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A B S T R A C T   

One of the largest sources of greenhouse gas (GHG) emissions is the construction concrete industry which has 
alone 50% of the world’s emissions. One possible remedy to mitigate the effect of environmental issues is the use 
of waste and recycled material in concrete. Today, immense agricultural waste is being used as a substitute for 
cement in the production of sustainable concrete. Therefore, this study is aimed to predict and develop an 
empirical formula of the compressive strength of rice husk ash (RHA) concrete using machine learning algo-
rithms. Methods employed in this study includes gene expression programming (GEP) and Random Forest 
Regression (RFR). A reliable database of 192 data points was employed for developing the models. Most influ-
ential variables including age, cement, rice husk ash, water, super plasticizer, and aggregate were employed as 
input parameters in the development of RHA-based concrete models. Evaluation of models was performed using 
different statistical parameters. These statistical measures include mean absolute error (MAE), coefficient of 
determination (R2), performance index (ρ), root man square error (RMSE), relative squared error (RSE) and 
relative root mean square (RRMSE). The GEP model outperforms the RFR ensemble model in terms of robustness, 
with a greater correlation of R2 = 0.96 compared to RFR’s R2 = 0.91. Ensemble modeling showed an 
enhancement of 1.62 percent for RFR compressive strength model when compared with individual RFR 
compressive strength model as illustrated by statistical parameters. Moreover, GEP model shows an enhancement 
of 37.33 percent in average error with an average error 2.35 MPa as compared to RFR model with average error 
of about 3.75 MPa. Cross validation was used as external check to avoid overfitting issues of the models and 
confirm the generalized model output. Parametric analysis was performed to determine the impact of the input 
parameters on the output. Cement and age were shown to have a substantial impact on the compressive strength 
of RHA concrete using sensitivity analysis.   

1. Introduction 

Increasing greenhouse gas (GHG) emissions have led to the melting 
of polar ice caps in the Arctic and Antarctic regions. This has led to 
serious environmental issues on the planet earth (Eijgelaar et al., 2010). 

Construction concrete industry is one of the largest sources of GHG 
emissions with alone 50% of the world’s emissions (Arrigoni et al., 
2020). The increasing demand for concrete is still an upsurge in the 
construction industry. Portland cement (PC) is one of the most important 
concrete parameters that contribute significantly to GHG (Rehan and 
Nehdi, 2005). Production of cement contributes around 7% of global 
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CO2 emissions to the atmosphere. Moreover, by the calcination of cal-
cium oxide, concrete production generates 50% of CO2 emissions 

(Benhelal et al., 2013). The annual consumption of cement is around 
4000 million tons and is expected to be increased by 2060 by around 
6000 million tons (Shahmansouri et al., 2020). These GHG emissions 
have had a key role in climate change. Recent years have seen an in-
crease in the number of detailed research on the various causes of 
climate change (both natural and manmade), their consequences on 
living circumstances, and viable strategies of adaptation and mitigation 
(Tin Lee et al., 2016; Giorgio et al., 2009). Due to the energy-intensive 
and emission-intensive manufacturing process of ordinary Portland 
cement (OPC), blended cement manufacture requires the use of a variety 
of alternative cementitious ingredients (Mikulčić et al., 2016). The use 
of industrial by-products as supplemental cementitious materials (SCMs) 

is one such strategy that has resulted in a large decrease in the use of 
traditional Portland cement while also removing the hazards associated 
with the disposal of waste materials from diverse industries (Rahla et al., 
2019). In 2004, the use of industrial by-products as raw materials in 
blended cement production resulted in a savings of approximately 14 
million tonnes of traditional raw materials, or approximately 6.5 percent 
of the natural raw materials required (Schorcht et al., 2013). Thus, the 
most effective strategy to lower the carbon footprint of the building 
sector is to substitute acceptable alternative cementitious materials for 
Portland cement clinker (Supino et al., 2016). These figures show that 
viable alternatives are required to meet high concrete demands with 
lower energy usage and emissions of CO2 (Buchanan and Levine, 1999; 
Liu et al., 2021). The use of waste and recycled material in concrete is 
one of the feasible remedies to mitigate the effect of environmental is-
sues. This will not only meet the growing demand for concrete but also 
decreases the immediate risk to the community (Tam and Tam, 2006). 
The use of waste materials including supplementary cementations ma-
terials (SCMs) has been a keen focus of many researchers in the con-
struction industry (Tang et al., 2020; hai He et al., 2021a). The 
preparation of ecofriendly concrete has been of great importance (Shi 
et al., 2021). The enormous agriculture waste like rick husk ash (RHA), 
palm oil fuel ash (POFA), sugarcane bagasse ash (SBA), olive oil ash 
(OOA), and industrial waste such as fly ash (FA), silica fume (SF) are 
used today as a part of cement replacement in the manufacturing of 
sustainable concrete as illustrated in Fig. 1 (Aprianti S, 2017). Dumping 
this agricultural and industrial waste product in open land poses a 
serious environmental hazard by contaminating air and water systems 
(Ihedioha et al., 2017). Furthermore, around 110 million tonnes of rice 
husk (almost 20% of 550 million tonnes of rice) and 16–22 million 
tonnes of RHA are produced globally (* Energy Technology). Using the 
waste materials in the concrete can improve both concrete’s durability 
and strength due to the action of pozzolanic nature (hai He et al., 
2021b). This reduces industry demand for cement, minimizing the cost 
of manufacturing concrete and decreasing the undesirable effects of CO2 
emissions into the manufacturing of cement (Mikulčić et al., 2016). 

Concrete is commonly used as a construction material all over the 
world, because of its many advantages, including economic 

Notations 

ANN artificial neural network 
ET expression tree 
GEP genetic engineering programming 
GHG greenhouse gas 
RHA rice husk ash 
DT decision tree 
SCMs supplementary cementations materials 
KFCV K-Fold cross validation 
ML: machine learning 
MSE mean squared error 
PA parametric analysis 
PC Portland cement 
R2 coefficient of determination 
RFR random forest regressions 
RHA rice husk ash 
RMSE root mean squared error 
SA sensitivity analysis 
SVM support vector machine  

Fig. 1. Manufacturing of sustainable and ecofriendly concrete.  

Fig. 2. Effect on concrete properties by using waste materials.  
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Table 1 
Summarize machine learning algorithm by researchers.  

S. 
No 

Machine learning method Abbreviation Data 
set 

Prediction property Year Waste materials References 

1. Gene expression programming GEP 298 Compressive Strength 2021 FA Khan et al. (2021a) 
2. Conventional Artificial Neural Network C-ANN 220 Compressive Strength 2020 Foamed concrete Van Dao et al. (2020) 
3. Gene expression programming GEP 351 Compressive Strength 2020 GGBFS Shahmansouri et al. 

(2020) 
4. Gene expression programming GEP 168 Tensile Strength 2012 Normal concrete Severcan (2012) 
5. Gene expression programming GEP 160 Post fire behavior 2020 GGBFS Fakhrian et al. (2020) 
6. Artificial Neural Network 

Multi Linear Regression 
ANN and MLR 1288 Compressive strength 2015 Clinker mortar Beycioʇlu et al. (2015) 

7. Artificial Neural Network ANN 264 Thermal properties 2019 Silica fume Fidan et al. (2019) 
8. Support Vector Machine SVM 15 Compressive strength 2021 Normal concrete Lv et al. (2021) 
9. Support Vector Machine 

Random forest 
AdaBoost 

SVM 
RF 
AB 

288 Compressive Strength 2017 Blast furnance slag and 
waste tire rubber powder 

Ozcan et al. (2017) 

10. Support Vector Machine 
Adaptive-Network-based Fuzzy Inference 
System 

SVM-ANFIS 120 Deflection 2020 RC beam Bai et al. (2020) 

11. Ensemble models RT, RF, GBRT, 
ensemble GBRT 

126 Unconfined 
compressive strength 

2019 Cemented Paste Backfill Lu et al. (2019b) 

12. Artificial neuron network ANN 169 Compressive strength 2016 FA 
GGBFS 
SF 
RHA 

Asteris et al. (2016) 

13. Artificial neuron network ANN 205 Compressive strength 2019 FA 
GGBFS 
SF 
RHA 

Asteris and Kolovos 
(2019) 

14. Artificial neuron network ANN 69 Compressive strength 2017 FA Abu Yaman et al. 
(2017) 

15. Artificial neuron network ANN 114 Compressive strength 2017 FA Belalia Douma et al. 
(2017) 

16. Artificial neuron network ANN 80 Compressive strength 2011 FA Siddique et al. (2011) 
17. Artificial neuron network ANN 300 Compressive strength 2009 FA Prasad et al. (2009) 
18. Adaptive neuro fuzzy inference system ANFIS 55 Compressive strength 2018 – Vakhshouri and 

Nejadi (2018) 
19. Support vector machine SVM – Compressive strength 2020 FA Azimi-Pour et al. 

(2020) 
20. Random forest RF 131 Compressive strength 2019 FA 

GGBFS 
SF 

Zhang et al. (2019) 

21. Multivariate MV 21 Compressive strength 2020 Crumb rubber with SF Bušić et al. (2020) 
22. Biogeographical-based programming BBP 413 Elastic modulus  SF 

FA 
SLAG 

Golafshani and 
Ashour (2016) 

23. Intelligent rule-based enhanced multiclass 
support vector machine and fuzzy rules 

IREMSVM-FR with 
RSM 

114 Compressive strength 2019 FA Selvaraj and 
Sivaraman (2019) 

24. Support vector machine SVM 115 Slump test 
L-box test 
V-funnel test 
Compressive strength 

2020 FA Saha et al. (2020) 

25. Multivariate adaptive regression spline M5 
MARS 

114 Compressive strength 
Slump test 
L-box test 
V-funnel test 

2018 FA Kaveh et al. (2018) 

26. Random Kitchen Sink Algorithm RKSA 40 V-funnel test 
J-ring test 
Slump test 
Compressive strength 

2018 FA Sathyan et al. (2018) 

27. Data Envelopment 
Analysis 

DEA 114 Compressive strength 
Slump test 
L-box test 
V-funnel test 

2021 FA Balf et al. (2020) 

28. Adaptive neuro fuzzy inference system ANFIS with ANN 7 Compressive strength 2020 POFA Al-Mughanam et al. 
(2020) 

29. Gene expression programming GEP 277 Axial capacity 2020 – Javed et al. (2020) 
30.   357 Compressive strength 2020 – Aslam et al. (2020) 
31. Random forest and gene expression 

programming 
RF and GEP 357 Compressive strength 2020 – Farooq et al. (2020) 

32. Individual with ensemble modeling ANN, bagging and 
boosting 

1030 Compressive strength 2021 FA 
GGBFS 

Farooq et al. (2021)  
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performance, modularity integrity, and durability (Cao et al., 2015). The 
compressive strength of concrete is considered the most important 
property because it directly affects the durability of constructed objects 
(Saloma et al., 2015). Concrete contains gravel, sand, cement, along 
with that it also contains supplementary raw material and admixtures. 
The combination of these parameters altogether in the concrete mix 
design is distributed randomly (Xiao, 2018). The use of RHA as SCM will 
affect various factors such as compressive loading ability, including the 
waste composition, particle size, and the aggregate water-to-cement 
ratio (Paris et al., 2016). Moreover, their use in concrete increases the 
compressive strength, reduces CO2 emission, and increases the tensile 
strength as shown in Fig. 2. Thus, in such a complex matrix, it is very 
difficult to estimate the compression strength of the concrete. Physical 
checks are conducted to measure the compressive capacity of the con-
crete (Napoli and Realfonzo, 2020). Generally, specimens of concrete in 
cubic and cylindrical form are developed to check the strength of mortar 
and concrete. However, it is less effective, less economical, and needs a 
great deal of time in laboratory and field testing to measure the desire 
strength. Thus, empirical and machine learning (ML) regression 
methods are employed to test the ability of concrete (Chou et al., 2014; 
Ben Chaabene et al., 2020). The estimation of the compressive load 
capacity of concrete is just one application of the machine learning 
regression function. Moreover, it can also be used for clustering and 
classification of samples. 

2. Literature with research 

Different computational and numerical techniques have been per-
formed in various fields to predict the desired outcomes (Zha et al., 
2021; Zhao et al., 2021a; Chu et al., 2022; Lu et al., 2019a; Liu et al., 
2020; He et al., 2022). Similarly, Tie et al. (Zhao et al., 2021b) employed 
ANN analysis for heat and entropy generation in flow of non-Newtonian 
fluid between two rotating disks. Khan et al. (2021a) predicted the 
mechanical properties of geopolymer concrete by using ensemble and 
individual algorithms. The author reveals that GEP give empirical 
equation which can predict the FA based GP concrete. However, 
ensemble model give better accuracy as compared to GEP with coeffi-
cient of determination R2 of 0.972 as compared to individual algorithms. 

Dao et al. (Van Dao et al., 2020) used conventional artificial neural 
network (C-ANN) technique on foamed concrete to predict its 
compressive strength. The study demonstrates that ANN is a highly 
efficient for predicting the compressive strength of foamed concrete 
with a maximum coefficient value of 0.976 for the training set and 0.972 
for the testing set. Shahmansouri et al. (2020) developed a numerical 
model using GEP that can predict the compressive strength of geo-
polymer concrete (GPC). The author obtained best model for training 
and validation set with R2 of 0.91 and 0.94 respectively. The results for 
most of the models were satisfactory and similar to that of the experi-
ments. Moreover, Severcan et al. (Severcan, 2012) proposed a formu-
lation to predict the tensile strength of cylinder through GEP. The author 
reported that input parameters play a vital role with water to binder 
ratio has been most effective in strength prediction. Fakhrian et al. 
(2020) predicted the post fire behavior of geopolymer mortar through 
GEP technique which contained recycle concrete aggregate. The training 
and validation phases with a determination coefficient between 0.95 
and 0.99 showed that the results predicted in the proposed models were 
properly consistent with the testing results. Beycioglu et al. (Beycioʇlu 
et al., 2015) assessed the compressive strengths of clinker mortar with 
the ANN and Multiple Linear Regressions (MLR) model. ANN has shown 
a satisfactory relationship to experimental results and suggests an 
alternative approach for evaluating clinker mortar compression strength 
using affiliated inputs. In addition, MLR model has shown poor pre-
dictability as compared to ANN model. Fidan et al. (2019) developed an 
artificial network neural ANN model to predict concrete thermal prop-
erties. The author concluded that ANN model shows overall best per-
formance for thermal conductivity, thermal diffusivity and specific heat 
with R2 of 0.996, 0.983, and 0.995 respectively. Farooq et al. (2020) 
used an ensemble random forest (RF) and gene expression program 
(GEP) algorithm for the prediction of high strength concrete (HSC). The 
RF and GEP models are comparable to individual algorithms. RF 
nevertheless outbursts and gives R2 = 0.96 with lesser errors as 
compared to DT and ANN. Similiarly, ahmad et al. (Ahmad et al., 2021) 
studied and predicted the response of FA based concrete using various 
algorithms. The algorithms used show a significant impact on the quality 
of the model with better accuracy. A better outcome with R2 = 0.911 is 
achieved with the ensemble model in contrast to the individual model 

Fig. 3. Flow diagram of the GEP algorithm.  
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where R2 = 0.812 is achieved. Zhiqiang et al. (Lv et al., 2021) estab-
lished the acoustic emission (AE) series multifractal damage analysis 
and offers an SVM model in which concrete strength of concrete is 
predicted by AE parameters. The R2 correlation coefficients were found 
to be equal to about 1. The concrete strength obtained from the proposed 
SVM model is indicated to be in good response with the experimental 
value. Ozcan et al. (2017) developed machine learning models to esti-
mate the compressive strength of cement with blast furnace slag (BFS) 
and waste tire rubber powder (WTRP). The experiments with the dataset 
produced noticeable good outputs with higher determination co-
efficients. Moreover, ada Boost algorithm outburst among the other 
learning algorithms. Bai et al. (2020) addressed an essential technical 
problem in construction and civil engineering, namely the prediction of 
the deflection of reinforced concrete beams. It was shown that the 

SVM-ANFIS ensemble models can predict with high precision for the 
deflection of reinforced concrete beams. Khoa et al. (Nguyen et al., 
2020) predicted the compressive strength of fly ash based geopolymer 
concrete using DNN and ResNet techniques. Statistical parameters 
indicated strong correlation of the anticipated results with the experi-
mental values. Similarly, machine learning algorithms was utilized to 
predict the compressive and split tensile strength of concrete using RHA 
as cement replacement and glass fiber as an additive (Haque et al., 
2021). It was found that predicted results values were close to that of 
experimental results. Mustafa (Saridemir, 2010) employed GEP to pre-
dict the strength of concrete containing RHA at different ages and found 
adequate results. Lu et al. (2019b) employed the ensemble learning 
method to improve the cemented paste backfill of unconfined 
compressive strength (UCS). The R values obtained by ensemble 

Fig. 4. Frequency distribution of data used in making model.  
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regressor were much accurate as compared to other model methods. 
Moreover the prediction property by different researcher is also sum-
marized in Table 1. 

3. Machine learning modeling approach 

Machine learning methods have been used by various researchers to 
estimate and understand the material’s properties and behavior of 
concrete. In this study, the compressive strength of RHA based concrete 

Table 2 
Descriptive statistics of variables used in modeling aspect.  

Statistical details Age Cement Rice husk ash Water Super plasticizer Aggregate 

Mean 34.57 409.02 62.33 193.54 3.34 1621.51 
Standard Error 2.42 7.61 3.00 2.30 0.25 19.32 
Median 28.00 400.00 57.00 203.00 1.85 1725.00 
Mode 28.00 400.00 0.00 203.00 0.00 1725.00 
Standard Deviation 33.52 105.47 41.55 31.93 3.52 267.77 
Sample Variance 1123.61 11124.88 1726.77 1019.71 12.37 71702.44 
Kurtosis − 1.02 3.66 0.07 − 0.74 − 0.82 − 0.27 
Skewness 0.75 1.55 0.44 − 0.42 0.69 − 0.74 
Range 89.00 534.00 171.00 118.00 11.25 930.00 
Minimum 1.00 249.00 0.00 120.00 0.00 1040.00 
Maximum 90.00 783.00 171.00 238.00 11.25 1970.00 
Sum 6638.00 78531.00 11967.10 37158.91 640.35 311330.00 
Count 192.00 192.00 192.00 192.00 192.00 192.00  

Table 3 
Variable correlations.   

Age Cement RHA Water Super plasticizer Aggregate Strength 

Age 1       
Cement − 0.10565 1      
RHA − 0.03263 − 0.21938 1     
Water 0.010909 0.083087 0.135647 1    
Super plasticizer -3E-05 0.252929 − 0.02092 0.267961 1   
Aggregate − 0.06306 − 0.23787 − 0.13868 − 0.54908 − 0.20521 1  
Strength 0.494869 0.370099 − 0.02291 − 0.24353 0.301277 0.146561 1  

Fig. 5. K-Fold cross validation with testing and training set.  
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is estimated using two separate machine learning techniques namely as 
gene expression programming (GEP) and random forest (RF). These 
methods are selected for the reliability and robustness of their prediction 
and their role as specialists in machine learning techniques in related 
works. 

3.1. GEP 

GEP is a comparatively new modeling technique that has proven 
superior modeling in terms of achieving explicit formulations for labo-
ratory trials to traditional regression approaches and neural networks 
(Rajaee et al., 2020). The programming of GEP is close to that of genetic 
programming (GP) and genetic algorithms (GAs), since it often uses 
samples of people, selects fitness from them and incorporates genetic 
diversity by using one or more genetic operators (Faradonbeh et al., 
2018). GEP is a form of an evolutionary algorithm incorporating both 
linear, fixed-long chromosomes of genetic algorithms and expression 

parses of various genetic programming shapes and sizes (Baykasoǧlu 
et al., 2008). The programming language of GEP is karva, which is 
equivalent to LISP (Mahdinia et al., 2019). 

GEP genes are all identical in length but these fixed-length genes will 
code various sizes and shapes for expression trees (ET) (Ferreira, 2001). 
These separate genes remain united to construct a chromosome through 
the use of the connection functions (Hashmi et al., 2011). ETs include 
operators, functions, constants and variables (Peng et al., 2014). The 
GEP program uses addition, subtraction with multiplication and division 
as connecting functions. A single gene chromosome can be chosen to 
solve a query, and then modeling can be carried out with the addition of 
head weight (Güllü, 2017). But the number of genes can increase and a 
feature to connect the sub-expression trees (sub-ETs) can be chosen if it 
is very high (Poli, 2001). Fig. 3 illustrates the flow diagram of the GEP 
algorithm. The algorithm begins with the random production of chro-
mosomes of a fixed length for each person. Then they are like expression 
trees (ETs). Each individual will then be assessed for fitness (Ferreira, 
2001). The reiteration starts with different people for many generations, 
until the finest result is reached. Genetic function as mutation, repro-
duction and crossover is performed for the reiteration of the population 
(Chelouah and Siarry, 2000). 

3.2. Random forest 

In RF approaches, a mathematical model to storage data in data is 
based on a method of decision-making trees (DT) that constitute the 
decision-making framework on the basis of information theory (Rokach 
and Maimon, 2014). DT can be used to make predictions about cate-
gorical or continuous data. Accurate methodology of the DT algorithm 
varies slightly depends on whether tasks are being performed for clas-
sification (categorical predictions) or regression (continuing prediction) 
(Nilsen et al., 2019). This topic will concentrate on regression DT, since 
regression was employed for this study. Regression DT can be considered 
as part-specific regressions, where the exact regression equal used for 
predicting a particular data point is based on the values of the data point 

Table 4 
Statistical metrics suggested in literature.  

Equations Condition Recommended by 

k =

∑m
j=1(tj × pj)

t2j 

0.85 < k <
1.15 Golbraikh and Tropsha 

(2002) 

k′

=

∑m
j=1(tj × pj)

p2
j 

0.85 < k′ <
1.15 Golbraikh and Tropsha 

(2002) 

Rm = R2 × (1 −

⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒R2 − R2

0
⃒
⃒

√

)
Rm > 0.5 

Roy and Roy (2008) 
where 

R2
o = 1 −

∑m
j=1(pj − toj )

2

∑m
j=1(pj − po

j )
2; t

o
j =

k× pj 

R2
o ≅ 1  

R′2
o = 1 −

∑m
j=1(tj − po

j )
2

∑m
j=1(tj − toj )

2 ; p
o
j =

k′

× tj 

R′2
o ≅ 1   

Fig. 6. (a) Individual model prediction; (b) ensemble model with 20 sub-models; (c) ensemble model prediction; (d) ensemble model prediction error between target 
and predicted values. 
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features and the tree structure (Xu et al., 2005). The predictions shall be 
made by DT from the root node of the tree to the leaf nodes (Sivakami, 
2021). In contrast, Breiman recommended in 2001 an enhanced 
regression method called as random forest regression (RFR) (Babar 
et al., 2020). The RF technique consists of three main steps including 
assembling training data sets of trained regression trees, calculating the 
mean value of a single regression tree result and validating the results 
through the validation data sets (Fouilloy et al., 2018). A new trained 
dataset of boot-strap information is used to calculate the original trained 
set. Some data points are deleted and exchanged with current data 
points in this step. The data points that have been removed from other 
data sets are called data points that are not included in the bag (di 
Laurea di Edoardo Giovanni Colombo Matricola et al., 2014). The 
regression function is then estimated by 2/3rd of the data points and the 
out-of-bag data points are used for the model validation. This process 
continues until the necessary accuracy is achieved (Debasish Saha Roy 
et al., 2019). The RFR is an integrated process which deletes and uses the 
data points for validation from out-of-bag data points. This is the char-
acteristic feature of RFR. Finally, a total error is calculated for each tree 
of expression that shows each tree’s efficiency and accurateness (Cheng 
et al., 2019). Flexibility and speed in developing the connection among 
both output and input variables are the primary features of RFR (Gong 
et al., 2018). In addition to other machine learning algorithms, random 
forest controls large data sets more efficiently. In several sectors, such as 
pharmaceutical and medicine production, banking, customer response 
prevision and stock pricing etc, it has been used (Cooke, 2005). It was 

also used for a variety of engineering fields including potential 
groundwater mapping using system based (GIS-) data (Hornik et al., 
2003), high strength concrete (Han et al., 2019), light-weight self--
compactant concrete (Zhang et al., 2019), high-performance concrete 
compressive strength forecast (Erdal, 2013) etc. 

4. Data collection 

The central element in the design and analysis of concrete is 
compressive strength (fc’). The creation of a reliable and accurate model 
for RHA-based concrete is based on input variables and data points. 
Comprehensive data points are taken from the published literature as 
shown in Annexure A. The variables used in modeling for RHA-based 
concrete consist of age (days), cement (Kg/m3), rice husk ash (Kg/ 
m3), water (Kg/m3), super plasticizer (Kg/m3) and aggregate (Kg/m3). 
The frequency distribution and descriptions of overall data used in 
making model is shown in Fig. 4 and Table 2. Moreover, the distribution 
of explanatory variables over a large range ensures the model’s best 
performance (Khan et al., 2021b). The interdependence of the certain 
parameters used in making model must be examined to prevent 
complication in model interpretation. This correlation problem between 
selected parameters is referred as multi-collinearity. For this, the cor-
relation coefficient between two variables must be less than 0.8 in order 
to mitigate and to give benignant effect in making model (Corotis, 
1988). Table 3 represents that the entire variable used in model show 
lesser correlation with negative and positive values. Moreover, the 
compressive strength of RHA concrete is influenced significantly by all 
the variables selected. 

5. K-Fold cross validation and statistical checks 

Cross-validation is a mathematical practice for assessing the effi-
ciency of the models used to avoid over fitting and biasness in training 
set data. It divides the entire data set into k10-data sub-sets with one set 
as testing set (k1) out of ten, and remaining set (k10-1) used for training of 
the model (Saud et al., 2020). Kohavi’s (Kohavi, 1995) proposed that 
KFCV result in accurate variance and is better suited for optimal 
calculation time. This research evaluates and validates both models by 
using K10 subset as illustrated in Fig. 5. 

Moreover, statistical checks are employed to evaluate model effec-
tiveness and accuracy. These statistical measures include mean absolute 
error (MAE), coefficient of determination (R2), performance index (ρ), 
root man square error (RMSE), relative squared error (RSE) and relative 
root mean square (RRMSE) (see equations (1)–(6)). 

R2 = 1 −

∑m
j=1

(
pj − tj

)2

∑m
j=1

(
tj − t

) (1)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1

(
tj − pj

)2

n

√

(2)  

RRMSE =
1
|t|

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1

(
tj − pj

)2

n

√

(3)  

MAE=

∑m
j=1

⃒
⃒tj − pj

⃒
⃒

n
(4)  

RSE =

∑m
j=1

(
pj − tj

)2

∑m
j=1

(
t − tj

)2 (5)  

ρ= RRMSE
1 +

̅̅̅̅̅
R2

√ (6)  

Where. 

Table 5 
Models prediction of testing set.  

S. 
No 

Experimental 
values (MPa) 

Individual 
model 
(MPa) 

RF 
ensemble 
model 
(MPa) 

Experimental 
values (MPa) 

GEP 
model 
(MPa) 

1 52.1 54.66 54.0278 25.70 25.72 
2 103.3 97.13 96.6411 57.30 57.59 
3 56 50.33 52.2011 39.50 39.86 
4 34.5 22.28 28.1411 27.40 26.72 
5 19 28.06 26.44 72.70 73.43 
6 59 48.42 52.2189 52.10 52.90 
7 51 50.72 54.1789 32.60 33.52 
8 51 48.47 50.4344 51.00 52.04 
9 40 35.71 35.9244 35.30 36.35 
10 32.6 27.76 28.92 29.70 28.58 
11 37.8 35.1 33.3633 31.10 32.22 
12 37 21.96 27.0056 33.30 32.12 
13 74 63.14 65.1 41.80 40.61 
14 25.7 26.81 26.4578 55.30 54.04 
15 67 64.85 64.4278 52.60 54.07 
16 29.7 28.61 28.8278 29.70 28.22 
17 59.6 66.36 68.7044 56.50 58.08 
18 55.5 57.8 54.9833 40.00 41.89 
19 43 39.27 37.1356 32.40 34.46 
20 41 30.5 33.4744 22.70 24.80 
21 56 58.7 57.1533 47.00 44.85 
22 45.7 45.16 46.6111 57.60 59.83 
23 47 46.2 46.7744 51.40 49.03 
24 38.8 39.46 39.4022 35.10 37.73 
25 37.2 38.11 38.1311 60.80 57.99 
26 69 62.19 62.6922 46.80 49.67 
27 43.3 43.67 44.3178 45.20 48.33 
28 66.8 73.25 77.5667 51.00 47.86 
29 69 64.35 63.0178 27.60 31.16 
30 79.2 72.95 69.71 56.00 52.41 
31 34.7 39.29 36.8856 40.80 36.92 
32 53.5 56.5 53.7689 16.00 12.05 
33 33.3 31.47 32.5922 72.80 76.90 
34 37.1 38.59 43.5844 59.00 54.64 
35 41.8 40.34 41.6589 62.00 57.63 
36 29.7 28.61 28.8278 60.00 55.61 
37 40 38.57 41.3678 67.20 71.67 
38 41.8 40.34 41.6589 64.00 68.48 
39 47 50.16 48.73 47.00 42.51  
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tj = experimental values before making model. 
pj = predicted outcome from the model. 
tj = represent the target mean value. 
pi = represent the predicted mean value. 
m = refers to the total number of instances used in modeling. 

The higher value of coefficient of determination R2 and lower value 
of statistical error represents an optimum and reliable model (Nguyen 
et al., 2019). Also, model accurateness is also evaluated by it R2 value. 
Literature suggests that R2 value ranges from 0 to 0.5 represents fair 
model and 0.5 to 0.8 represents good model. However, R2 value greater 
than 0.8 shows that there exists a linear and strong relationship with less 
errors that depicts a superior model (Gandomi et al., 2011). As R2 cannot 
be used solely as a metric for the general effectiveness of the model, 

since it is insensitive to division or the multiplication of results to a 
constant (Jalal et al., 2021). The MAE and RMSE also list the size and 
significance of the average error. In RMSE, the error values are squared 
even before averages are computed and thus useful for interpreting 
larger errors. Whereas, MAE assigns small weighted values to larger 
errors. A high RMSE shows a high error in the large number of expected 
results and must be omitted. Despotovic et al. (2016) classify the model 
as good and outstanding, if the RRMSE values range from 0 to 0.11 and 
0.11 to 0.20 respectively (Despotovic et al., 2016). The values of ρ must 
go from 0 to infinity. Also, for a successful model ρ should be less than 
0.2 recommended by Gandomi et al. (2015). It should be noted that ρ 
covers both factors (RRMSE and R) at the same time. Thus, the value of ̈ρ 
should be close to 0 for superior model efficiency. In addition, this 
research paper also considers various statistical methods for the validity 

Fig. 7. RHA based Expression tree with variables and constants.  

Fig. 8. (a) Experimental vs model regression based on GEP model; (b) Errors between experimental and targets values based on GEP model.  
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Fig. 9. K-fold cross validation; (a) R2 validtion; (b) MAE validation; (c) MSE validation; (d) RMSE validation.  

Table 6 
K-Fold cross validation of models.  

K-Fold RFR model GEP Model 

R2 MAE (MPa) RMSE (MPa) MSE (MPa) R2 MAE (MPa) RMSE (MPa) MSE (MPa) 

1 0.94 14.04 5.17 26.7651 0.93 11.31 4.31 18.54 
2 0.89 12.94 3.71 13.7808 0.96 8.64 3.13 9.7808 
3 0.87 12.05 3.45 11.9242 0.91 9.84 2.81 7.9242 
4 0.91 11.61 2.96 8.75747 0.89 12.64 2.18 4.75747 
5 0.94 14.18 3.16 9.96117 0.94 11.51 2.94 8.64 
6 0.92 2.87 2.59 6.71695 0.88 5.64 2.82 7.95 
7 0.87 5.84 3.43 11.7837 0.95 3.74 2.79 7.7837 
8 0.93 14.90 4.54 20.5789 0.9 11.85 4.07 16.5789 
9 0.88 10.12 3.41 11.6615 0.87 12.41 3.54 12.54 
10 0.9 5.66 2.06 4.23181 0.93 11.31 2.48 6.14 

Maximum 0.94 14.90 5.17 26.76 0.96 12.64 4.31 15.84 

Minimum 0.87 2.87 2.057 4.23 0.87 3.74 2.182 4.75 
Mean 0.905 10.42 3.449 12.616 0.912 9.509 3.10 10.06  

Table 7 
Summary of statistical error checks and performance index.  

Developed 
models 

R2 MAE 
(MPa) 

RMSE 
(MPa) 

RRMSE RSE 
(MPa) 

Sigma 

GEP 0.967 2.29 2.677 0.058 0.035 0.029 
RFR 0.913 3.751 4.973 0.103 0.092 0.052  

Table 8 
Summary of Statistical metrics suggested in literature.  

Suggested Metric RFR model GEP model 

k 0.982 0.996 
k′ 1.030 1.009 
Rm 0.648 0.789 
R2

o 0.997 0.999 
R′2

o 0.991 0.999  
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of the model as proposed in the literature (see Table 4). 

6. Result and discussion 

6.1. RF result 

The prediction of RHA concrete using a random forest algorithm 
gives a clear relation between experimental strength values and 
modeled strength as shown in Fig. 6. It can be seen that RF without 
optimization gives a better accuracy with R2 = 0.89 with less variance as 
illustrated in Fig. 6(a). Moreover, the model is optimized by making 
twenty sub-models, which depicted that ninth model yields maximum 
accuracy with R2 = 0.913 as compared to other models as shown in 
Fig. 6(b). Also, their relation with target to prediction with R2 = 0.913 is 
illustrated in Fig. 6(c). The overall response of the model has been 
significantly improved following the ensemble approach. This is 
attributed to the increased reliability of the model as a result of the use 
of weak base learners taking multiple data to form the right model (Khan 
et al., 2021a). The overall response of the RF algorithm for the RHA 
based experimental data can also be evaluated with respect to errors as 
illustrated in Fig. 6(d). It shows that the test set data model with RFR 
gives an average error of about 3.75 MPa with minimum and maximum 
error as 0.14 MPa, and 10.76 MPa respectively. Moreover, 97% error of 
the model lies below 10 MPa which depict the overall accuracy of the 
entire model. Table 5 represents the detail results of the RF model. 

6.2. Formulation of RHA empirical equation using GEP 

The GEP algorithm expressed the compressive strength of RHA based 
concrete by forming an empirical equation from expression trees (ETs) 
as illustrated in Fig. 7. Four fundamental arithmetic operation is used in 
sub-ETs namely as, addition (+), subtraction (− ), multiplication (x) and 
division (/) as represented in Fig. 7. These ETs uses different indicators 
including parameters starting from d0 to d5 values and constant values 
that make empirical relation accurate. Equation (7) represents the ul-
timate expression that was derived by decoding the ETs. 

6.2.1. Performance of GEP model 
The relation between the expected RHA based concrete and GEP 

predicted values for the training subset is illustrated in Fig. 8. It shows 
clearly that GEP model correlated significantly between targeted and 
predicted results with R2¼0.94. Furthermore, Fig. 8(b) represent the 
absolute error distribution among actual and GEP results. Moreover, 
testing set show an average error of about 2.39 MPa with 0.039 MPa, 
6.75 MPa as minimum and maximum error. This describes the strong 
robust performance of the built GEP model and overall response of the 

model is listed in Table 5. 

y= ya/yb/yc (7)  

ya=(5.45 * A) − (W − A)+ (RHA − W) + (2.22 * C) (7a)  

yb=(− 12.45)+ SP
(

SP
5.29

)

+ (24.46) (7b)  

yc=
(

34.65*SP + 421.57
0.20*A*C

+ 2.03
)

(7c)  

Where. 

A = age, 
W = water 
SP = superplasticizer 
C = cement 

6.3. K-fold cross validation (KFCV) 

The robustness of the model based on regression analysis is evaluated 
by conducting K-Fold cross validation (KFCV) as illustrated in Fig. 9. 
Thus, various statistical error checks were applied to analyse the model 
accuracy with KFCV that includes mean square error (MSE), root mean 
square error (RMSE), and coefficient of determination (R2) as shown in 
Fig. 9. Moreover, KFCV ensure the accuracy and reliability of the pre-
diction models. Figure (a) represents the R2 of GEP with higher valida-
tion accuracy with maximum, minimum and average value of 10 K-fold 
lies in the range of 0.96, 0.87, and 0.912 respectively. Similarly, RFR 
shows same trend that depict the robust performance of the model with 
0.94, 0.87, and 0.905 as maximum, minimum and average value of 10 
K-fold validation. In addition, the error value of MSE, RMSE and MAE 
with 10 K-fold validation is also shown in Fig. 9(b,c,d). This demonstrate 
that all the statistical indicator show lesser response that depicts higher 
accurateness of entire models. The overall response of validation result 
is also listed in Table 6. In addition, model accuracy is also evaluated by 
conducting statistical analysis check. 

Statistical error assessments are also carried out to evaluate the ef-
ficiency of the model as illustrated in Table 7. The RMSE, MAE and RSE 
are significantly lower for both models that mean that models are reli-
able and accurate in predicting the compressive strength of RHA-based 
concrete. Moreover from the statistical error check it is found out that 
GEP showing better predictive results than the RFR. 

The model validation can also be evaluated by various external 
models by conducting statistical analysis as illustrated in Table 8. It can 
been seen that the k and k ’ are closer to 1 for both models thus fulfilling 
validation criteria (Golbraikh and Tropsha, 2002). The Rm is also higher 
than 0.5 for both models and fulfils Roy and Roy’s suggested criteria 
(Roy and Roy, 2008). Thus both models give robust performance interm 
of prediction of compressive strength. 

6.4. Sensitivity and parametric analysis 

Sensitivity analysis (SA) is conducted on the GEP model due to its 
better performance as compared with other models. The relative 
contribution of variables to the outcome is determined by the sensitivity 
analysis (SA). The following equations are used to mathematically 
implement SA: 

Ni = fmax(xi) − fmin(xi) (8)  

SA=
Ni

∑j=1
n Nj

(9)  

Where. 

Fig. 10. Sensitivity analysis of parameters.  
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fmin(xi) = minimum output of the predicted model 
fmax(xi) = maximum output of the predicted model 
i = representing the domain of the input variables and keeping other 
variables constant 

It can be seen in Fig. 10 that every parameter plays a vital role in 
prediction of compressive strength of RHA. From sensitivity analysis it 
can be seen that age and cement plays an important role in overall 
contribution of the compressive strength which turns out to be more 
than 50%. The age contributes almost 29.47% while cement contributes 
about 27.93%. The rest of the four parameters i.e. RHA, water, SP and 
aggregate contribute about 8.26%, 12.85%, 13.49% and 7.99% 
respectively. 

A parametric analysis (PA) was also conducted in conjunction with 
sensitivity analysis. This helps to determine the influence of the input 
parameter on the output parameter. This is done by keeping the entire 

variables constant at their average value except for one variable. 
Moreover, changes in the compressive strength occur when one input 
variable varies from its lowest to its highest value as illustrated in 
Figure. It can be seen that the number of days, super plasticizer and 
aggregate shows a similar increasing trend. However, water and RHA 
show increase and then decrease behavior (see Fig. 11). The decrease in 
compressive strength is due to as workability depends mostly on the 
ratio of water and cement. Furthermore, too much water mixing is likely 
the most critical reason for many issues, such as reducing the 
compression strength of concrete (Rao, 2001; Yaşar et al., 2004). Simi-
larly, concrete incorporating RHA needs more water than concretes 
having only Portland cement due to high specific surface area. Bheel 
et al. (2018) investigated the RHA effect with W/C ratio on strength and 
report a decrease in strength by increasing the W/C ratio. Compressive 
strength was decreased for w/c ratio of 0.60. However, compressive 
strength depicted maximum value for w/c ratio of 0.45. Similarly, 

Fig. 11. Parametric analysis of inputs; (a) age (kg/m3), (b) cement (kg/m3), (c) rice husk ash (kg/m3), (d) water (kg/m3), (e) superplasticizer, (f) aggregate.  
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Nagrale et al. (Cheng et al., 2019) discovered that increasing the water 
content decreases compressive strength. Furthermore, because of its 
filler and silica impact, RHA contributes to increased strength. However, 
increasing the RHA concentration over 30% results in a reduction in 
compressive strength. This is because RHA comprises 90 percent of silica 
content, increasing amount shows unreacted particles which ultimately 
decrease its strength (Ramezanianpour et al., 2009). 

7. Conclusions  

1. This study utilized GEP and RFR (individual and ensemble) model to 
predict the compressive strength of RHA concrete. An extensive and 
reliable data base of 192 points was collected and employed in the 
development of the models. Following conclusions of the study can 
be drawn from the developed models. 1. RHA concrete prediction 
utilising a GEP yields a significant link between the experimental and 
modeling strength values, with a regression relation of R2 = 0.966, 
compared to RFR, which yields R2 = 0.89 for the individual model 
and R2 = 0.91 for the ensemble approach.  

2. Empirical equation is developed using GEP model and can be utilized 
to determine the compressive strength of RHA concrete. 

3. Ensemble and individual models were developed using RFR algo-
rithm. Optimization of RFR was made with twenty models. However, 
ninth ensemble model gives R2 = 0.91 with an enhancement of 1.62 
as compared to individual RFR model..  

4. GEP model depicts an enhancement of 37.3 percent in average error 
with value of 2.39 MPa, whereas RFR illustrates an average error of 
3.75 MPa.  

5. When compared to the RFR model, cross validation of the GEP model 
yields greater validation accuracy using different statistical tests. 
Furthermore, statistical and external validation show that the GEP 
model performs well, with fewer errors and a high correlation 
coefficient..  

6. The parametric analysis demonstrates that compressive strength is 
adequately predicted by the model utilising the input parameters, 
with cement and age being the key influences in this research. 

8. Future recommendation 

The concrete with RHA can replace ordinary Portland cement con-
crete with high potential. Extensive study for RHA by including more 

parameters is recommended. To provide a more general expression, 
including more input parameters and extending the database can pro-
vide more reliable results. Temperature, acid attack resistance, chloride 
resistance, sulphate resistance and corrosion should be included in these 
factors. For further predictions further advanced methods such as the 
programming of particle swarm optimization (PSO) and M5P tree can be 
applied. 

However, in addition, ML techniques can be combined with heuristic 
methods, including whale optimization algorithm, ant colony optimi-
zation, and particle swarm optimization, for better results. These 
methods can then be compared with the techniques employed in this 
study. Moreover, multiexpression programming (MEP) is an extended 
and improved form/version of GEP. GEP and MEP analysis should be 
employed and compared to overcome the limitations of ensemble 
algorithms. 
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Annexure-A.  

S.No. A Cem RHA W SP FA Exp. 

1 1 495 55 165 5.8 1819 22.7 
2 1 500 0 160 5.5 1891 20.9 
3 1 400 100 160 6.22 1859 22 
4 1 425 75 170 5 1843 19.7 
5 1 495 55 165 6.8 1819 34.7 
6 1 500 0 160 6.5 1891 37.8 
7 1 400 100 160 7.36 1859 34.2 
8 1 425 75 170 6.4 1843 32.6 
9 3 495 55 165 5.8 1819 47.9 
10 3 500 0 160 5.5 1891 41.3 
11 3 400 100 160 6.22 1859 48.7 
12 3 425 75 170 5 1843 45.2 
13 3 378 42 189 0 1810 17.6 
14 3 495 55 165 6.8 1819 60.8 
15 3 500 0 160 6.5 1891 63.9 
16 3 400 100 160 7.36 1859 60.7 
17 3 425 75 170 6.4 1843 57.3 
18 7 495 55 165 5.8 1819 60.6 
19 7 500 0 160 5.5 1891 51 
20 7 400 100 160 6.22 1859 61.8 
21 7 375 0 150 0 1970 30 

(continued on next page) 
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(continued ) 

S.No. A Cem RHA W SP FA Exp. 

22 7 356.25 18.75 142.5 0 1970 31.5 
23 7 337.5 37.5 135 0 1970 32.5 
24 7 318.75 56.25 127.5 0 1970 35.5 
25 7 300 75 120 0 1970 31 
26 7 364 19 203 0 1725 27.6 
27 7 306 77 203 0 1725 29.7 
28 7 249 134 203 0 1725 25.7 
29 7 425 75 170 5 1843 57.6 
30 7 495 55 165 6.8 1819 83.6 
31 7 391 29 189 0 1810 32.4 
32 7 500 0 160 6.5 1891 76.4 
33 7 400 100 160 7.36 1859 82.8 
34 7 425 75 170 6.4 1843 79.2 
35 14 345 38 203 0 1725 35.3 
36 14 287 96 203 0 1725 36.1 
37 28 495 55 165 5.8 1819 72.8 
38 28 500 0 160 5.5 1891 59.6 
39 28 400 100 160 6.22 1859 72.7 
40 28 375 0 150 0 1970 44.5 
41 28 356.25 18.75 142.5 0 1970 45.5 
42 28 337.5 37.5 135 0 1970 49.5 
43 28 318.75 56.25 127.5 0 1970 50 
44 28 300 75 120 0 1970 43 
45 28 383 0 203 0 1725 37.1 
46 28 326 57 203 0 1725 41.8 
47 28 268 115 203 0 1725 37.6 
48 28 425 75 170 5 1843 67.2 
49 28 495 55 165 6.8 1819 95.2 
50 28 500 0 160 6.5 1891 85.7 
51 28 400 100 160 7.36 1859 94.3 
52 28 420 0 189 0 1810 40.3 
53 28 357 63 189 0 1810 46.9 
54 28 425 75 170 6.4 1843 90.3 
55 56 375 0 150 0 1970 51.5 
56 56 356.25 18.75 142.5 0 1970 53.5 
57 56 337.5 37.5 135 0 1970 56 
58 56 318.75 56.25 127.5 0 1970 59.5 
59 56 300 75 120 0 1970 52 
60 90 495 55 165 5.8 1819 83.2 
61 90 500 0 160 5.5 1891 66.8 
62 90 400 100 160 6.22 1859 82.2 
63 90 425 75 170 5 1843 75.8 
64 90 364 19 203 0 1725 43.3 
65 90 306 77 203 0 1725 46 
66 90 249 134 203 0 1725 37.2 
67 90 375 0 150 0 1970 55.5 
68 90 356.25 18.75 142.5 0 1970 56.5 
69 90 337.5 37.5 135 0 1970 63 
70 90 318.75 56.25 127.5 0 1970 64 
71 90 300 75 120 0 1970 61 
72 90 378 42 189 0 1810 59 
73 90 495 55 165 6.8 1819 104.1 
74 90 500 0 160 6.5 1891 94 
75 90 400 100 160 7.36 1859 103.3 
76 90 425 75 170 6.4 1843 99.1 
77 7 481 48.1 169.312 3.367 1040 39.5 
78 7 427 85.4 163.968 3.416 1040 30.5 
79 7 416 41.6 183.04 1.1232 1041 29.7 
80 7 370 74 177.6 1.85 1041 23.6 
81 7 367 36.7 201.85 1.101 1041 22.7 
82 7 327 65.4 196.2 1.308 1041 20.8 
83 28 481 48.1 169.312 3.367 1040 51.4 
84 28 427 85.4 163.968 3.416 1040 47.4 
85 28 416 41.6 183.04 1.1232 1041 40.8 
86 28 370 74 177.6 1.85 1041 39.4 
87 28 367 36.7 201.85 1.101 1041 34.5 
88 28 327 65.4 196.2 1.308 1041 35.9 
89 90 481 48.1 169.312 3.367 1040 64.5 
90 90 427 85.4 163.968 3.416 1040 68.5 
91 90 416 41.6 183.04 1.1232 1041 51.5 
92 90 370 74 177.6 1.85 1041 57.3 
93 90 367 36.7 201.85 1.101 1041 44.4 
94 90 327 65.4 196.2 1.308 1041 52.9 
95 1 450 0 238 11.25 1405 31.5 
96 1 427.5 21.375 238 10.6875 1405 32.1 
97 1 405 40.5 238 10.125 1405 33.3 

(continued on next page) 
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(continued ) 

S.No. A Cem RHA W SP FA Exp. 

98 1 382.5 57.375 238 9.5625 1405 34.5 
99 1 360 72 238 9 1405 33.6 
100 1 337.5 84.375 238 8.4375 1405 29.3 
101 1 315 94.5 238 7.875 1405 29 
102 28 450 0 238 11.25 1405 41.7 
103 28 427.5 21.375 238 10.6875 1405 42.7 
104 28 405 40.5 238 10.125 1405 44.2 
105 28 382.5 57.375 238 9.5625 1405 46.8 
106 28 360 72 238 9 1405 43.5 
107 28 337.5 84.375 238 8.4375 1405 39.5 
108 28 315 94.5 238 7.875 1405 38.2 
109 56 450 0 238 11.25 1405 49.1 
110 56 427.5 21.375 238 10.6875 1405 50.2 
111 56 405 40.5 238 10.125 1405 52.1 
112 56 382.5 57.375 238 9.5625 1405 55.3 
113 56 360 72 238 9 1405 55.2 
114 56 337.5 84.375 238 8.4375 1405 47 
115 56 315 94.5 238 7.875 1405 45.9 
116 90 450 0 238 11.25 1405 52.6 
117 90 427.5 21.375 238 10.6875 1405 54.9 
118 90 405 40.5 238 10.125 1405 57.3 
119 90 382.5 57.375 238 9.5625 1405 61.2 
120 90 360 72 238 9 1405 55.5 
121 90 337.5 84.375 238 8.4375 1405 51.9 
122 90 315 94.5 238 7.875 1405 50.2 
123 1 783 87 212 3.6 1277 41 
124 1 571 0 219 1 1566 30 
125 1 514 57 218 1.4 1541 27 
126 1 457 114 216 2.6 1515 26 
127 1 400 171 215 3.7 1490 19 
128 1 383 42 221 0.3 1670 16 
129 3 783 87 212 3.6 1277 59 
130 3 571 0 219 1 1566 46 
131 3 514 57 218 1.4 1541 41 
132 3 457 114 216 2.6 1515 38 
133 3 400 171 215 3.7 1490 32 
134 3 383 42 221 0.3 1670 26 
135 7 783 87 212 3.6 1277 62 
136 7 571 0 219 1 1566 50 
137 7 514 57 218 1.4 1541 47 
138 7 457 114 216 2.6 1515 47 
139 7 400 171 215 3.7 1490 43 
140 7 383 42 221 0.3 1670 37 
141 14 783 87 212 3.6 1277 63 
142 14 571 0 219 1 1566 54 
143 14 514 57 218 1.4 1541 52 
144 14 457 114 216 2.6 1515 52 
145 14 400 171 215 3.7 1490 51 
146 14 383 42 221 0.3 1670 40 
147 28 783 87 212 3.6 1277 66 
148 28 571 0 219 1 1566 56 
149 28 514 57 218 1.4 1541 61 
150 28 457 114 216 2.6 1515 60 
151 28 400 171 215 3.7 1490 54 
152 28 383 42 221 0.3 1670 47 
153 56 783 87 212 3.6 1277 69 
154 56 571 0 219 1 1566 60 
155 56 514 57 218 1.4 1541 62 
156 56 457 114 216 2.6 1515 61 
157 56 400 171 215 3.7 1490 60 
158 56 383 42 221 0.3 1670 51 
159 90 783 87 212 3.6 1277 74 
160 90 571 0 219 1 1566 67 
161 90 514 57 218 1.4 1541 67 
162 90 457 114 216 2.6 1515 69 
163 90 400 171 215 3.7 1490 64 
164 90 383 42 221 0.3 1670 56 
165 7 364 19 203 0 1725 27.6 
166 7 345 38 203 0 1725 28 
167 7 326 57 203 0 1725 29.3 
168 7 306 77 203 0 1725 29.7 
169 7 287 96 203 0 1725 28.7 
170 7 268 115 203 0 1725 27.4 
171 7 249 134 203 0 1725 25.7 
172 14 364 19 203 0 1725 34.2 
173 14 345 38 203 0 1725 35.3 

(continued on next page) 

B. Iftikhar et al.                                                                                                                                                                                                                                 



Journal of Cleaner Production 348 (2022) 131285

16

(continued ) 

S.No. A Cem RHA W SP FA Exp. 

174 14 326 57 203 0 1725 36 
175 14 306 77 203 0 1725 39.3 
176 14 287 96 203 0 1725 36.1 
177 14 268 115 203 0 1725 33.5 
178 14 249 134 203 0 1725 31.1 
179 28 364 19 203 0 1725 40 
180 28 345 38 203 0 1725 41.3 
181 28 326 57 203 0 1725 41.8 
182 28 306 77 203 0 1725 42.5 
183 28 287 96 203 0 1725 38.8 
184 28 268 115 203 0 1725 37.6 
185 28 249 134 203 0 1725 35.1 
186 90 364 19 203 0 1725 43.3 
187 90 345 38 203 0 1725 44.8 
188 90 326 57 203 0 1725 45.7 
189 90 306 77 203 0 1725 46 
190 90 287 96 203 0 1725 43 
191 90 268 115 203 0 1725 38.7 
192 90 249 134 203 0 1725 37.2  
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