole angles. In contrast, 

deviated and horizontal wells constitute more difficult problems. This is because 

circulation in these wells is proportional to the movement of cuttings in a stream bed. 

The cuttings follow a complex and tortuous path to the surface, in which some of them, 

especially the larger ones gravitate to the low side of the hole due to the hole 

inclination, as shown in Figure 1.1 (Epelle and Gerogiorgis, 2018). These make the 

cuttings not to travel too far before they reach the low side of the hole (Figure 1.1a).  

According to Figure 1.1b, the larger cuttings and muds on the lower side have 

a lower rate of movement than the clean mud at the upper side. Due to increasing hole 

inclination, the cuttings travel downward and are forced to drop to the bottom of the 

hole due to a lack of lifting force in the flow (zero velocity at the wall). This problem 
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can cause an increased coefficient of friction (CoF) of the drill string, pipe sticking or 

even loss of the entire well if not properly controlled. The problem is often aggravated 

due to the complex fluid circulation profile and limitation of precise oilfield data on 

wellbore parameters.  

 

Figure 1.1 Particle movement: (a) In vertical and directional wells and (b) with 

mud (Epelle and Gerogiorgis, 2018).  

Practically, it is impossible to remove all the cuttings by mere mud circulation, 

especially for deviated and horizontal wellbores. However, the efficiency can increase 

by providing enough annular velocity to the drilling mud and optimizing the drilling 

mud properties according to requirement (Samsuri and Hamzah, 2016; Egbue, 2017). 

Identifying the pump requirement to induce enough pressure that will produce high 

enough annular velocity is needed to support the continuous movement of cuttings 

towards the surface. Selecting optimal mud properties and introducing pipe movement 

by rotation will help in ensuring efficient cuttings transport by mechanically disturbing 
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the cuttings bed (Egbue, 2017). These factors can help in preventing severe drilling 

problems that could have dramatically increase unproductive time and drilling costs.  

Economic profits of drilling vertical wells are firmly established in field 

practice, but are not the case for drilling deviated, horizontal, or extended–reach wells 

due to more difficulty to reach the target pay zones of these wells (Ogbeide and 

Igbinere, 2016; Busahmin et al., 2017). However, the possible gain by increased 

production has renewed the interest of drilling operators in deviated and horizontal 

drillings. Efficient cuttings transport is one of the most important requirements for any 

successful drilling operation, most importantly drilling in deviated, horizontal wells, 

and extended–reach wells (Rooki et al., 2018; Boyou et al., 2019). Deviated wells are 

oil and gas wells whose inclination surpass 30° for most of their length and extended 

to highly deviated from 60° up to 89°. Horizontal wells are those wells which are 

drilled to an inclination of 90°, and maintains this inclination for a significant distance 

(Cayeux et al., 2016; Bizhani et al., 2016).  

Drillings in deviated and horizontal wells developed offshore platforms 

through accessing impossible well locations, such as drilling into faults and obstructive 

areas that cannot be achieved in drilling vertical wells (Lyons et al., 2016; Egbue, 

2017). Furthermore, the increase in horizontal displacement from a central platform is 

another advantage of drilling deviated or horizontal wells (Majid et al., 2018; 

Heshamudin et al., 2019). Increasing hole angle inclinations permit the increase in the 

drainage area and horizontal-reach wells (Cayeux et al., 2016; Bizhani et al., 2016). 

The longer horizontal-reach drilling can decrease the number of platforms needed to 

drill the reservoir in offshore locations (Cayeux et al., 2016). Another advantage of 

drillings in deviated and horizontal wells is the extended length of the completion zone 

through the reservoir (Cayeux et al., 2016; Bizhani et al., 2016). These acts allow the 

reservoir to contribute much more to the well's productivity. Nevertheless, the major 

technical challenge in drilling in these wells is linked to the gravitational effect as hole 

angle increases. When the hole angle rises, the axial component of the mud will 

decrease, while the lateral component will increase (Saxena et al., 2017; Katende et 

al., 2019). The success of drilling in these wells depends on the circulated drilling 

muds used to remove cuttings from the drilling hole. 
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Drilling fluids are an indispensable component of the oil and gas industry. 

Primarily, these fluids are used to control the formation pore pressure and transport 

drilled cuttings to the surface (Samsuri and Hamzah, 2016). The process of 

transporting drilled cuttings from the hole towards the surface is known as the cuttings 

transport. Based on different experimental data in the literature, several parameters 

influence cuttings transport in drilled wells. The influence of these parameters is 

usually more complicated when drilling deviated and horizontal wells than drilling 

vertical wells (Adari et al., 2000; Bilgesu et al., 2007). Bilgesu et al. (2007) classified 

these parameters into three categories: operational parameters, cuttings related 

characteristics, and drilling mud parameters. 

Operational factors that influence cuttings transport are the mud velocity or 

flow rate, the drill pipe rotary speed, rate of penetration (ROP), pipe eccentricity, and 

hole angle inclination. Irrefutably, the flow rate has a significant positive effect among 

all these parameters and the transport capacity of drilling muds is greatly affected by 

the fluid velocity profile in the annulus (Ismail et al., 2016; Amanna et al., 2016). The 

reduction in the mud velocity at the low side of the hole has been described in 

numerous investigations as the main cause of poor cuttings transport for deviated and 

horizontal wellbores (Heshamudin et al., 2019; Yeu et al., 2019). Increased mud 

velocity has the benefit of decreasing the cuttings bed height, but can also cause an 

increase in annular pressure drop. This will in turn increase equivalent circulating 

density (ECD) (Naderi and Kahmechi, 2018; Rooki et al., 2018). Therefore, optimized 

mud velocity should be used to prevent hole stability problems. 

Laboratory and field results showed that drill pipe rotation has minimum to a 

significant influence in enhancing the cuttings transport process (Heydari et al., 2017; 

Moraveji et al., 2017). The degree of the enhancement is a combined influence of drill 

pipe rotation speed, mud rheological properties, flow rate, cuttings size, and the 

dynamic characteristic of drill bit (Sayindla, 2018; Heshamudin et al., 2019). Hole 

angle inclination has a pronounced influence on cuttings transport (Saxena et al., 2017; 

Moraveji et al., 2017). For a low hole angle inclination below 10°, the cuttings lifting 

process is the same as that of the vertical annulus (Egenti, 2014). For deviated wells 

between the critical angle of 40° and 60°, there is a significant reduction in the cuttings 
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lifting process. The reduction is due to the decrease in the vertical component of mud 

velocity and higher influence of gravitation force on drilled cuttings (Rooki et al., 

2018; Heshamudin et al., 2019).  

Cuttings size, density, and shape factor are significant cuttings related 

parameters. These parameters impact the flow dynamics of cuttings in a flowing mud; 

nonetheless, there is little control over these parameters because of their dependence 

on the type of bit used and other drilling conditions (Bilgesu et al., 2007). They are 

considered significant in cuttings transport process because interfacial stress hinge on 

the cuttings size and cuttings shape has effects on the sagging of cuttings (Ernesto et 

al., 2016; Werner et al., 2017).  

Mud parameters that influence the lifting of rock cuttings are density and 

rheological properties. The density of the drilling fluid should be such that it provides 

a hydrostatic head greater than the formation pressure to prevent any kind of invasion 

of formation fluids inside the well (Fattah and Lashin, 2016). The weighing agents 

require a higher yield point and viscosity so that the cuttings transport process is not 

affected by the sagging of these agents (Fattah and Lashin, 2016). The rheological 

characteristics are often enhanced and controlled to make drilling mud to function 

effectively, and also to minimize drilling cost. Mud viscosity is used to impact the 

flowability and suspension of weighting materials (Rooki et al., 2018; Pang et al., 

2019).  

A viscous mud is often the practiced solution in the oil and gas industry. Mud 

thinners often come into play, to reduce the magnitude of viscosity and yield point if 

they are too high (Ismail et al., 2019). The determination of the mud’s transport 

capacity becomes more difficult with all these mentioned parameters acting 

concomitantly. Therefore, optimum mud properties are needed for efficient lifting of 

cuttings and suspension. Inability to manage these parameters effectively often leads 

to unwanted drilling problems, such as poor cement jobs, lost circulation, stuck pipe, 

faster bit wear, high torque and drag, decrease in ROP, etc. (Kamyab and Rasouli, 

2016; Caenn et al., 2017; Hakim et al., 2018). The severity of these problems rests on 



 

6 

the amount and position of the cuttings distributed along the borehole (Kamyab and 

Rasouli, 2016).  

In recent years, water–based muds (WBMs) and oil–based muds (OBMs) have 

been broadly used to drill petroleum reservoirs, but due to the lower ecological impact 

and operating cost, WBMs are the most desired (Assembayev et al., 2015; Fattah and 

Lashin, 2016; Sayindla et al., 2017). Nevertheless, the properties of WBM needs 

additional manipulations for enhanced cuttings lifting due to their degradation with 

increasing drilling depth. Therefore, cuttings lifting by conventional WBM can be 

easier if suitable additive like nanoparticles (NPs) is added in the preparation. Some 

studies conducted showed that NPs drilling fluids have the tendency of increasing the 

drag and lift forces acting on drilled cuttings. They also enhanced the heat transfer 

characteristics of WBM, improved the binding ability of cuttings, and increased the 

gel formation (Samsuri and Hamzah, 2016; Gbadamosi et al., 2018a, b; Boyou et al., 

2019). However, the efficacy of applying NPs drilling fluids is limited at deeper 

drilling depths due to the ease at which they aggregate and agglomerates, that directly 

reduced their dispersion, physical stability, and efficiency (Mahmoud et al., 2016; 

Elochukwu et al., 2017; Fakoya and Shah, 2017).  

More recently, it has been found that the properties of WBMs containing 

hybrids of polymers and NPs to form polymer nanocomposites (PNCs) are enhanced. 

This is because of the synergistic effects between polymers and NPs, and efficient 

dispersion of NPs within the polymer matrix (Mao et al., 2015; Jain et al., 2016; Xu et 

al., 2018; Mohamadian et al., 2019). The formation of relatively high average specific 

surface areas and the micro–nanosized particles of the PNCs also contribute to the 

increased performance of drilling muds (Mao et al., 2015). PNCs additives are used to 

modify the rheology and control the filtration properties of drilling fluids (Jain and 

Mahto, 2015). They are also used as lubricants, clay swelling inhibitors, and thermal 

stabilizers in WBMs (Mao et al., 2015; Jain et al., 2016; Xu et al., 2018; Abdollahi et 

al., 2018; Mohamadian et al., 2019; Davoodi et al., 2019). Thus, the synergistic effect 

between polymers and NPs has helped to improve the properties of conventional 

drilling fluids.  
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Synthetic polypropylene (PP) has recently captured the attention of 

investigators for drilling fluids. This is because of its easy availability, low cost, high 

chemical, and temperature–resistance, self–assembly, viscoelastic properties, and low 

density (Ismail et al., 2016; Hakim et al., 2018; Yeu et al., 2019; Heshamudin et al., 

2019). Among all the NPs, silica nanoparticles or nanosilica (SiO2 NPs) research is the 

most investigated. This is due to their high thermal stability, exceptionally strong bond 

network, good adhesion property at the interface, less toxicity, small enough size, and 

high specific surface area-to-volume ratio (Elochukwu et al., 2017; Gbadamosi et al., 

2018a, b; Boyou et al., 2019; Kok and Bal, 2019). From the review of several 

experimental findings, WBMs formulated with a hybrid of SiO2 NPs and polymers 

have shown enhanced properties performance. This is because of their fine 

dispersibility and less-viscous character (Elochukwu et al., 2017; Kok and Bal, 2019; 

Abdollahi et al., 2018; Davoodi et al., 2019).  

The efficient impact of SiO2 NPs with polymers in enhancing the 

characteristics of WBMs often results from an increase in surface area-to-volume ratio 

of the composites. This act increases the interaction in the colloidal systems and the 

interaction sites with polymers. Furthermore, SiO2 NPs can act as receptors for 

polymers, which allow functionalization and coating over it to reduce their 

agglomerates and increase their dispersion (Mao et al., 2015; Kok and Bal, 2019). The 

dispersion and stability of SiO2 NPs in combination with polymers are increased when 

a suitable surfactant is used to modify the surface of formed PNC bearing SiO2 NPs 

(Cao et al., 2017). Therefore, to increase the dispersion and stability of PNC material 

containing SiO2 NP, it is necessary to improve the interfacial adhesion properties 

between the polymer and SiO2 NP by method of surface charge modification 

(Elochukwu et al., 2017; Cao et al., 2017). modifying their surface with a suitable 

surfactant that can neutralize the negative hydroxyl ions of the SiO2 NPs. This 

behaviour might cause stability among SiO2 NPs, which can increase the performance 

of the composite in a conventional WBM.  
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1.2 Problem Statement 

The application of efficient additives in the field to optimize cuttings transport 

from the bit towards the surface has resulted in the cutback of drilling costs and an 

increase in oil production. In deviated and horizontal wells, the lifting of cuttings has 

been a challenging phenomenon in the oil and gas industry for a long period and has 

unremittingly been investigated. Given the complexity of different cuttings sizes, 

complex fluid flow profile, and limitation of precise drilling data that have to be 

considered concomitantly in the cuttings transport process, drilled cuttings have a 

higher tendency to gravitate to the low side of the hole at these inclinations. This can 

result in severe wellbore problems, such as hole collapse, pipe sticking issue, lost 

circulation, bit wear, formation damage, etc. (Samsuri and Hamzah, 2016; Gbadamosi 

et al., 2018a, b; Boyou et al., 2019).  

Today, among the numerous polymeric additives that have been applied to 

improve the efficiency of conventional WBMs for cuttings transport, only the PHPA 

has recorded a few successes when evaluated under different field conditions. This is 

due to its viscosity-enhancing effect and ease of solubility in WBMs (Kadaster et al., 

1992; Hale and Mody, 1993; Lam et al., 2015). However, the application of the WBM 

system containing PHPA is limited at extreme downhole conditions of high-

temperature high-pressure (HTHP). At these conditions, the long-chain molecules and 

bonds of PHPA are broken, which affects the stability and rheological properties of 

the WBM system (Hale and Mody, 1993; Lam et al., 2015). Also, the mud loses its 

shear-thinning property under the static and dynamic aging conditions and causes 

excessive gel strength, yield point, and viscosity. These events often result in undue 

mud’s flocculation, which hinders the cuttings transport efficiency and allows the mud 

to seep easily into the drilled formation (Hale and Mody, 1993; Lam et al., 2015). 

Besides, WBMs formulated with PHPA has led to fast accumulation of drilled cuttings 

in the flowing mud stream which resulted in the thickening of the mud, reduced 

pumpability, increased ECD, and higher than expected drilling costs (Hale and Mody, 

1993; Lam et al., 2015). These issues observed in the field application of PHPA mud 

systems are great concerns to drilling operators. 
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Therefore, to address this issue, a well-dispersed and less-viscous WBM 

system containing composited SiO2 NP with PP (PP-SiO2 NC) could be applied to 

enhance the poor temperature resistance of the conventional WBM containing PHPA. 

Nevertheless, the WBM system formulated with unmodified SiO2 NP or unmodified 

SiO2 NP with polymers can form agglomerates and becomes unstable. These 

phenomena are due to the adhesion of the particles to each other by weak forces leading 

to the formation of sub-micron sized particles. This has resulted in the reduction of the 

mud’s performance and unsuccessful drilling operations (Elochukwu et al., 2017; 

Mahmoud et al., 2017). To solve this problem, there is the need to make the zeta 

potential (ζ–potential) magnitude of the composite of PP and SiO2 NP to become 

highly positive within the stable region, which will improve the dispersibility and 

stability of the composite. This improvement can be achieved by the modification of 

the surface charge of the composite to efficiently exploit its full potentials for an 

improved cuttings transport and efficient drilling process. One such effective method 

of modification is by attaching a silane coupling agent, such as (3-Aminopropyl) 

triethoxysilane (APTES) to the surface of the PP-SiO2 NC particles to enhance their 

dispersion and stability in the WBM system (Omurlu et al., 2016; Cao et al., 2017). 

Therefore, the attachment of APTES to the surface of the PP-SiO2 NC was seen as 

positive for the improvement in the properties of conventional WBM system. Thus, 

such modification was considered in this research to prevent any possible 

agglomeration of the nanocomposite and make it more stable in the WBM system. 

Therefore, the questions to be answered in this research are:  

i. In what way can the magnitude of ζ–potential of modified PP–SiO2 NC 

particles influence the properties of WBM for increased cuttings transport? 

ii. How will the concentrations of modified PP–SiO2 NC compare with those 

of conventional PHPA in enhancing the rheological and filtration control 

properties of basic WBM? 

iii. How will different drilling parameters, such as hole angle inclinations, 

cuttings diameter, annular mud velocities, and concentrations of modified 

PP–SiO2 NC and PHPA used in WBMs interact to influence the cuttings 

transport process in deviated and horizontal wellbores? 
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1.3 Objectives of the Study 

The overall aim of this research is to acquire an understanding of the influence 

of APTES modified PP–SiO2 NC on the performance of basic WBM for the cuttings 

transport process. This aim was achieved through the following objectives:  

i. To synthesize PP and SiO2 NP through hot emulsion sol–gel process to 

form a PP–SiO2 NC and modify the synthesized PP–SiO2 NC by using 

aminosilane molecules (APTES).  

ii. To characterize the synthesized PP–SiO2 NC and determine its ζ–potential 

as well as its physical properties, such as size distribution, chemical 

compounds, bonding, surface, micromorphology, and thermal stability.   

iii. To compare the rheological, bit lubricating, and filtration properties of the 

basic WBM with modified nanocomposite and oilfield PHPA under static 

test conditions. 

iv. To determine the performance of the modified PP–SiO2 NC and PHPA on 

a field–oriented cuttings transport flow loop with various drilling 

parameters towards cuttings transport efficiency.  

1.4 Scope of the Study 

Based on the objectives enumerated, the scope of this research is as follows:  

i. Synthesizing the PP–SiO2 NC particles using hot–emulsion sol gel process 

in the presence of nonionic surfactant.  

ii. Modifying the surfaces of the synthesized PP–SiO2 NC particles using 

APTES in the presence of caustic soda. 

iii. Characterizing the synthesized PP–SiO2 NC particles with or without 

modification by aminosilane molecules (APTES).  

iv. Formulating and performing mud properties tests at 78 °F (before thermal 

aging tests) and 300 °F (after thermal aging tests) for 16 hours in a 4–roller 
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oven. Four different concentrations between 0.4 and 1.2 g of each of the 

modified PP–SiO2 NC and PHPA were tested and evaluated. 

v. Designing a field–oriented cuttings transport flow loop with dimensions: 

16–ft. long transparent acrylic–pipe annular test section with an internal 

diameter of the outer pipe 2.4 in. A polyvinyl chloride (PVC) pipe about 

16–ft. with an outer pipe diameter of 1.2 in. with both ends closed to 

prevent fluid exits and the inner drill pipe was located inside the 16–ft. 

acrylic–pipe to maintain a concentric annulus (i.e. 0% eccentricity).  

vi. Sieving various sizes of sandstone grains as test cuttings into four different 

diameters in the range of 0.50 – 0.99 mm, 1.00 – 1.99 mm, 2.00 – 2.79 mm, 

and 2.80 – 4.00 mm.  

vii. Identifying the various drilling parameters used in the cuttings transport 

process. Annular mud velocity in the range between 66.1 and 234.1 ft/min, 

hole–angle range between 90° and 45° from the vertical, and a static drill 

pipe and drill pipe rotation speed of 150 rpm were used.  

1.5 Significance and Original Contribution of this Study 

To ensure a secure energy future, new systems and processes are being 

developed through research and development to overcome the shortcomings of the 

well–known conventional WBM. One of such systems is the application of PNC to 

enhance the properties of drilling fluids. New developments in basic WBM for drilling 

oil and gas wells encompass the addition of PNCs to improve the rheological, lubricity, 

and filtration control properties of the process for drilling operations. This study makes 

a comparative analysis of basic WBM, basic WBM with PNC, and basic WBM with 

PHPA. The study seeks to understand their performance at the dynamic scale-in typical 

wellbore drilling conditions. The significance of this research is to extend the frontier 

of knowledge in the cuttings transport process through the understanding of the flow 

dynamics of PNC application in cuttings transport. This study is advantageous for 

enhancing the recovery of drilled cuttings at the surface and will prove important in 

contributing to the ever–increasing energy demand. Also, the drilling operations will 

become more efficient with improvement in the transport of drilled cuttings with 
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modified PP–SiO₂ NC additive. This can surely translate to cost saving to drilling 

operators. Furthermore, the modified PP–SiO₂ NC product can be applied in other 

areas of the oil and gas industry, such as enhanced oil recovery (EOR), workover 

operation, coating jobs, reservoir characterization, and completion jobs.  

1.6 Thesis Structure and Organization 

Chapter 1 contains a brief overview and background of cuttings transport in 

deviated and horizontal wells. It explains the aim and objectives of the research, the 

research problems, the scopes, gaps in the existing knowledge of the area of research 

and the significance of the research. 

Chapter 2 outlined a detailed review of previous works related to the theme of 

the research. It explains the drilling fluid architecture. It describes the concept of the 

cuttings transport process and discusses the various drilling parameters affecting it. It 

presents the shortcomings of PHPA drilling muds and the synergic application of 

polymers with particles in the nanometer domain to overcome these shortcomings. 

Finally, it presents the applications of nanocomposites as additives for drilling fluid. 

Chapter 3 presents a detailed procedure for the preparation, modification and 

characterization of PP–SiO2 NC drilling muds. Moreover, the materials, apparatus, 

equipment, and step–by–step guide for achieving the procedures of experiments as 

related to each objective are explained in detail.  

Chapter 4 discusses the results and outcomes of nanocomposites 

characterization. It also outlined the performance and comparative analysis of the 

modified nanocomposite and PHPA under static test conditions and in a field–oriented 

cuttings transport flow loop.  

Chapter 5 concludes the thesis with a summary of the main outcomes of the 

research and recommendations for future works.  
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1.7 Chapter Summary 

This chapter discusses the importance of transporting drilled cuttings from the 

wellbore to the surface and the challenges often encountered while carrying out this 

task. It presents why cuttings lifting out of the annular environment is more 

problematic in drilling the deviated and horizontal wells than the vertical wells. Also, 

it discusses the limitation of WBM system formulated with polymers and expounds 

why hybrid of polymers and nanoscale agent are used to improve the properties of the 

WBM system. It highlights the aim and objectives of this thesis, which is to determine 

and compare the effect of the modified PP–SiO2 NC and PHPA in improving cuttings 

transport efficiency. To achieve the research objectives, the scope and the significance 

of the study were clearly stated. Also, it presents the benefits and expected contribution 

of this research to the oil and gas industry. Finally, the structure of the thesis from the 

introductory section to conclusions is presented.  
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