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61669, Brno, Czech Republic   

A R T I C L E  I N F O   

Handling Editor: Cecilia Maria Villas Bôas de 
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A B S T R A C T   

In this study, an attempt to obtain the optimal fuel blends consisting of diesel/biodiesel/alcohol, which satisfies 
the ASTM D975 and EN590, has been performed. Fuel blending is complicated due to the trade-offs concerning 
the various criteria. The Linear Programming fuel blending model only evaluates solutions concerning quanti-
tative criteria with one single objective function. In fuel blending, qualitative criteria must be considered in 
making the final decision. A new methodological framework that integrates a two-stage product design opti-
misation model consisting of a Linear Programming (quantitative) and Analytical Hierarchy Process (AHP) 
(qualitative) is developed. The AHP was used to evaluate the criteria weight. Four criteria were implied in 
selecting the optimal blends, covering good performance, emissions limitations, cost-effectiveness, and safety 
trade-offs. Seven sub-criteria such as cetane number, the heat of vaporisation, oxygen content, sulphur content, 
CO2 emissions, flash point, and feedstock cost are examined. Four alcohol oxygenates as alternatives to be 
selected methanol, ethanol, propanol, and butanol. The final AHP results depicted diesel/biodiesel/alcohol 
(Blend 1) comprising of 70% diesel, 20% biodiesel, 10% butanol as the optimal blends with higher performance 
(CN = 48.69), lowest cost (1.2 USD/L), and cleaner emission with 35% less sulphur concentration and 36% CO2 
emissions mitigated. The AHP results were then validated by employing Sensitivity Analysis for four scenarios by 
increasing 20% of the priority vector. The solution of the sensitivity analysis of weights levels indicates the 
acceptable possibility of achieving the objective/goal. Blend 1 (diesel/biodiesel/butanol) is the optimal blend, 
followed by Blend 4 (diesel/biodiesel/methanol), Blend 2 (diesel/biodiesel/propanol) and Blend 3 (diesel/bio-
diesel/ethanol). In conclusion, this proposed new framework provides the confident decision to select alcohol 
oxygenates for future fuel diesel/biodiesel/alcohol without an extensive experiment, thereby saving time and 
money and reducing harmful environmental impacts.   

1. Introduction 

Diesel generally emits the greenhouse gases (GHG) such as CO2, 
anthropogenic NOx along with SOx, CO, volatile organic compounds 
(VOCs), and ozone (O3). The US Energy Information Agency (EIA) 
forecasted that global CO2 emissions would increase by 43% by 2035. 
The transportation sector is projected to contribute about 24% of world 
CO2 emissions in 2035, as shown in Fig. 1. Road transportation emits 
80% of the light, and heavy transportation’s total CO2 contribution, 
followed by aviation at 13%, maritime shipping at 7%, and rail at 0.5%. 

Several alternative fuels, such as biofuels, can significantly reduce 
CO2. Because CO2 emissions significantly increased, transport decar-
bonisation is necessary to promote and accelerate a low carbon envi-
ronment to combat climate change. One of the practical solutions 
available today to decrease CO2 emissions in transport is sustainable 
alternative biofuels such as biodiesel and bioalcohol. About 4.8 Gt of oil 
equivalent biomass converted to biofuel in 2050 (Ul Hai et al., 2019). 
Low carbon-emissions fuels and zero sulphur content biofuels such as 
biodiesel and bioalcohol can mark a substantial reduction of CO2. 
However, to get the overall picture is needed to analyse the total 
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Greenhouse Gases (GHG) footprint (Čuček et al., 2012). 
Numerous researchers recently claimed that biodiesel obtained 

greater attention in the automotive industry as a promising alternative 
fuel because the physicochemical properties of biodiesel are extremely 
relative to diesel (Razak et al., 2017). Biodiesel permits a superior 
technological advantage over diesel, such as having a higher cetane 
number (CN), ultra-low sulphur, and aromatics, and also containing 
10%–11% more oxygen content (OC) (Hasan and Rahman, 2017). These 
advantages are resulting in a substantial reduction of regulated pollution 
such as unburned hydrocarbons (HC), carbon monoxide (CO), and 
particulate matter (PM), and polycyclic aromatic hydrocarbons (PAHs) 
(Fanick and Kroll, 2018) but increased nitrogen oxides (NOx) emissions 
(Killol et al., 2019). 

Adding biodiesel at a higher amount in the diesel could emit higher 
NOx due to increased OC and higher combustion temperature (Hagos 
et al., 2017). Increasing biodiesel content B0 to B100 can significantly 
reduce HC, CO, and PM emissions but increase NOx emissions slightly 
(Thangaraja et al., 2016). PM and NOx are indirectly proportional, with 
a 7%–15% increase in NOx (Razak et al., 2021) during a 50%–70% 
decrease for PM, CO, and HC emissions. The higher OC in biodiesel 
prompts higher combustion temperatures, resulting in higher NOx 
emissions. Similar results are consistent with Ruhul et al. (2017), who 
claimed that diesel blended with 12% Karanja biodiesel increased the 
NOx emission up to 4.64%. 

Some modifications are required for the binary diesel/biodiesel 
blends fuel to reduce NOx and other harmful pollutants without dete-
riorating the engine performance (Sorate and Bhale, 2015). Alcohol 
oxygenates have been explored to reduce NOx and other pollutants 
emissions by improving combustion chemistry (Silitonga et al., 2018) 
without significantly reducing the engine power. The oxygenates, also 
known as fuel borne, can further enhance the fuel properties and up-
grade the engine performance caused by their thermochemical proper-
ties (Zhang and Balasubramanian, 2018). Oxygenates generally contain 
hydrogen, carbon, and oxygen. 

A wheel-to-wheel analysis revealed that oxygenates could reduce 
sulphur, PM, and CO2 significantly without affecting the engine per-
formance as reported in (Çelebi and Aydın, 2018) and slightly NOx 
formation (Xu et al., 2020). Wei et al. (2018) also supported this 
approach, which claimed that diesel/biodiesel/butanol at a maximum of 
15% by volume of butanol could also successfully cut down 30% of NOx 
formation and 20% CO2 emissions. Diesel/biodiesel/alcohol is called 
tailor-made clean diesel (Razak et al., 2019). 

In contrast to biodiesel, clean diesel is a green renewable diesel 
comprising biodiesel (esters) and oxygenates (alcohol), as shown in 
Fig. 2. The clean diesel comprises long-chain hydrocarbons ranging from 
C15–C21, a similar molecular structure to diesel. It has been considered a 
premium diesel due to a better PM, NOx, CO2, and other exhaust 
emissions. 

Most biofuel formulation studies only concentrate on the traditional 
trial-and-error experimental fuel blending. This traditional blending is 
time-consuming, not economically viable, and environmentally friendly 

as numerous attempts are required. The best strategy to meet these 
challenges while remaining profitable and maintaining sustainable 
growth, a computer-aided product design via model-based optimisation 
with specified property constraints (Hashim et al., 2017). The expensive 
experimental-based method with numerous candidates and alternatives 
is reserved only to verify the most promising candidates. Model-based 
product design is a systematic methodology that can design a higher 
added value product with enhanced product qualities and promote an 
efficient alternative (Zhang et al., 2020). 

2. MCDM analysis – linear programming and AHP 

A model-based product design can be achieved via Linear Program-
ming. Linear Programming (LP) is one of the most straightforward 
Multi-Objective Decision Making (MODM) methods. There are three 
major components of LP: decision variables, objective function, and 
constraints (mathematical inequalities or equalities). Linear Program-
ming is the most straightforward constrained optimisation problem in 
selecting the best and optimal solution by minimising or maximising a 
linear function of the decision variables. The linear maximised or 
minimised linear function is called the objective function. The main 
drawback of LP is that it can only optimise a single objective function. 

For example, MODM optimisation was employed by (Yunus et al., 
2014) for gasoline blending (Phoon et al., 2015), for diesel blending 
(Razak et al., 2021), for alcohol biofuel blending (Kalakul et al., 2018) 
for lubricant blending, and (Hashim et al., 2017) for alcohol and ether 
biofuel blending. 

Fuel blending features the interactions of the fuel physicochemical 
properties to the three sustainability dynamic factors include economic, 
technological, and environmental indicators (Dahmen and Marquardt, 
2017). All these three variables can be defined as quantitative 
parameters. 

Fuel blending focuses on the tailor-made fuel formulation’s physical 
and thermochemical properties for the optimal fuel blends (Rodrí-
guez-Fernández et al., 2019). Prior studies on fuel blending primarily 
focus on feasible quantitative criteria using MODM such as Linear Pro-
gramming. The target is to maximise fuel efficiency and minimise cost 
and/or emissions impacts. 

Linear Programming (LP) model evaluates solutions for quantitative 
merit with one single objective function. In fuel blending, qualitative 
factors must also be considered when making the final decision. Quali-
tative factors are good at managing selection based on criteria weight 
without destroying complexity. Complex fuel blending scenarios needed 
to resort to a sophisticated procedure, multi-criteria decision making 

Fig. 1. Forecasted world CO2 emissions in 2035 (IEA, 2015).  

Fig. 2. Fuel blending of clean diesel.  
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(MCDM). The MCDM has multivariate heuristic methods to integrate the 
quantitative and qualitative decision strategy. 

As a result, prior studies have relied extensively on hybrid MCDM 
methods, MODM and MADM for fuel blending. Erdogan and Sayin 
(2018) used a hybrid MCDM method to determine the most suitable 
biodiesel blended with diesel. Unlike traditional LP optimisation, 
MODM and MADM consider quantitative and qualitative values. Both 
merits can be synchronized for better results. 

MCDM is categorised into two methods, Multi-Objective Decision 
Making (MODM) and Multi-Attributes Decision Making (MADM). 
MADM is associated with problems where the number of alternatives is 
predetermined. The scoring methods are the simplest MADM methods. 
AHP is the most applied MADM method due to its simple-to-understand 
and easy-to-convince method, providing a systematic linear hierarchical 
analysis (Saaty, 2003). 

While MODM is a goal programming related to issues in which the 
alternatives have been non-predetermined and obtained clearly by 
solving mathematical models (Zavadskas et al., 2019). To conclude, 
MODM is a mathematical programming problem with multiple objective 
functions. In contrast, in MADM, several alternatives according to some 
criteria are selected and ranked. 

Due to the fuel blending complexity, qualitative merit such as the 
operational limitations obtained by the practitioners should be consid-
ered. One operational limitation is safety measures for safe storage and 
handling. The AHP method was selected due to its simplicity and 
structure robustness, fast results, and low computational cost (Saaty and 
Ergu, 2015). Another reason for adopting AHP is that AHP provides 
reciprocal pairwise comparisons and has a multi-level hierarchical 
structure analysis to propose the best alternatives from a discrete set of 
feasible alternatives. 

The optimal fuel blend of diesel/biodiesel and alcohol becomes 
critical from a sustainability perspective, especially given conflicting 
economic and environmental objectives. Factors such as fuel perfor-
mance and safety further affect the selection (Mandade and Shastri, 
2019). Fuel blending is often challenging because they contain an 
overwhelming boundary of design trade-offs such as quality and quan-
tity merits of fuel performance, safety strategy, cost-effectiveness, and 
environmental issues. 

The LP model only evaluates solutions concerning quantitative 
criteria with one single objective function. In fuel blending, qualitative 
factors must also be considered when making the final decision. As a 
result, the fuel blending optimisation problem should rely extensively on 
hybrid MCDM methods, quantitative (MODM), and qualitative (MADM) 
approaches. 

Under similar hybrid methods, Quiroz-Ramírez et al. (2017) applied 
MODM and MADM to select the optimal blend of fermentable sugars for 
butanol production. A similar hybrid optimisation approach was used by 
(Cambero and Sowlati, 2016) to decide process synthesis and feedstock 
selection. Sehatpour and Kazemi (2018) applied Fuzzy and Goal Pro-
gramming (GP) to predict an optimal fuel for light-duty vehicles in Iran. 

Sakthivel et al. (2017) developed a novel hybrid MCDM method, 
Fuzzy TOPSIS, and the Fuzzy VIKOR approach to evaluate and select the 
optimal fuel biodiesel blend. Erdogan et al. (2020) adopted integrated 
Fuzzy AHP and Fuzzy MOORA methods to evaluate the effect of engine 
performance, emission, and combustion characteristics of thermal bar-
rier coated diesel engines fuelled with a biodiesel blend. Sakthivel et al. 
(2019) implied FAHP-TOPSIS to select the optimum blends from the 
various alternative blends of fish oil and diesel. 

2.1. Research novelty and objective 

Limited study and attention are given in the literature to decisions on 
the fuel blends selection applying a hybrid method; Linear Programming 
(MODM) and AHP (MADM). There is no research from the literature 
dealing with the optimal fuel blend selection based on fuel performance, 
emissions, cost, and safety using a hybrid MCDM method; LP and AHP. 

In this research work, LP generates feasible fuel blends formulation, 
namely as alternatives. 

Meanwhile, AHP is used to determine the criteria weight for the 
deviation variables in LP. AHP scores the optimal fuel blends selection 
based on the pairwise criteria judgement. Most researchers delineate the 
feedstock selection for the fuel blending, not the fuel blending formu-
lation. Fuel blends formulation via LP is important for generating 
alternative data sets for AHP selection. This work consequently ad-
dresses these research gaps. 

The main novelty is that the new two-stage methodological frame-
work is developed to systematically assess the optimal fuel blend se-
lection using a hybrid MCDM optimisation model. An integrated LP 
diesel/biodiesel/butanol blend optimisation model and AHP for max-
imising fuel performance, maximising safety factors, minimising cost, 
and minimising emissions impact have been proposed simultaneously. 
Similar two-stage design optimisation for different targets/goals was 
found in reference (Serna et al., 2016) for sustainable chemical process 
route selection. This reference has also employed the integrated opti-
misation method (Ren et al., 2018) for agricultural water and land 
optimisation allocation under multiple uncertainties. 

Additionally, the work considers Sensitivity Analysis to check how 
sensitive the actual ranking of the alternatives is to changes in the cur-
rent weights of the decision criteria. The optimal diesel/biodiesel/ 
alcohol fuel blends were selected confidently using AHP-Sensitivity 
Analysis. Notably, this systematic framework provides a practical 
decision-making platform for policymakers that simultaneously in-
tegrates the quantitative and qualitative concerns. The new two-stage 
optimisation model should increase the confidence in the decision and 
implement better solutions. 

This study aims to propose a new and novel systematic methodo-
logical framework for fuel blending comprising a hybrid MCMD opti-
misation model. The LP (MODM) integrates with AHP (MADM). This 
integrated method is used to determine the best alcohol oxygenates 
blended with diesel/biodiesel to reduce emissions, maximising fuel 
performance and safety factors with minimal cost. The study was suc-
cessfully achieved with the following objectives:  

i. Objective 1: To determine the most feasible clean diesel blend from 
diesel/biodiesel with alcohol oxygenates, satisfying the ASTM D975.  

ii. Objective 2: To obtain the optimal diesel/biodiesel/alcohol with 
lower exhaust emissions at a minimal cost. 

2.2. Conceptual research design 

A conceptual research design of this study, as shown in Table 1 has 
been composed of a primary objective, fundamental concepts, critical 
and construct measurement, constraints and variables, and key results. 
The detailed framework has been presented in Fig. 3. 

3. Method 

The novelty of the present work is integrating two-stages design 
optimisation for the generation of feasible diesel/biodiesel fuel blends 
with different alcohol oxygenates. In 1st stage, generating the feasible 
diesel/biodiesel/alcohol blends formulation that offers technically 
complies with the diesel standard (ASTM D975). Next, in the 2nd stage, 
employing the AHP approach to select and rank the optimal diesel/ 
biodiesel/alcohol amongst the feasible blend candidates based on per-
formance, emissions, safety, and cost criterion. The optimal diesel/ 
biodiesel/alcohol blends results were validated using AHP-Sensitivity 
Analysis. The systematic and structured two-stage design optimisation 
methods, including the quantitative and qualitative merits as portrayed 
in Fig. 3. 

In Fig. 3, the 1st stage indicates the feasible fuel blends formulation 
as Task 1 using LP. The single objective optimisation model concerns 
quantitative analysis only. The objective function maximizes the fuel 
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performance governed by cetane number (CN). In the single objective 
function optimisation, the four feasible fuel blend candidates proposed 
as the outputs. 

In the 2nd stage, AHP with multi-objective optimisation is implied to 
rank and select the optimal blends. For this selection, four criteria are 
inferred; performance, emissions, safety, and cost. Finally, the AHP- 
Sensitivity Analysis is accomplished to check the stability of the AHP 
results. This new and novel two-stage optimisation model for fuel 
blending selection framework is easy-to-understand and worth-to- 
implement procedures. 

The contribution is grouped into three main tasks (Task 1-Task 3) to 
provide a comprehensive overview of this integrated MCDM optimisa-
tion model formulation for fuel blending. A two-stage decision analysis 
was developed to support the fuel blending framework for the first time, 
refer to Task 1 until Task 3. The feasible fuel blends formulation 
assessment using LP for Task 1. AHP optimisation for ranking and 
selecting the optimal fuel blend for Task 2 and Task 3. 

Task 1, a model-based fuel blending design categorised into three 
dominant tasks (Task 1.1 to Task 1.3 in Fig. 3), was initially proposed 
(Yunus et al., 2014). For Task 1.1, the first step involves problem defi-
nition and specifying the target properties. The second step in Task 1.2 is 
developing the property model subject to target fuel properties, and the 
constraints are then generated. The third step in Task 1.3 is the gener-
ation of feasible fuel blends. 

This formulation is to determine the feasible fuel blends that best 
match the target properties based on the performance criteria such as 
oxygen content (OC), cetane number (CN), and heat of vaporisation 
(HOV) in mitigating the hazardous pollutants, especially CO2 emissions, 
and sulphur content, and simultaneously enhance engine performance 
without forsaking fuel quality. 

For Task 2, the steps ultimately focus on the MADM method for 
selecting the optimal fuel blends from the feasible candidates obtained 
in Task 1. AHP tool is needed to rank and determine the optimal fuel 
blends based on performance, environmental impact, safety, and cost 
assessment. Finally, for Task 3, an AHP sensitivity analysis investigates 
the effect of fuel target properties before attributes adjustment to 
enhance the confidence in the results of optimisation models. 

3.1. Task 1 fuel blending optimisation 

3.1.1. Task 1.1 – Problem definition  

a) Defining product demand 

Fuel blends are obtained by mixing selected biofuels to best match 
the diesel target properties. The product demand is the key target for 
product design that can create interest for prospectus customers (Zhang 
et al., 2020). This first step identifies product needs and translates them 
into target physicochemical properties. The physicochemical properties, 
product target, and importance of target properties are in Table 1. The 
developed ontology encompasses product types, target properties, types 
of alcohol oxygenates for the clean diesel blends that satisfy the target 
properties. The attributes/criteria for fuel blend design formulation 
include performance, environmental impact, safety, and cost 
assessment. 

The main objective of this work is to elucidate a new two-stage LP 
integrated with AHP to obtain the optimal tailor-made diesel/biodiesel/ 
alcohol blends with good fuel performance and match the diesel stan-
dards; ASTM D975 (ASTM International, 2020) and European EN590 
diesel standards (European Committee for Standardization 2014). 
Adding alcohol oxygenates to the diesel/biodiesel blend reduces diesel 
dependency, environmental impacts and enhances fuel properties 
(Nanthagopal et al., 2018).  

b) Defining target properties 

Table 1 
Conceptual research design.  

Research Objectives Research Questions Research Scopes and Key 
Results 

Objective 1: 
To determine the most 
feasible clean diesel 
blend from diesel/ 
biodiesel with alcohol 
oxygenates, satisfy the 
ASTM D975.  

• What is the best 
blending ratio for 
clean diesel?  

• Which alcohol 
oxygenates can 
optimally blend with 
local diesel?  

• Lower alcohols 
(methanol, ethanol, or 
propanol) or higher 
alcohol (butanol) 
oxygenates for diesel/ 
biodiesel? 

Generating the most 
feasible clean diesel blend 
formulation by using 
GAMS, the global 
optimizer tool. 
The fuel properties of the 
feasible clean diesel blend 
have been benchmarked 
to the properties and 
standards of diesel in the 
market (ASTM D975). 
The product design 
optimisation model covers 
the process constraints, 
the product performance, 
and the price policies for 
the ingredients. 
Four (4) alcohol as 
oxygenates for diesel/ 
biodiesel is studied: 
methanol, ethanol, 
propanol, and butanol. 
20% Biodiesel as the 
primary reference and at 
least 1% Bioalcohol and 
1% diesel must be present 
in the clean diesel blend 
formulation. 
Key Result: 
Higher alcohol blended 
(Butanol) with diesel/ 
biodiesel is the best 
oxygenate, which yields 
higher engine 
performance and lower 
exhaust emissions. 

Objective 2: 
To obtain the optimal 
diesel/biodiesel/ 
alcohol with lower 
exhaust emissions at a 
minimal cost.  

• Which alcohol 
oxygenates can 
optimally blend with 
local diesel?  

• What are the 
attributes/factors that 
influence the most 
optimal fuel blends 
selection? 

Generating the most 
feasible clean diesel blend 
formulation using Multi- 
Objective Decision- 
Making (MODM) and 
Multi-Attributes Decision 
Making (MADM) 
optimisation models. 
AHP model using 
ExpertChoice tool is 
needed to rank and 
determine the optimal fuel 
blends based on four 
attributes: i. performance, 
ii. environmental impact, 
iii. safety, 
iv. cost assessment. 
Linear Programming (LP) 
model evaluates solutions 
for quantitative merit with 
one single objective 
function. 
In fuel blending, 
qualitative factors must 
also be considered when 
making the final decision. 
It was necessary to resort 
to a sophisticated 
procedure for complex 
fuel blending scenarios, 
such as multi-criteria 
decision-making (MCDM). 
Key Result: 
10% Butanol is the 
optimal blending ratio for 
diesel/biodiesel.  
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To solve the blending problem, appropriate target properties are 
needed to get adequate and homogenised mixing. The important fuel 
target properties are cetane number (CN), oxygen content (OC), the heat 
of vaporisation (HOV), sulphur content, CO2 emissions, flash point, and 
feedstock cost. Compared to pure component properties, the prediction 
of fuel blend target, particularly for biofuels (biodiesel and alcohol) 

blended with diesel, is highly complex (Amin et al., 2016). Table 2 
shows the fuel physicochemical properties and values obtained from the 
literature database. 

Data from experimental tests do not cover the numerous fuel blends 
ratio at different test parameters. Therefore, the property model is 
required to predict the fuel blend properties. The alcohol oxygenates 
include ethanol, methanol, propanol, and butanol that can effectively 
reduce the viscosity (Imdadul et al., 2017) and NOx and other harmful 
pollutants (Çelebi and Aydın, 2019).  

c) Defining the target property constraints 

The constraints were set in lower and upper limits for every target 
property. Euro5 diesel specifications are the values limit and target fuel 
properties. The ASTM D975 and European EN590 (European Committee 
for Standardization) fuel standards for diesel have been accredited for 
the formulated clean diesel blend. 

3.1.2. Task 1.2 – Property model identification 
The required property model was retrieved from the linear mixing 

rule models. Fuel blend properties are more challenging to obtain than 
pure component properties. Experimental data do not examine the total 
blend fraction range at different test cases, and consequently, this 
inconsistency leads to imprecise and unreliable blending. Various fuel 
blending design problems requisite different sets of property models. 

This work involves two blend property models: linear and nonlinear 
models. The Linear Kay’s and Arrhenius Mixing Rules were employed to 
predict the blend properties, and the target properties apply linear 
composition dependence. Both rules are critical in designing the optimal 
tailor-made clean diesel blend as they satisfy the thermodynamic 
properties of thermal fluids. 

The first mixing rule is Kay’s Mixing Rule in Eq. (1) was applied to 
presume the density, calorific value (Amin et al., 2016), derived cetane 
number (Ariffin Kashinath et al., 2012), flash point (El-araby et al., 
2018), oxygen content (Yunus et al., 2014), the heat of vaporisation, fuel 
sulphur content (Hashim et al., 2017), and total cost (Hashim et al., 
2017) while an Arrhenius mixing rule as Eq. (2) is used for kinematic 
viscosity (Benjumea and Agudelo, 2008). 

ζB =
∑n

i
xiζi (1)  

where ζB is a property of the blends, ζi is the corresponding property of 
pure i component and xi is the fraction in volume or mass based on the 

Fig. 3. The new systematic two-stage methodological framework for the tailor-made diesel/biodiesel/alcohol fuel blends.  

Table 2 
List of product targets and their physicochemical properties.  

Physicochemical 
Properties 

Product target and their importance 

Density  • Represent the volumetric content of the fuel.  
• The lower density fuel decreases fuel atomisation, 

leads to better combustion, and lowers NOx and other 
harmful pollutants emissions (Qian et al., 2017). 

Kinematic Viscosity  • Ease of lubrication.  
• Higher viscosity would impose additional loads on the 

injection system, which finally prompts poor 
combustion (Han et al., 2020). 

Cetane Number, CN  • Represent ignition quality and combustion intensity.  
• The higher CN oxygenated fuel prompts shorter 

ignition delays, the less fuel evaporated, leading to a 
lower temperature, and consequently, NOx and other 
harmful pollutants emissions reduced (Nabi et al., 
2019). 

Calorific Value, CV  • Indicates the energy content of the fuel.  
• The higher the CV, the more power output for the 

engine. Hence fuels with high calorific value are 
always preferred for automobiles (Wood et al., 2015). 

The heat of vaporisation, 
HOV  

• The decisive influence of thermal NOx formation.  
• The higher the HOV, the lower the PM and NOx 

formation due to a better evaporative cooling effect 
(Çelebi and Aydın, 2018). 

Sulphur Content  • The tendency to form SO2 and sulphate during 
combustion.  

• The higher the sulphur, the higher the PM and NOx 

emissions (Lapuerta et al., 2018). 
Oxygen Content, OC  • Promotes complete combustion of the fuel.  

• The higher OC promotes cleaner emissions, reducing 
PM (Nabi et al., 2017) and NOx emissions (Kumar and 
Saravanan, 2016). 

Flash Point, FP  • A safety measures for storage and transportation.  
• The lowest temperature for fuel can vaporise to form 

an ignitable mixture in the air (flammability).  
• Indicates the maximum temperature at which a fuel 

can be stored without serious hazard in a closed space 
(Schemme et al., 2017). 

Feedstock cost, FC  • Feedstock cost represents 75%–80% of the total cost 
(Zaharin et al., 2017).  

• Mainly affect economic feasibility.  
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properties unit. 

lnμmix =
∑n

i
xi lnμi (2)  

where μi is the dynamic viscosity (kg/m.s) of pure i component and μmix 
is the dynamic viscosity of the blend (kg/m.s) and xi is the fraction in 
volume or mass based on the properties unit. 

Nonlinear models are identified to predict viscosity, density, and 
flash point. Those have been linearised to apply the simple linear mixing 
rules. Linearisation of viscosity and density with the relative error at 5% 
(Gülüm and Bilgin, 2017) while 10% relative error for flash point 
(El-araby et al., 2018). The differences show that these three properties 
linear models are not substantial, and linearisation was used. 

The Linear Kay’s and Arrhenius Mixing Rules are simple rules for 
predicting diesel/biodiesel blends (Chatrou et al., 2019). Both rules are 
essential in designing the fuel blends as they satisfy the thermodynamic 
properties of combustible fluids. Kay’s mixing rule is used for predicting 
density (Amin et al., 2016), calorific value (Amin et al., 2016), derived 
cetane number (Kalakul et al., 2018), flash point (El-araby et al., 2018), 
oxygen content (Zhang et al., 2018), the heat of vaporisation (Yesilyurt 
et al., 2020), fuel sulphur content (Hashim et al., 2017), and cost 
(Hashim et al., 2017) while an Arrhenius mixing rule is used for kine-
matic viscosity (Hoang, 2018). Table 3 depicts the target properties 
models and constraints as tabulated in Eq. (3) to Eq. (14). 

3.1.3. Task 1.3 – Feasible fuel blend optimisation 
It is important to identify the suitable biofuels (biodiesel or bio-

alcohol) to be blended with diesel. Several criteria were used to select 
biofuels candidates amongst the alcohol oxygenates. The model-based 
fuel blending was employed to generate the feasible fuel blend candi-
dates that satisfy the target property value. All property models and 
target values were coded in MATLAB. 

The clean diesel formulation is formulated as a linear problem (LP) 
and solved using MATLAB, modelled in a linear programming (linprog) 
solver. A similar model-based blend formulation method was also 

employed for gasoline blending (Yunus et al., 2014), diesel blending 
(Phoon et al., 2015), alcohol biofuel blending (Razak et al., 2019), 
lubricant blending (Kalakul et al., 2018), and alcohol and ether biofuel 
blending (Hashim et al., 2017). All lower and upper limits inequalities 
were defined as equality constraints for this linprog problem. 

The formulation of the model-based product design contains an 
objective function, variables, and constraints. Equality and inequality 
constraints for property and process models were defined. The linear 
property model constraints are as follows; cetane number (CN), the heat 
of vaporisation (HOV), oxygen content (OC), flash point (FP), fuel 
sulphur (S), CO2 emissions, and feedstock cost (FC). The fuel property 
constraints used are set according to the Euro5 diesel standard. Each 
property has its role in producing an excellent clean diesel blend. 

The objective function for the fuel blend design optimisation is set to 
maximise the cetane number. Ternary blend selected, alcohol, as an 
oxygenates, blended with diesel/biodiesel blend. The objective function 
is shown in Eq. (15). Several lists of feasible ternary diesel/biodiesel/ 
alcohol blend candidates have been obtained. 

Fobj =max
∑n

i
CNmix (15)  

where Fobj is the objective function and CNmix represents the cetane 
number of fuel blends. 

MATLAB gave four optimal blend compositions and property values 
with higher fuel performance (governed by CN). The results were 
generated within 0.015 s. The blend properties obtained were within the 
specified target values. The optimal fuel blends that satisfied all the 
constraints are then ranked according to the minimum difference cetane 
number, ΔCNmix in the fuel blends over the CN of diesel. The subscript 
mix represents the ternary fuel blends (diesel/biodiesel/alcohol). 

The alcohol oxygenates in the fuel blends designed in this study 
should have at least 1% by volume of alcohol and/or maximum at 20% 
by volume of biodiesel. This is because the higher oxygen content (OC) 
associated with the lower calorific value (CV) of alcohol oxygenates and 
higher viscosity of biodiesel leads to lower fuel economy (Nabi et al., 

Table 3 
The fuel target properties and values.  

Fuel Properties Diesel Biodiesel Methanol Ethanol Propanol Butanol 

Chemical Formula eC14H30 C12 – C22 CH3OH C2H5OH C3H7OH C4H9OH 
Molecular Weight (g/mol) e198.4 d293 f32.04 f46.07 j60.09 i74.12 
Density at 15 ◦C (kg/m3) a839 d872 f791.3 f789 g803 at 25 ◦C i810 
Kinematic Viscosity at 40 ◦C (mm2/s) a2.91 d4.56 f0.58 f1.1 g1.74 i2.22 
Cetane Number, CN a49 d61 f5 f8 g12 i17 
Calorific Value, CV (MJ/kg) k45.273 d39.8 f19.58 f27 g30.63 i33.1 
Heat of vaporisation, HOV (kJ/kg) n274 m 353 l 1162.64 l 918.42 l 727.88 l 581.4 
Flash Point (◦ C)  a71.5 d184.5 f12 f17 g22 i35 
Self-Ignition Temperature (◦ C)  l 254 m 350 l 463 l 420 l 350 l 345 
Oxygen Content, OC (mg/kg) c0 b11 f49.93 f34.8 j26.62 i21.58 
Fuel Sulphur Content (mg/kg) c0.26 c0 h0 f0 g0 i0 
oFeedstock Cost (USD/L) p0.52 1 10 4 15 6  

a (Silitonga et al., 2013). 
b (Altaie et al., 2015). 
c (Hashim et al., 2017). 
d (Tutak et al., 2017). 
e (Agarwal, 2007). 
f (Kumar et al., 2016). 
g (Atmanli, 2016a). 
h (Sayin et al., 2010). 
i (Atmanli, 2016b). 
j (Yilmaz and Atmanli, 2017). 
k (Benjumea and Agudelo, 2008). 
l (Rajesh Kumar and Saravanan, 2016). 
m (Subramani et al., 2020). 
n (Javier et al., 2013). 
o The cost obtained from (Merck Sdn Bhd, 2021) includes pure alcohol’s capital and production cost, transportation cost, and current sales profit in 2021. 
p ULSD No. 2 Diesel price in Malaysia in 2014 (Hussain et al., 2018). 

N.H. Razak et al.                                                                                                                                                                                                                               



Journal of Cleaner Production 337 (2022) 130297

7

2019). Further, alcohol oxygenates can absorb water, leading to metal 
corrosion and phase separation (ErdiwansyahMamat et al., 2019). 
Mahmudul et al. (2017) also claimed that higher alcohol content might 
lead to an explosion because alcohol is highly flammable and explosive, 
which needs extra care on the blending. 

Furthermore, the ratio of biodiesel was maintained at a maximum of 
20% by volume due to their shortcomings over diesel. Several studies 
have revealed that a higher amount of biodiesel may drive to higher 
viscosity, which causes clogged car filters and nozzles and consequently 
lowers energy content, hence degrading the engine power (Wan Ghazali 
et al., 2015). All limitations are designated as referring to ASTM D975 
and EN590 standards. 

The emission study is gaining importance since toxic gases affect the 
human respiratory system. The diesel engine combustion process con-
sists of air, fuel, and heat-generating complete combustion and incom-
plete combustion products. CO, HC, NOx, and smoke are considered 
products of incomplete combustion, while CO2 and H2O are the products 
of complete combustion. The more CO2 emissions, the better the fuel 
oxidation. Instead of cleaner emission targets, CO2 released amount (kg 
CO2/L fuel) indicates the efficiency of the fuel to combust inside the 
combustion chamber. 

The CO2 emission factors (3.19 t CO2/t diesel) were obtained from 
the Intergovernmental Panel of Climate Change (IPCC) technical report 
(IPCC, 2018) is shown in Eq. (16). The CO2 emissions rely upon carbon 
contents, oxygen concentration, and the combustion efficiency of the 
fuel. Lacking oxygen can lead to incomplete combustion and release 
more CO emissions that react with other pollutants in the airborne to 
form potentially harmful ground-level ozone. 

CO2 =
(3.19 × ρmixture × vD100)

1, 000
(16)  

where ρmixture represents the density of the clean diesel blends in kg/m3; 
vD100 represents volume fraction of diesel and CO2 generated from fuel 
combustion expressed in kg CO2/L. 

3.2. Task 2 - rank and select the optimal fuel blends using AHP 

The two last steps are key new fuel blend design methods for this 
work in the second stage. The feasible blend candidates proposed by the 
model were then optimised in the MCDM approach via AHP. Herein, a 
systematic fuel blend design optimisation with a decision support system 
was developed, and a hybrid MCDM method was integrated. This inte-
gration enhances the product design optimisation model by adding at-
tributes to the confidence intervals of the optimisation. AHP also 
identifies where a reduction of uncertainties is necessary or beneficial. 
The optimal diesel/biodiesel/alcohol blend should have good perfor-
mance as diesel, be safe to handle, emit cleaner emissions, and be 
economically viable. 

Finally, sensitivity analysis will investigate the impact of fuel target 
properties before adjusting. Sensitivity analysis is important in model 
development, validation, and optimisation. Also, sensitivity analysis 
helps focus on the most sensitive fuel target properties for the model 
adjustment, avoids over-fitting, and reduces the effort of model adjust-
ment. They allow system analysts to determine where to focus on system 
design to ensure robustness and accuracy across the range of inputs. 
Sensitivity analysis offers an interactive visual representation of the 
sensitivities of a single and a large set of properties. The results reveal a 
high degree of model stability (SuJeong and Ramírez-Gómez, 2017). 

3.2.1. Analytical hierarchy process (AHP) 
This fuel blends optimisation aims to identify and propose the 

optimal blend that can achieve the trade-offs between the cost and 
performance (mainly governed by CN). The LP model in the 1st stage, 
the optimisation model, only evaluates solutions concerning quantita-
tive criteria with one single objective function. In fuel blending, 

qualitative factors must also be considered when making the final 
decision. 

Therefore, the model-based formulation was then evaluated in the 
2nd stage by applying the most advanced technologies in the MCDM 
tool, the pairwise-comparison analytical hierarchy process (AHP) 
method using Expert Choice v11.5 software (ExpertChoice, 2009). The 
AHP offers user-friendly interfaces, automatic calculation of priority 
vectors and inconsistency, and multiple types of sensitivity analysis 
embedded with an interactive graphical dynamic solution. The main 
advantage of employing this software is reducing the processing time to 
generate the priority vectors and the sensitivity analysis for the optimal 
results (Ho and Ma, 2018). 

The AHP includes constructing a hierarchical framework and pair-
wise comparison matrices, performing pairwise judgment, analysing the 
comparison results, and ranking the best alternative that best matches 
the product targets (Ahmed Ali et al., 2015). This ranking and selection 
are based on priority vector values and the pairwise seven-point judg-
ment/criteria consistency ratio. 

AHP is the manufacturing industry related to implementing corpo-
rate sustainable manufacturing practices is the most of the studies 
available in literature reviews. Dos Santos et al. (2019) claimed that only 
five published manuscripts are to be found embracing AHP for biofuel 
sustainability development from 2014 to 2018. For example, the AHP 
method was successfully practiced to eco-design biodiesel production in 
Vietnam (Dos Santos et al., 2019). 

AHP is a structured and flexible decision-making process proceeding 
from the objective/goal to criteria to sub-criteria to the alternative 
courses of action in successive levels (Saaty, 2008). The hierarchical 
framework of the AHP method is widely employed for comparing the 
overall performance by selecting and prioritising the desirable product 
target (objective). Organising and analysing complex decisions of this 
structured approach require the following four systematic steps:  

a) Step 1 of AHP: Develop the AHP hierarchical framework and define 
the main objective of the analysis 

The first stage of AHP implementation is developing the hierarchical 
framework, which clearly and systematically presents the relationship 
between the main objective/goal and the criteria and the alternatives. 
The AHP method construes the problem in three strategic stepwise 
covers a top-down and bottom-up approach (Russo and Camanho, 
2015). 

The first step is defining the target (objective/goal) that needs to be 
achieved. The second step is to model the problem and define the criteria 
to evaluate the solutions that emerge. The third step is the most 
important part of establishing priority amongst sub-criteria using the 
pairwise comparison judgment approach. At the bottom level, the 
determination of priorities for the alternatives relative to the main 
objective/goal. 

Referring back to the previously mentioned concept, in this case 
study, four alcohol oxygenates, methanol, ethanol, propanol, and 
butanol, were used as an alternative for this AHP model. The optimal 
diesel/biodiesel/alcohol selection was defined as the design problem’s 
objective/goal (Level 1). The critical four attributes/criteria of product 
targets (Level 2), such as fuel performance, emissions, safety, and cost, 
were specified, as shown in Fig. 4. 

The sub-criteria in Level 3 are cetane number (CN), the heat of 
vaporisation (HOV), oxygen content (OC), flash point (FP), fuel sulphur 
(S) content, CO2 emissions, and feedstock cost (FC) are depicted visually 
in Fig. 5. Level 4 characterises alternatives including Blend 1, Blend 2, 
Blend 3, and Blend 4 to be selected concerning the main objective/goal 
set in Level 1.  

b) Step 2 of AHP: Performing pairwise comparison judgment 

The second stage in the AHP method performs a pairwise comparison 
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between the objective/goal and criteria. The individual elements are 
evaluated, and the consistency of the evaluation is checked. The pair-
wise comparison can be applied to determine which criteria are statis-
tically significant. In this stage, the relative importance between the 
objective and the criteria, including the sub-criteria, are given a nu-
merical value based on the ranking score for pairwise comparison. 

The AHP method is the most frequently used criteria weighting 
method (MaiaAngelo and Lino Guimarães Marujo, 2020). Saaty (1990) 
uses the principal eigenvector of the positive pairwise comparison ma-
trix to derive criteria weights from decision makers’ subjective judg-
ment. In this work, the criteria weights have been determined using 
AHP. A subjective method is adopted to determine the criteria weights of 
economic, environmental, and technical attributes (safety and fuel 
performance). 

The personal intuition of the decision-makers on the significance 
criteria for a specific decision-making process is adopted in the subjec-
tive model development. Several methods to obtain the criteria weights 
by applying a subjective approach can vary in the number of participants 
in the weighting process, the applied methods, and the forming of the 
final criteria weights. Subjective methods are principally based on 
pairwise comparisons of criteria (Pamučar et al., 2018).  

c) Step 3 of AHP: Pairwise comparison evaluation by eigenvector 

Subsequently, a pairwise comparison matrices using relative in-
tensity is prepared for structured judgment. The Likert Scale method is a 
numerical scale for comparing two alternatives, as listed in Table 4. The 
AHP method is the most frequently used practice among all the sub-
jective methods of assessing criteria weights (Vinogradova-Zinkevič 
et al., 2021). AHP quantifies the criteria weight in the form of a nu-
merical basis. The criteria weight of each element determines its relative 
importance with the other elements of the hierarchy from Level 1 to 
Level 4. 

The number of pairwise comparison evaluations depends on the 
criteria and is calculated using the n(n-1) rule, where n is the number of 
criteria. It is necessary to assign relative weights to the criteria and 
evaluate the overall alternatives to get the best solution that matches 
their needs in the main objective/goal. The evaluation for the relative 
importance of the main objective/goal-criteria-alternatives are syn-
thesised using the priority vector or eigenvector. 

Saaty and Ergu (2015) obtained the priority vector by constructing 
pairwise comparison matrices (size n x n) for each level, where n is the 
number of evaluation criteria considered. The priority value or eigen-
vector can be obtained by calculating the eigenvector of comparison 

Fig. 4. Four criteria and seven sub-criteria of clean diesel blend product design evaluated in AHP optimisation model for the optimal blends.  

Fig. 5. The hierarchical framework in selecting the optimal clean diesel blend.  
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matrix A, as shown in Eq. (17). 

A=
(
aij
)

n ×n =

⎡

⎣
a11 a12 …a1n
⋮ 1 ⋮
an1 an2 …1

⎤

⎦ (17)  

where aij = k automatically implies that aij = 1/k and i, j = 1,…,

n and i ∕= j. The aij is the importance scale and n is the number of criteria.  

d) Step 4 of AHP: Performing consistency analysis using Consistency 
Ratio 

When many pairwise comparisons are performed, some in-
consistencies may typically arise. Consistency Ratio (CR) plays a vital 
role in the hierarchical framework of AHP as CR can determine the 
consistency of pairwise comparison judgment. All comparisons between 
criteria and alternatives were analysed to determine the data consis-
tency for each criterion. The priority value or eigenvector can be applied 
to compute Consistency Index (CI) and CR, as depicted in Eq. (18) and 
Eq. (19). 

CI =
λmax − n

n − 1
(18)  

CR=

(
CI
RI

)

100% (19)  

where n is the criterion, λmax is the maximal eigenvalue of the compar-
ison matrix, RI is the Random Index which depends on n values as 
tabulated in Table 5. The consistency rate (CR) should be less than 10%. 
The estimate is accepted if CR ≤ 10% (Saaty, 2008). 

The final stage in the AHP method is completing with sensitivity 

analysis of the ranking of alternatives by using the Expert Choice v11.5 
software program (ExpertChoice, 2009). Sensitivity analysis is adopted 
to validate the AHP results. This analysis is advantageous in under-
standing the effect of changing the weights of the main criteria on the 
ranking factors. 

3.3. Task 3 - Sensitivity analysis 

Sensitivity analysis is finally conducted to simulate the What-If 
simulation exercise to predict the outcome of a decision given a specific 
range of variables and conclude the robustness of the results. Moreover, 
it is a Black Box Processes that can help validate which factors are 
important and how changes in methods, models, or the values of vari-
ables affect the results. 

A sensitivity analysis makes it possible to distinguish between high- 
leverage variables, whose values significantly impact the system 
behaviour, and low-leverage variables, whose values have minimal 
impact on the system. The overall AHP and sensitivity analysis have 
been presented in Fig. 6. 

Four scenarios of varying the priority vector for the main criteria 
were performed in the sensitivity analysis using Expert Choice v11.5 
software (ExpertChoice, 2009). The four scenarios in this study are 
performance (CN, OC, and HOV), environmental (sulphur content and 
CO2 emission), safety (flash point), and economic (feedstock cost). Every 
main criterion for the four scenarios increases by 20%, and the results 
are analysed. 

This section presents the results obtained from the proposed product 
design optimisation model for diesel/biodiesel/alcohol blends. Table 6 
tabulates the optimal composition of four ternary clean diesel blends 
modelled in a linear programming (linprog) solver with linear objective 
function and continuous linear constraints (Yunus et al., 2014). All 
lower and upper limits inequalities were defined as equality constraints. 
The target property models, constraints, and target values were coded 
into MATLAB. 

The optimal diesel/biodiesel/alcohol blends satisfied the desired 
Euro5 diesel target properties ASTM D975. Four types of primary 
alcohol have been considered for the blend design formulation: meth-
anol, ethanol, propanol, and butanol. All proposed blends consist of 20% 
biodiesel and less than 20% alcohol. Maximum 20% alcohol has been 
limited because the higher alcohol content can lead to a lower fuel 

Table 4 
Target properties models and constraints.  

Attributes Target properties Linear Property Models Lower 
Bound 

Upper 
Bound 

References Reference for Test Eqs. 

Target property constraints 
Fuel performance Kinematic Viscosity at 40 ◦C, η (mm2/s)  ln ηmix =

∑n

i=1
xi .ln ηi  

1.9 4.1 Hoang (2018) ASTM D445 (3)  

Density at 15 ◦C, ρ (kg/m3)  ρmix =
∑n

i=1
xi . ρi  

810 845 Amin et al. (2016) ASTM D1298 (4)  

Cetane Number, CN  CNmix =
∑n

i=1
xi . CNi  

42 55 Kalakul et al. (2018) ASTM D6890 (5)  

Calorific Value, CV (MJ/kg)  CVmix =
∑n

i=1
xi . CVi  

43 – Amin et al. (2016) ASTM D240 (6)  

Heat of Vaporisation, 
HOV (kJ/kg) 

HOVmix =
∑n

i=1
xi . HOVi  

330 – Yesilyurt et al. (2020) ASTM D86 (7) 

Safety concern Flash Point, 
FP (◦C) 

FPmix =
∑n

i=1
xiFPi  

52 96 El-araby et al. (2018) ASTM D93 (8) 

Emissions impact Oxygen Content, OC (mg/kg) OCmix =
∑n

i=1
xi . OCi  

2 20 Zhang et al. (2018) ASTM D975 (9)  

Fuel Sulphur, S (mg/kg) Smix =
∑n

i=1
xi . Si  

– 10 Hashim et al. (2017) ASTM D5453 (10) 

Feedstock cost Feedstock Cost, FC (USD/L) Costmix =
∑n

i=1
xi . FCi  

– 5 Hashim et al. (2017) – (11) 

Process model constraints 
Base fuel Diesel ratio, xD  xD ≥ 0.01  0.01 – Razak et al. (2021) – (12) 
Biodiesel Biodiesel ratio, xB  xB ≥ 0.01 

xB ≤ 0.2  
0.01 0.2 Biodiesel limit to 20% for optimal results. (13) 

Alcohol oxygenates Cellulosic alcohol ratio, xA  xA ≥ 0.01 
xA ≤ 0.2  

0.01 0.2 Maximum 20% alcohol has been limited due to lower CN 
and lower power output (Zaharin et al., 2017). 

(14)  

Table 5 
Importance scale for pairwise comparison analysis.  

Relative Intensity Definition (Example: aij) 

1 i and j are equally important 
3 i is slightly more important than j 
5 i is important than j 
7 i is strongly more important than j 
9 i is absolutely more important than j  
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economy. The shorter combustion period of alcohol induces a decrease 
in the cooling effect, leading to higher NOx emission (Zaharin et al., 
2017). 

Biodiesel is also limited to 20% due to higher viscosity and lower 
energy content, degrading engine power. Karavalakis et al. (2017) also 
reported that a low-level blend below B20 (20% biodiesel) is highly 
recommended to effectively curb CO2, PM, and NOx. B20 also performs 
similar horsepower, torque, and mileage as diesel (Alptekin et al., 2015) 
and will operate like diesel in any diesel engine without the need for 
modifications. 

The tabulated results depict the CN for all four blends, Blend 1 until 
Blend 4, are approaching CN of diesel, CN = 49. These proposed blends 
showed that the diesel composition was reduced as the oxygenates 
increased. Blending diesel with biodiesel and alcohol is attractive since 
it substitutes 5%–15% of diesel fuel with biofuels, which can help to 
reduce the dependency on fossil fuels and reduce greenhouse gas 
emissions (Shahir et al., 2015). 

Further analysis showed that the small volume of alcohol oxygenates 
in clean diesel blends could promote cleaner emissions, significantly 
reducing the harmful gases such as sulphur dioxide (SO2) and the 
greenhouse gases, CO2 (Kumar and Saravanan, 2016). The amount of 
CO2 in fuel combustion emitted to the atmosphere was computed via Eq. 

(16), as hypothesized (Ariffin Kashinath et al., 2012). 

4. Results and discussion 

Fig. 7 depicts the sulphur content and CO2 emission reduction of the 
four blends compared to diesel. Diesel consists of 0.26 mg/kg sulphur 
concentration and 2.68 kg CO2/L (Hashim et al., 2017). The fuel sulphur 
is burned and emitted as sulphates. The fuel sulphur content and aro-
matics hydrocarbon in diesel could increase the PM formation in the fuel 
blends. Notably, Lapuerta et al. (2017) claimed that fuel sulphur 
reduction promotes the reduction of PM formation by decreasing the 
particulate. The remarkable result from the plotted data is a significant 
reduction in sulphur content for about 35% and 36% CO2 emissions 
abatement by Blend 1 (diesel/biodiesel/butanol). 

Note that oxygenates like alcohol and biodiesel blended with diesel 
can boost fuel combustion to emit ultra-low sulphur (Natarajan et al., 
2011) and lower PM (Jamrozik et al., 2018). Strong evidence of the 
findings is consistent with Çelebi and Aydın (2019). He claimed that 
biodiesel and alcohol’s higher oxygen content (OC) leads to complete 
combustion and lower harmful gaseous emissions and smoke opacity. 

Fig. 8 illustrates the trend of CN with the cost for all four blends in 
this case study. The CN increases with an increase in carbon alcohol. 

Fig. 6. AHP sensitivity analysis methodology.  

Table 6 
Random Index (RI) of random matrix (Raharjo and Endah, 2006).  

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RI 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59  
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This may be due to the increased CN of the lower alcohol (methanol, 
ethanol, propanol) to higher alcohol (butanol). It is apparent from this 
graph that CN for all four blends depicted is closing to 49, CN for diesel. 

These results highlight that all four blends complied with ASTM 
D975. The CN experiences are the most critical fuel properties since the 
compression-ignition (CI) diesel engine relies on compression ignition 
(Emiro and Mehmet, 2018). CN indicates the ignition delay time that 
promotes combustion efficiency. The higher the CN, the shorter the 
ignition delay time, the better the combustion performance and cleaner 
emissions, and higher fuel economy. 

4.1. Performing judgment using AHP pairwise comparison 

AHP pairwise comparisons are used to prioritise criteria. Pairwise 
comparison is a numerical ranking process based on the ranking score 
comparing the relative importance, preference, or likelihood of the 
relative importance between the objective/goal and the criteria, 
including the sub-criteria. A pairwise comparison method is helpful in 
the MCDM context to determine the weighted ranking of alternatives or 
criteria/sub-criteria. 

4.1.1. AHP pairwise comparison – graphical judgement 
In this work, the ‘Graphical Judgement’ method in Expert Choice 

v11.5 software program (ExpertChoice, 2009) is implied to evaluate the 
criteria weight. Two elements (criteria/sub-criteria) are compared to 
their parent elements with bar graphs. The lengths of the bars indicate 
the relative dominance of the elements. If they are of equal length, then 
the elements are equally important. If one bar is twice as long as the 
other, then it is twice as important. Relative dominance is also repre-
sented with a pie chart on the right side of the panel. 

The numerical representations of the graphical judgments are dis-
played in the comparison matrix as numbers. If the row element (on the 
left) is preferred, the judgment is displayed in black. If the column 
element is chosen, the judgment is inverted and displayed in red. The 
final graphical judgment will be displayed as bar graphs that overlay the 
row elements depicted in Fig. 9. 

Fig. 9 shows the pairwise comparison matrix of criteria, performance 
concerning the emissions. AHP performs a pairwise comparison to 
determine the most feasible ternary clean diesel blend to compare the 
objective/goal to the criteria, sub-criteria, and alternatives. The fuel 
properties depicted in Table 3 were used as a reference to assist the 
pairwise judgment. There are four alternatives concerning the four 
criteria: performance, emissions, safety, and cost. 

The CN is a pervasive quality of the blended diesel with biofuels. The 
higher CN compensates significantly affect the fuel blends cost because 
alcohol is renewable, clean-burning fuel made from biological materials 

Fig. 7. Sulphur and CO2 emissions reduction of diesel/biodiesel/alcohol blends.  

Fig. 8. CN and cost of diesel/biodiesel/alcohol blends.  
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and renewable feedstock and may require a higher price for mass pro-
duction. A pairwise judgment in AHP can be used to demonstrate the 
cost and performance trade-offs. The key desire is to get the best per-
formance at the lowest price. As shown in Fig. 10, the CR is less than 
10%, only 4%, meaning this pairwise judgment is acceptable and 
equitable. 

Fig. 10 illustrates the priorities of four criteria to determine the 
optimal ternary clean diesel blends. The horizontal graphical bar dem-
onstrates that cost (27.1%) is the highest priority, and the most crucial 
factor should be considered for clean diesel blends optimisation design. 
Fuel performance (25.3%) ranked as the second factor. The higher the 
CN, the excellent fuel quality can promote better fuel efficiency and 
complete combustion. Emissions (24.5%) ranked third in the selection, 
representing combustion efficiency. Safety (23.2%) ranked fourth in the 
priorities values. 

Final AHP analysis, as shown in Fig. 11, concluded that Blend 1 
(diesel/biodiesel/butanol) is the optimal diesel/biodiesel/alcohol 
blend. Butanol promotes better emissions, higher performance at a 
minimal cost, with the highest goal score, 25.4%. The second-ranked is 
Blend 2 (diesel/biodiesel/propanol) at 25.1%. Blend 4 consists of diesel/ 
biodiesel/methanol ranked third at 25.1%, and Blend 3 (diesel/bio-
diesel/ethanol) ranked fourth at 24.3%. The overall inconsistency is 
0.04. 

4.2. Performance sensitivity analysis 

The last step of the decision process is the sensitivity analysis, where 
the input data are slightly modified to observe the impact on the results. 
Sensitivity analysis has been conducted to verify the ranking and se-
lection from the pairwise judgment performed (Chang et al., 2007). 
Sensitivity analysis is typically performed to check the robustness of the 
optimal solution. By performing Sensitivity Analysis, it can quickly be 
determined how a change in the importance of an objective would affect 
the choice alternatives. 

This analysis was executed using Expert Choice v.11.5 software 

(ExpertChoice, 2009). Parametric sensitivities can be determined from 
the LP and AHP results. The stability of the pairwise evaluation can be 
observed by changing the four criteria. The four criteria/scenarios are 
fuel performance, emissions, cost, and safety. 

In this study, the priority vector of the four scenarios has been 
increased by 20%, and the overall rank change is shown in Fig. 12, 
Fig. 13, Fig. 14, and Fig. 15. A similar 20% change was found in (Mansor 
et al., 2013) in selecting a hybrid natural and glass fibers reinforced 
polymer composites material for automotive brake lever design. Mas-
tura et al. (2017) reported that their Sensitivity Analysis results in 
selecting a hybrid bio-composite material for the automotive anti-roll 
bar are stable at 20% changes. 

The Sensitivity Analysis results in this study 20% change for the 
criteria/scenarios are set in this study because the alternatives (meth-
anol, ethanol, propanol, and butanol) do not change. The 20% changes 
are robust, indicating Blend 1 ranked top for all scenarios/criteria (fuel 
performance, emissions, safety, and cost). The results are consistent with 
data obtained in Prasad Bhuvanagiri et al. (2018), who identified that 
their results do not change significantly for the change at lower than 
20%. Meanwhile, a significant change such as +30% and above resulted 
in inconsistent results and efficiency loss (Zondervan et al., 2015). This 
analysis is helpful because it improves the model’s prediction by 
studying qualitatively and/or quantitatively how the model responds to 
the changes between variables. 

Sensitivity analysis approaches measure the impact of change in 
input variables by understanding the phenomenon studied by analyzing 
interactions between variables (Mandal et al., 2012). Sensitivity analysis 
is performed using the following formula in Eq. (20). 

S=

(
∂x
x

)

(
∂p
p

) (20)  

where S is sensitivity, x is variable, and p is a parameter. ∂x and ∂p are 
changes of initial values of variables, parameters, and forcing functions. 

Fig. 9. The pairwise comparison matrix of criteria, performance concerning the emissions (ExpertChoice, 2009).  

Fig. 10. The priorities ranking and scoring of the sub-criteria to the goal (ExpertChoice, 2009).  
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Sensitivity analysis results are summarised in Table 7. Blend 1 
(diesel/biodiesel/butanol) was concluded as the optimal clean diesel 
blend. In general, it can be observed that the performance sensitivity 
graph in Figs. 12-15 does not change when the four criteria weighting 
factor is increased up to 20% change. Significantly, the integrated 
product design indicated the most cost-effective and environmentally 
friendly clean diesel should contain 70% diesel, 20% biodiesel, and 10% 
butanol resulting in the highest CN, 48.69, with the lowest cost 1.2 USD/ 
L and cleaner emission with 35% less sulphur concentration and 36% 
CO2 emissions reduced (see Table 8). 

4.3. Two-dimensional AHP-Sensitivity analysis 

The two-dimensional sensitivity analysis demonstrates the priorities 
of the alternative concerning two objectives at a time (x-axis and y-axis). 
The area of the 2D plot is divided into quadrants. The most favourable 
alternatives concerning the objectives on the two axes are marked in the 
upper right quadrant. The closer to the upper right corner, the better the 
alternative. Fig. 16 points that Blend 1 has the lowest cost and the higher 
performance. The lowest cost for the alternatives shows the top corre-
lation line as the blue dot for Blend 1 in the graphical sensitivity 

Fig. 11. Overall results for diesel/biodiesel/alcohol fuel blends (ExpertChoice, 2009).  

Fig. 12. Performance sensitivity graph of emissions concerning goal when the priority vector of environmental is increased by 20%.  

Fig. 13. Performance sensitivity graph of performance concerning goal when the priority vector of performance is increased by 20%.  
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analysis. 
Blend 1 performs better and emits the lowest emissions with higher 

performance, as shown in Fig. 17. This analysis elucidated that Blend 1 is 
the optimal ternary clean diesel blends for all four scenarios evaluated, 
further validating the results gained through the pairwise comparison in 
the AHP method and the objectives (priorities) been computed. 

The CN of Blend 1 is 48.69 approaching the CN of diesel (CN = 49), 
and is the highest CN among the four fuel blends (alternatives). The 
highest CN advantageously concludes that butanol has physical prop-
erties close to diesel fuels. Compared to lower alcohol, 10% of butanol 
exhibits better results even in lower blending concentrations. Also, the 
higher CN of Blend 1 concluded that only a minimal 10% volume of 
butanol is needed in attributing more powerful engine performance and 
improving the combustion efficiency and cleaner emissions simulta-
neously (Imtenan et al., 2015). 

The higher CN associated with, the higher heat of vaporisation 
(HOV) of butanol than the lower alcohol promotes better fuel ignition 
and causes more air/fuel accumulations lowered cylinder pressure 
(Nanthagopal et al., 2018). This advantage of higher alcohol, such as 

Fig. 14. Performance sensitivity graph of cost (USD/L) concerning goal when the priority vector of economic is increased by 20%.  

Fig. 15. Performance sensitivity graph safety concerning goal when the priority vector of economic is increased by 20%.  

Table 7 
The fuel properties of clean diesel blends.  

Properties Diesel/Biodiesel/Alcohol 

Blend 1 Blend 2 Blend 3 Blend 4 

Alcohol Used Butanol Propanol Ethanol Methanol 
Diesel, xD  0.70 0.65 0.67 0.70 
Biodiesel, xB  0.2 0.2 0.2 0.2 
Alcohol, xA  0.10 0.15 0.13 0.10 
Density (kg/m3) 843.15 842.84 838.45 840.65 
Kinematic Viscosity at 40 ◦C 

(mm2/s) 
3.21 3.2 3.03 3.04 

Cetane Number, CN 48.69 46.305 46.539 47.49 
Calorific Value, CV (MJ/kg) 43.8 43.2 41.67 41.59 
Heat of Vaporisation, 

HOV (kJ/kg) 
465.12 412.81 365.95 441.51 

Flash Point, FP (◦C) 90.45 86.675 87.015 88.15 
Oxygen Content, OC (mg/kg) 4.36 6.19 6.72 7.19 
Sulphur Content (mg/kg) 0.17 0.19 0.17 0.18 
CO2 emission (kg CO2/L) 1.7283 1.8611 1.6689 1.7778 
Cost, USD/L 1.2 2.9 2.6 1.7  
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butanol, also leads to higher engine thermal efficiency and combustion 
efficiency. Another advantage is the hydroxyl group (-OH) in alcohol is 
also reported in (Cheng et al., 2002) can suppress the sulphur and PM 
formation more effectively. Suppressing PM and CO2 emissions reduce 
peak combustion temperature (Mirhashemi and Sadrnia, 2020), and the 
lower combustion temperature reduces NOx emissions (Razak et al., 
2021). 

Fig. 18 clearly illustrates the two-dimensional sensitivity results of 
optimisation of economic and environmental criteria that impact the 
four alternatives, Blend 1 to Blend 4. The diagram shows the trade-off 
between cost, the highest criteria weight, and emissions, the third- 
ranked criteria weight. Blend 1 (diesel/biodiesel/butanol) results in 
the lowest emissions and cost. These findings are helpful for the 

decision-makers, policymakers, and researchers to select the alcohol 
oxygenates (alternatives) for the optimal fuel blends to reduce the CO2 
emissions within a reasonable cost. 

4.4. Final synthesis with respect to goal: The optimal diesel/biodiesel/ 
alcohol 

Fig. 19 indicates the final synthesis with respect to the goal. Blend 1 
is the optimal diesel/biodiesel/butanol fuel blend called clean diesel. 
The combination of four scenarios/priorities (cost, emissions, perfor-
mance, and safety) resulting in Blend 1 is the preferable mixture for 
clean diesel production. While Blend 4 (diesel/biodiesel/methanol) 
ranked second, followed by Blend 2 (diesel/biodiesel/propanol), and 

Table 8 
The rank of alternative priorities for three different priority vectors.  

Rank Performance Emissions Economic (Cost) Safety (Flash Point)  

Increased by 20% of priority vector  

Ternary Cleaner 
diesel blends 

Priority Vector 
(%) 

Ternary Cleaner 
diesel blends 

Priority Vector 
(%) 

Ternary Cleaner 
diesel blends 

Priority Vector 
(%) 

Ternary Cleaner 
diesel blends 

Priority Vector 
(%) 

1 Blend 1 17.2 Blend 1 18.1 Blend 1 18.5 Blend 1 18.4 
2 Blend 3 16.5 Blend 2 17.4 Blend 4 17.2 Blend 2 17.2 
3 Blend 2 16.4 Blend 4 16.8 Blend 2 17.2 Blend 4 16.5 
4 Blend 4 16.2 Blend 3 16.3 Blend 3 16.3 Blend 3 16.1  

Fig. 16. Two-dimensional sensitivity of performance on top-ranked priorities, cost.  

Fig. 17. Two-dimensional sensitivity of emissions on second-ranked priorities, performance.  
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Blend 3 (diesel/biodiesel/ethanol). 
Based on the rank chart of the sensitivity analysis summarised in 

Fig. 20, Blend 1 (diesel/biodiesel/butanol) ranked at the top for all four 
scenarios; economic, performance, cost, and safety. It is concluded that 
Blend 1 is the optimal ternary clean diesel blend. The final two-stage 
optimisation model significantly indicates the most cost-effective and 

environmentally friendly diesel/biodiesel/butanol ternary clean diesel 
blends should contain 70% diesel, 20% biodiesel, and 10% butanol 
resulting in the highest CN = 48.69, with the lowest cost of 1.2 USD/L. 

4.5. Tornado chart for sensitivity analysis 

A tornado chart is a powerful visualization of the conclusion in 
making a decision. The tornado chart is a highly effective tool for 
illustrating sensitivity and risk management analyses. The tornado in 
sensitivity analysis provides a graphical representation of how the result 
is sensitive to the specified criteria. 

The tornado chart in Fig. 21 demonstrates sensitivity analysis about 
the four different criteria; fuel performance (CN), emissions (OC and 
CO2), cost, and safety (Flash Point). The larger bar shows that the safety 
factor is the most sensitive criteria and has the highest uncertainties in 
impacting the result. The cost variable listed at the bottom is the least 
important in affecting the objective. 

Flash point (FP) is a significant parameter for safety measures in fuel 
blending. The FP of alcohols (FP = 12 ◦C–35 ◦C) is 50%–70% lower than 
diesel (FP = 72 ◦C). A liquid fuel with a lower flash point between 23 ◦C 
and 60 ◦C is considered a higher flammable, combustible, volatile, and 
hazardous liquid (Santos et al., 2020). For safety purposes, minimal 
alcohol oxygenates must blend with diesel/biodiesel to gain the same 
power output as diesel fuel. 

Fig. 18. Two-dimensional sensitivity of trade-off between cost and emissions.  

Fig. 19. Final synthesis with respect to the goal.  

Fig. 20. The rank of alternative priorities for four alcohol oxygenates.  
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This work identifies that 10% butanol in diesel/biodiesel blend in-
creases the FP up to 90.45 ◦C, about 20% higher than FP diesel at 71 ◦C. 
The higher the flash point, the safer the fuel is regarding storage, 
transport, and handling. Higher alcohols (butanol) are preferably 
blended with diesel/biodiesel due to high FP over lower alcohols 
(Arnaldo et al., 2019). The higher FP of biodiesel at 184.5 ◦C makes the 
diesel/biodiesel/alcohol blends relatively stable for voluminous storage 
and safer handling. 

Regarding the environmental impacts, the lower FP of alcohol ad-
vantageously reduces the fuel blend’s viscosity and volumetric density 
simultaneously. With biodiesel’s higher volumetric density and viscos-
ity, a longer ignition delay will increase the peak pressure during the 
premixed combustion phase due to poor atomisation and spray char-
acteristics (Pandey et al., 2012). The combustion temperature increased, 
which in turn increased the NOx formation. The lower FP and higher 
volatility of alcohol reduce the compression work and combustion 
temperature due to higher HOV (Razak et al., 2021). The cooling effect 
of HOV leads to a lower combustion temperature and a reduction of NOx 
emissions significantly. 

4.6. Product analysis 

Oxygenates with higher molecular weight (higher alcohol) such as 
butanol often have higher density, higher boiling point, higher viscosity, 
lower volatility, better lubricity, and lower flammability than respective 
oxygenates with lower molecular weight (lower alcohol) as ethanol 
(Imdadul et al., 2016). Consequently, oxygenates with higher molecular 
weight like butanol are preferred for diesel/biodiesel fuel blends 
components. 

Butanol is the best oxygenate for CI diesel engines and provides 
several advantages over the lower alcohols; methanol, ethanol, and 
propanol. Ethanol precipitate dual-phase separation in diesel/biodiesel 
blends under 10 ◦C. Ethanol is not miscible with diesel at higher blend 
ratios because of low CN, leading to ignition delay due to its low calorific 
value and poor lubricity (Ali et al., 2015). With having good solvent 
capabilities, miscibility, and stability, butanol can be more easily 
blended with diesel/biodiesel without any engine modification. 

Rajesh Kumar and Saravanan (2016) inferred that butanol has a 
higher miscibility factor due to its hydrophobic nature provides good 
solubility with diesel without phase separation. Butanol is less corrosive 
and can be stored in standard tanks for a longer duration (Chen et al., 
2013). Moreover, the higher flash point of butanol (FP = 35 ◦C) than 
ethanol (FP = 17 ◦C) guarantees safe transportation, safe handling, and 
safe storage. 

The advantages of butanol include higher CN and CV, which can 
reduce ignition delay, higher heat of vaporisation (HOV), and higher 
oxygen content (OC) that enables lower temperature in the cylinder and 
may improve the premixed combustion phase, leading to leading to a 
higher temperature to PM, CO2 and NOx emissions reduction. Signifi-
cantly, butanol exhibits lower viscosity, which may cause better fuel 
atomisation, leading to complete combustion (Nanthagopal et al., 
2018). 

The interest in higher alcohol, such as butanol, has invigorated many 
CO2 abatement initiatives due to its superior properties to methanol, 
ethanol, and propanol. Compared to the lower alcohols, the physico-
chemical properties of higher alcohol are found to improve significantly 
and compensate for diesel/biodiesel blends while obtaining better re-
sults even in lower ratio blending concentrations (Mirhashemi and 
Sadrnia, 2020). 

The butterfly diagram portrayed in Fig. 22 compares the relative 
importance of four variables: performance (CN), emission represented 
by oxygen content (OC) and CO2 emissions, cost, and safety (flash 
point). The blue segments of the bars correspond to result in values for 
higher alcohol oxygenate, Butanol, and the orange segments of the bars 
correspond to results of lower alcohol, Ethanol. 

The larger bars present the preferred (butanol) selection than the 
small bars (ethanol). This diagram means that uncertainty in perfor-
mance, safety, emissions, and cost significantly impacts alcohol 
oxygenate selection, especially when comparing the lower and higher 
alcohol. Butanol 10% is the best candidate with higher performance, CN 
= 48.69, and lower cost at 1.2 USD/L. 

Butanol is the best oxygenate for CI diesel engines and provides 
several advantages over the lower alcohols; methanol, ethanol, and 
propanol. The advantages of butanol include higher CN and CV, whereas 
can reduce ignition delay, lower heat of vaporisation (HOV) that enables 
higher temperature in the cylinder, and improve the premixed com-
bustion phase, leading to NOx emissions reduction. 

In this study, the effect of four alcohol oxygenates (methanol, 
ethanol, propanol, and butanol) was investigated with various compo-
sition ratios on the combustion and emission characteristics in the diesel 
engines. This study focused on fuel properties enhancement. The effects 
of oxygen contents (OC), cetane number (CN), and heat of vaporisation 
(HOV) on exhaust emissions have been investigated systematically using 
model-based design optimisation. 

The results show that higher alcohol (butanol) addition to diesel/ 
biodiesel reduces 35% sulphur and 36% CO2. The optimal Blend 1 
comprises 70% diesel, 20% biodiesel, and 10% Butanol, indicating the 
highest performance (CN) associated and safer liquid (FP) with lower 

Fig. 21. Tornado chart for criteria (performance, cost, emissions, and safety.  
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cost and lower emissions. 
The effect of higher alcohol oxygenates, in particular, butanol, on 

performance (governed by CN), combustion characteristics, and envi-
ronmental impact (governed by OC and HOV) have been reviewed. The 
following sub-conclusions are drawn as below:  

i. Fuel properties such as CN, OC, and HOV of alcohols oxygenate 
significantly reduce the diesel exhaust emissions.  

ii. Higher alcohol (butanol) offer superior characteristics such as 
higher OC (promotes complete combustion to reduce sulphur, 
PM, CO2, smoke, and soot), higher HOV (stronger cooling effect 
to reduce NOx), CV (higher power output), CN (reduces ignition 
delay), density and viscosity (better fuel flow for better atom-
isation), and flash point (for safer storage and handling), as 
compared to lower alcohol like ethanol.  

iii. A two-stage model-based fuel blends design optimisation that 
integrated LP and AHP is the best strategy in predicting, 
designing, and executing experimental investigation of fuel 
blends on engine performance, exhaust pollutants, safety sys-
tems, and combustion characteristics. 

5. Conclusions 

This paper presents a new and systematic two-stage model-based fuel 
blends optimisation that integrates linear programming (LP) with AHP 
to select the best alcohol oxygenates for diesel/biodiesel/alcohol fuel 
blends. This integrated model has adopted a hybrid MCDM method, 
MODM, and MADM to evaluate the trade-offs such as quality and 
quantity merits. Four criteria have been evaluated, including perfor-
mance, emissions, cost, and safety, which are significant in the complex 
fuel blending optimisation model. 

The final result depicts 70% diesel, 20% biodiesel, 10% butanol as 
the optimal diesel/biodiesel/alcohol fuel blends at the higher perfor-
mance (CN = 48.69 ≈ CN Diesel = 49), safer handling fuel (higher flash 
point), and fewer environmental impacts at minimal cost (1.2 USD/L). 
The higher cetane number (CN) and oxygen content (OC) and heat of 
vaporisation (HOC) of butanol oxygenates in diesel/biodiesel promote 
cleaner diesel emissions with 35% less sulphur concentration and 36% 
CO2 emissions reduced. 

This two-stage fuel blends optimisation model, consisting of quan-
titative (MODM) and qualitative (MADM) merits, prohibit the robust-
ness of this novel fuel blending optimisation model, to get the best 
optimal result that fulfills the three sustainability models; (economic, 
social and environmental) plus product safety. 

Compared to the conventional optimisation algorithm, this two-stage 
fuel blends optimisation model provides the confident decision to select 

alcohol oxygenates for diesel/biodiesel/alcohol without an extensive 
experiment, thereby saving time and money and reducing harmful 
environmental impacts. 

5.1. Technical limitations 

Despite the significant benefits inherent in mathematical optimisa-
tion in product design, there are also substantial challenges and limi-
tations regarding this process and the continuous conduct of the 
strategy. This study has three primary limitations to the generalization 
of these results that could be addressed in future research as below:  

i. Constraint Parameters 

The design objective is limited by blends, product property, and 
process model constraints. Any factors that proscribe the formulation of 
blends are called blends constraints. An example of blends constraints is 
the miscibility/solubility property that indicates the phase behaviour of 
the blends. The miscibility is very important in liquid blending because 
it determines the feasibility of the optimal blends (Agarwal, 2007; Yunus 
and Manan, 2016). A property constraint model represents the target 
properties defined from the product needs, such as type of fuel blends, 
volume fraction, and blends miscibility. The product property constraint 
is unique for each product design problem. The process model constraint 
denotes the conditions for the blending process, for example, mass 
balance. A restriction on the design parameters is also considered a 
process model constraint, such as the limitation of the composition in 
blends. Blends formulation should be considering multiple types of 
constraint equations to get the feasible and optimal blends.  

ii. Multiple objective functions 

The product design typically deals with optimisation with respect to 
one objective. Since business-industrial requirements are not fully 
satisfied with only one objective, generally by quantitative merits. In 
fuel blending, qualitative factors must also be considered when making 
the final decision. It is necessary to consider several even competing 
objectives. 

The performance of clean diesel is evaluated from the blends’ cetane 
number (CN). Besides enhancing the fuel performance, the new 
formulation of clean diesel blends (diesel/biodiesel/alcohol) should be 
safe, cost economics, and have low environmental impacts. 

Fuel blending is often challenging because they contain an over-
whelming boundary of design trade-offs such as quality and quantity 
merits of fuel performance, safety strategy, cost-effectiveness, and 
environmental issues. The LP model only evaluates solutions concerning 

Fig. 22. Comparison results of butanol vs. ethanol with respect to criteria.  
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quantitative criteria with one single objective function. In fuel blending, 
qualitative factors must also be considered when making the final de-
cision. As a result, the fuel blending optimisation problem should rely 
extensively on hybrid MCDM methods, quantitative (MODM), and 
qualitative (MADM) approaches.  

iii. Sample size and model reliability 

Another limitation is the model reliability, where solving the 
blending problem using a mathematical approach requires property 
models that are predictive and accurate. Sample sizes can also become a 
huge problem and increase exponentially with the size of the database 
and type of the blends. The size of the problem depends on the number 
of fuels used for blending and the type of blends. If it is impossible to find 
a large enough sample size, the data collected may be insufficient. 
Solving a complex optimisation problem mathematically requires 
extensive computational efforts and may cause non convergence and 
more collapse results. 

5.2. Research implications 

An integrated two-stage optimisation has resulted from this study, 
which is very helpful for the policymakers, industrial players, and re-
searchers to generate interdisciplinary perspectives to inform policies 
and development at a national level, especially from a low-carbon 
pathway context. It is essential to address this initiative to inform en-
ergy systems planners and policymakers when deciding whether to focus 
on pursuing new biofuels blended with diesel with cleaner emissions at a 
minimal cost. 

In addition, focus on strengthening current policies that promote 
dedicated biomass technologies and other renewables. This insight is 
important because, in several developing countries, policies promoting 
biofuels such as oxygenate alcohol remain unavailable, although pol-
icies promoting renewables are already incorporated in national pol-
icies. In this way, if a conflict arises between the policy goals, decision 
support tools can inform policymakers on the synchronization of those 
multiple policies. 

Aside from providing an incentive to the bioenergy producers, these 
systematic two-stages optimisation models for the clean diesel blends 
could be potentially brought down in the future through technological 
learning. This aspect is related to the minimization of the investment 
cost of technologies. Technological learning can make the most progress 
in Malaysian biofuels, for example, biodiesel and bioalcohol as oxy-
genates based on learning from foreign technology partners and internal 
knowledge by planned experimentation. 

5.3. Recommendations for future works 

The following recommendations are listed to address the issues 
related to this research work: 

The two-stage fuel blends optimisation model concurrent Linear 
Programming (MCDO) and AHP (MCDA) provides the confident deci-
sion to select alcohol oxygenates for diesel/biodiesel/alcohol without an 
extensive experiment, thereby saving time and money and reducing 
harmful environmental impacts. 

Using the results of this paper as an objective function in a biofuel 
formulation design model can be useful. The proposed framework can 
also be used for other liquid biofuels, like biodiesel, esters, biomass- 
based biofuels from crops such as corn cob, sugar cane, and different 
base fuel such as gasoline and kerosene future research can examine. 

Technology selection for biomass to biofuels conversion process is 
also important to recognize all the variables/characteristics. This opens 
up a new path for researchers to further study and decide the best 
conversion technology for biorefinery production. 
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