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Abstract: The advancement of 3D-printing technology has ushered in a new era in the production of
machine components, building materials, prototypes, and so on. In 3D-printing techniques, the infill
reduces the amount of material used, thereby reducing the printing time and sustaining the aesthetics
of the products. Infill patterns play a significant role in the property of the material. In this research,
the mechanical properties of specimens are investigated for gyroid, rhombile, circular, truncated
octahedron, and honeycomb infill structures (hexagonal). Additionally, the tensile properties of PLA
3D-printed objects concerning their infill pattern are demonstrated. The specimens were prepared
with various infill patterns to determine the tensile properties. The fracture of the specimen was
simulated and the maximum yield strengths for different infill structures and infill densities were
determined. The results show the hexagonal pattern of infill holds remarkable mechanical properties
compared with the other infill structures. Through the variation of infill density, the desired tensile
strength of PLA can be obtained based on the applications and the optimal weight of the printed parts.

Keywords: poly lactic acid; 3D printing; infill patterns; tensile strength; fusion deposition modeling

1. Introduction

Rapid prototyping is a time-saving additive manufacturing technique used to reduce
wastage and create complex models. It is widely used in the industrial, manufacturing,
and development sectors. Three-dimensional(3D) printing can be achieved in both metals

Materials 2022, 15, 5142. https://doi.org/10.3390/ma15155142 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15155142
https://doi.org/10.3390/ma15155142
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-6544-3852
https://orcid.org/0000-0001-7143-3653
https://orcid.org/0000-0001-9446-8074
https://orcid.org/0000-0003-4409-956X
https://orcid.org/0000-0001-6622-2632
https://orcid.org/0000-0003-2487-8646
https://doi.org/10.3390/ma15155142
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15155142?type=check_update&version=1


Materials 2022, 15, 5142 2 of 11

and polymer materials, based on the applications. The material infills, support, and layer
thickness play a significant role in the strength of the products. Infill structures, such as
grids and triangular, hexagonal, triangular, and linear structures are the standard infill
structures. Together with the infill structures, infill density also plays a crucial role in the
mechanical properties of the 3D-printed objects. The effect of infill density on caries in a
PETG part manufactured using the fusion deposition modeling technique was explored.
The mechanical properties were found to be significantly influenced by infill structures and
density [1,2]. The effect of infill patterns on the mechanical properties was investigated
in lightweight 3D-printed PLA cellular parts; the variation of relative flexural modulus
concerning the relative density of the material was exhibited in the research. Moreover,
this investigation demonstrated the characteristics of infill structures. The hexagonal infill
had a higher yield strength compared with square and diagonal structures [3–5]. The
tensile strength of commercial polymer materials was investigated for the Fused Filament
Fabrication 3D-Printing technique. It showed the theoretical and experimental masses of
3D-printed parts for different infill ratios. The specimen with a higher mass possessed good
tensile properties [6]. Besides the investigations of mechanical properties with standard
infills, topology optimization was carried out to reduce the volume of the material to
acquire good load-carrying capacity. The porous structure of the infill was designed based
on the local volume of the material. The performance of the bone models and their discrete
formulation were compared to honeycomb structures [7,8]. Similar research on mechanical
properties was conducted in 3D-printed PLA materials in accordance with the ASTM
D638 Type IV Standard, with the yield strength of the specimen tested using a universal
testing machine and validated using finite element analysis using ANSYS software [9].
The properties of bioresorbable polymer test specimens with varied infill designs and
infill ratios were investigated in biomedical applications. The mechanical properties of
commodity implant grade polymers such as PLLA and Lacto flex vary significantly with
infill density [10,11]. The mechanical properties of ABS 3D-printed parts were tested
concerning the temperature, fill density, velocity of print, and so on. The tensile strength
and impact resistance of the specimen were examined and it was demonstrated that the
printing time was higher for 100% infills. Hence, the results of the experiment suggest
an infill range of less than 100% infill, based on the applications and considering the load
parameters. [12,13]. Design and topology optimization were carried out for 3D-printed
wax patterns for rapid investment casting. A commercial topology optimization tool was
utilized in the experimentation to print the wax patterns; patterning of the optimized design
was exhibited to reduce the weight of the 3D-printed material [14,15]. Shell–infill composite
minimum compliance topology optimization was carried out for additive manufacturing.
According to the findings of this study, the numerical technique was linked to the geometry
of the object. The composition of non-uniform gradient infill and uniform infill was
compared in this research that correlated the relative density and relative stiffness with the
infill ratio percentages [16,17]. Investigations of polylactic acid material on its mechanical
properties by varying the infill structures we recarried out with triangular, grid, quarter
cubic and tri-hexagonal structures. The SEM observations in this study exhibited triangular
infill structures produced by raster bonding, which implies good mechanical properties. In
triangular infills, a lower number of voids and an absence of racket lines were observed. The
results showed that the bonding strength and the optimized infill structures of the layers
lead to the good mechanical properties of 3D printed objects [18]. Infill optimization for
3D-printed parts was carried out based on the structural dimensions. This experimentation
introduced optimization methodology and, subsequently, integration of global optimization
methodology was carried out. A finite element method was applied to the lattice infills and
demonstrated that the technique depicted by the results possesses good characteristics in
the additive manufacturing process [19,20]. Another approach to shell–infill structures was
carried out with the topology optimization technique. The constant-spaced mesh infills
were replaced by gradient infills using this technique. The 3D-printed objects possessed
remarkable mechanical properties and a reduction in print time was achieved [21–23].
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Optimal selection of the infill structures was carried out for fusion deposition modeling of
PLA materials. The tensile and three-point bending tests reveal the mechanical properties
of the PLA-printed parts and showed a significant change in the mechanical properties in
terms of print speed, feed rate, and upright orientation [24,25]. Based on previous research
on infill structures, the yield strength of the 3D-printed specimen was investigated. Layer
thickness and print speed play a significant role in the change in mechanical properties.
The common infills are hexagonal, linear, circular, triangular, and linear structures. The
development of new structures, such as spherical, rhombic, truncated octahedron, and
gyroid structures leads to the creation of a space in the research into the performance of
these infills and their mechanical properties. In this research, the mechanical properties
of specimens are investigated for gyroid, rhombile, circular, truncated octahedron, and
honeycomb structures (hexagon).

Open-work filling has better mechanical properties than solid because it takes less
time to print and has better mechanical properties.

The tri-hexagon infill pattern with varied densities of 20%, 40%, and 60% was inves-
tigated. A maximum time of 227 min was observed for printing the 60% infill density.
The print time increased with infill density. Mechanical properties and printing time were
investigated [26]. Ammonium perchlorate-polylactic acid has been successfully 3D printed
to test its structural and energetic capabilities. The capabilities of combustible 3D-printing
technologies were investigated [27]. Ceramic-filled composite 3D-printed objects were
investigated to test their mechanical properties. After the chemical structure modification
of zirconium oxide and aluminum oxide ceramic fillers, the material was 3D printed and
subjected to mechanical tests [28]. Printing parameters, orientation, raster angle, and
materials affected the mechanical properties of fused deposition 3D-printed parts. The
proper alterations in the printing parameters led to a significant increase in tensile strength.
The factor levels were different from the optimal factor settings [29]. The fused deposition
modeling prototypes were investigated using dynamic loading with reinforced composite
wires. SiC and Al2O3 in a Nylon-6 matrix were used as the feedstock filament. The results
exhibited an improvement in mechanical properties, such as yield strength, tensile prop-
erties, elongation percentage, and Young’s modulus [30]. The 3D-printed specimen was
modelled as per ASTM D638 Type IV and subjected to mechanical tests. The ASTM D638
standard is commonly used to test reinforced and non-reinforced plastics. Test samples
were placed in the grips of the universal tester at a specified grip separation and pulled
until failure [9].

2. Materials and Methods

Commercially available Augment 3Di-3D printing (Red) PLA of 1.75 mm diameter was
used for the extrusion process. Flash forge Dreamer 3D printer was used to manufacture
the test specimens as per ASTM D628 standard to test the tensile properties. The machine
was set at a Build Volume: 9.1”× 5.9”× 5.5” and a layer thickness of 100–500 microns of
resolution. A nozzle of 0.4 mm diameter was used to extrude the PLA filament in the
manufacturing of the test specimen. A print speed of 200 mm/s and a heated build platform
of 120 ◦C are the maximum ranges for the machine. The maximum positioning precision of
the printer was 0.1–0.2 mm. The slicing software Flash Print was used for slicing the part
into layers and the creation of infill structures was carried out by this software. For the
sliced parts, G-codes were sent to the 3D printer using the software. The dimension of the
ASTM D 628 specimen is shown in Figure 1.
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Figure 1. ASTM D638 specimen.

The standard geometry of the tensile test specimen as per ASTM D628 was modeled in
Creo Elements. The part file was converted to stereolithographic format (STL) and imported
into the Flash Print 3D Printer application for slicing and to send the G-codes to the printer.
The static structural module was utilized to create a tensile stress environment. A tensile
load of 20.2 MPa was applied on the two sides of the specimen [31,32]. The local stresses
were simulated to investigate the mechanical properties of the specimen with gyroid,
rhombile, circular, truncated octahedron, and honeycomb structures (hexagonal) patterns
with varied infill ratios. The infill structures were designed in Fusion 360 with various
infill densities and exported to flash print and ANSYS applications for manufacturing
the specimen and evaluating its mechanical properties, respectively. In our additive
manufacturing process, 120 ◦C was maintained and an extrusion temperature of 210 ◦C
was maintained in the extruder to melt the PLA filament. A print speed of 60 mm/s
and a layer thickness of 0.18 mm were maintained throughout the manufacturing of the
specimen. This layer thickness was consistently maintained for all varied percentages of
infill density and infill structures, with the first layer of thickness of the specimen being
maintained at 0.27 mm. The structure’s infill was developed in Fusion 360. It was tested
on a universal testing machine. The specimen was loaded into the testing machine jaws
and hydraulic loads were applied between the two ends of the specimen. The loads
were applied gradually until the specimen fractured due to the applied tensile loads. The
3D-printed PLA specimen is shown in Figure 2.
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Figure 2. Test Specimen—ASTM D638.

2.1. Printer Setting

The material density was taken as 1.24 kg/cm3 for polylactic acid. In printer settings,
the specimen is in the boundary regions of the platform with 0◦ of orientation for printing
the specimen without supports. The infill structure is shown in Figure 3. For finite
element analysis, a specimen 3D model was imported in IGEs format and yield stress and
fracture growth were analyzed using static structural and explicit dynamics analysis. In
the preprocessor, polylactic acid material was assigned a Young’s modulus of 13.8 GPa and
a density of 1.24 kg/cm2 was given to calculate the mechanical properties [33]. Automatic
mesh generation was selected with a mesh relevance of 2. In explicit dynamics analysis
settings, one end of the specimen was fixed and the other end of the specimen was placed
on the displacement constraint that replicates the universal testing machine jaws. An end
time of 0.001 s was set and a displacement of 10 mm was assigned. It was assumed that
the fracture growth and failure of the specimen would occur within a distance of 10 mm
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of displacement. The stress concentration, strain, and energy absorbed by the specimen
were analyzed in the ANSYS workbench for hexagonal (honeycomb), rhombile, truncated
octahedron, gyroid and spherical infill structures [33,34].
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2.2. Tensile Test

The specimen was loaded in the universal testing machine and the yield strength
was observed for the five different infill structures, namely gyroid, rhombic, spherical and
honeycomb structures (hexagonal). The displacement of the crosshead was achieved by the
hydraulic system, and the pressure applied was noted at the fracture point of the specimen.
The tensile strength of the specimen was taken from the pressure at the time of failure
of the specimen in the testing crossheads. The ASTM D 638 specimen was loaded with
various infill structures with varying infill rations, and the pressure at the specimen failure
was recorded [35,36]. The fixed crosshead and movable crossheads of the universal testing
machine and the loading of the specimen on the machine are exhibited in Figure 4.
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3. Results and Discussion

The tensile properties were observed in the universal testing machine through fracture
development and failure of the material. It was observed that the specimen can withstand
a 31.69 MPa tensile load. The maximum yield strength of the specimen was greater
irrespective of the infill structure. Similarly, increasing the infill ratio of the specimen
reduced the deviation of yield strength [37–39]. This phenomenon demonstrates thatthe
increment in infill ratio leads to an increase in the yield strength, which is replicated in the
ANSYS results. The variation of tensile stress for various infill structures are exhibited in
Figure 5.
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This indicates the similarity of yield stress observed in the hexagonal infill structure
(honeycomb) which possesses 13.79 MPa of ultimate tensile strength. From other infills, it
was found that the hexagonal infill structure holds good tensile properties. The pattern of
increasing yield strength is observed in all infill structures proportionately to the weight
of the material being increased. Spherical and gyroid infill structures show lower tensile
values due to the infill material bonding strength [40,41]. The area of contact between
the patterns in the infill is smaller compared with that of the honeycomb structures. This
phenomenon leads to a decrease in bond strength and the lowest tensile strength. The
gyroid structure infill has 8.56 MPa of ultimate tensile strength for the same infill ratio,
while the hexagonal structures possess 13.79 MPa of yield strength [42].

The fracture development of the ASTM D 638 specimen was simulated in ANSYS.
The development stages are shown in the figure. The mechanical stresses acting on the
specimen at one end lead to an increase in stress at the weaker regions [43]. The tensile
load is transformed from the layers to the inner layers of the infill. The bonding of the infill
is perpendicular to the direction of the tensile force applied since the orientation of the
specimen in printing is 0◦. Finite element results of a hexagonal infill specimen are shown
in Figure 6.
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The fracture of the specimen is due to the breaking of bonds in the infill structures.
From the observations, the hexagonal infill structure carries good tensile properties due to
its high bonding area [44,45]. The 3D-printed ASTMD638 specimen after failure is shown
in Figure 7. The results show that the fracture growth is from the infill bonds and, after
increasing the pressure, failure occurs in the bonding areas. Fracture is observed at the
neck region of the specimen.
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The relation between the maximum yield strength obtained from the tensile tests
and the ANSYS results are shown in Figures 8 and 9, respectively. It was observed that
irrespective of the infill structures (gyroid, rhombic, spherical, and honeycomb), the yield
strengths are closer to each other since the material ratio increases in the infill structures:
the yield strength is proportional to the bonding layers and leads to an increase in the
mechanical properties of the material.
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Figure 9. Maximum yield strength obtained in ANSYS workbench and infill ratio for varied
infill structures.

The hardness of the 3D-printed specimen was measured using a Shore D hardness
testing machine with a measuring range of 0.5–100 HD. The hardness test setup and
microscopic image of the indentation are exhibited in Figure 10. A test load of 0–45 N
was applied to the test specimen, which was fixed to a fixed slab. The indenter needle
was pressed during the test for 1 s. Hardness values of 46 HD, 56 HD, 61 HD, and 84
HD were observed in PLA 3D-printed specimens with 20%, 40%, 60%, and 80% infills,
respectively. The 80% infill ratio showed a superior shore D hardness value compared with
other specimens. However, the increased hardness value in this sample was mainly due to
the large volume of material filled in layer by layer.
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4. Conclusions

In this experimentation, the yield strength of the infill structures and density ratio were
investigated. The test results were validated using finite element analysis and, based on the
values, yield stress, local stresses, and fracture development concerning the infill density
and infill structures were tabulated. From the results, optimal weight, infill ratio, and infill
structures could be selected based on the requirements of tensile strength applications.
Infill patterns for gyroid, rhombic, spherical, and honeycomb structures (hexagon) were3D
modelled and sliced using Flash print and Autodesk Fusion 360 slicing software. The
specimen was manufactured as per ASTMD638 and tested on a universal testing machine
to examine its tensile properties. The findings are supported by previous research and
ANSYs finite element analysis. The relationship between the infill ratio and infill structures
with the yield strength is demonstrated in this investigation. The hexagonal (honeycomb)
infill structure possesses good tensile behavior compared with other infill rations. Moreover,
it is observed that the printing time increases with respect to the infill ratio. The printing
time of the specimen is reduced at a 100% infill ratio since the reduction in travel time of
the extruder compensates for the reduction in manufacturing time.
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