Universiti Teknologi Malaysia Institutional Repository

Comparative drug release investigations for diclofenac sodium drug (DS) by chitosan-based grafted and crosslinked copolymers

Chopra, Lalita and Thakur, Kamal Kishor and Chohan, Jasgurpreet Singh and Sharma, Shubham and Rushdan, Ahmad Ilyas and M. Asyraf, M. R. and Syed Zakaria, Sharifah Zarina (2022) Comparative drug release investigations for diclofenac sodium drug (DS) by chitosan-based grafted and crosslinked copolymers. Materials, 15 (7). pp. 1-17. ISSN 1996-1944

[img] PDF
648kB

Official URL: http://dx.doi.org/10.3390/ma15072404

Abstract

The hydrogels responding to pH synthesized by graft copolymerization only and then concurrent grafting and crosslinking of monomer N-isopropyl acrylamide (NIPAAM) and binary comonomers acrylamide, acrylic acid and acrylonitrile (AAm, AA and AN) onto chitosan support were explored for the percent upload and release study for anti-inflammatory diclofenac sodium drug (DS), w.r.t. time and pH. Diclofenac sodium DS was seized in polymeric matrices by the equi-libration process. The crosslinked-graft copolymers showed the highest percent uptake than graft copolymers (without crosslinker) and chitosan itself. The sustainable release of the loaded drug was studied with respect to time at pH 2.2, 7.0, 7.4 and 9.4. Among graft copolymers (without crosslink-ing), Chit-g-polymer (NIPAAM-co-AA) and Chit-g-polymer (NIPAAM-co-AN) exhibited worthy results for sustainable drug deliverance, whereas Crosslink-Chit-g-polymer (NIPAAM-co-AA) and Crosslink-Chit-g-polymer (NIPAAM-co-AAm) presented the best results for controlled/sustained release of diclofenac sodium DS with 93.86 % and 96.30 % percent release, respectively, in 6 h contact time. Therefore, the grafted and the crosslinked graft copolymers of the chitosan showed excellent delivery devices for the DS with sustainable/prolonged release in response to pH. Drug release kinetics was studied using Fick’s law. The kinetic study revealed that polymeric matrices showed the value of n as n > 1.0, hence drug release took place by non-Fickian diffusion. Hence, the present novel findings showed the multidirectional drug release rate. The morphological changes due to interwoven network structure of the crosslinked are evident by the Scanning electron microscopy (SEM) analysis.

Item Type:Article
Uncontrolled Keywords:diffusion, equilibration process, Fick’s law, pH-responsive, sustainable drug release
Subjects:Q Science > Q Science (General)
T Technology > TP Chemical technology
Divisions:Chemical and Energy Engineering
ID Code:102923
Deposited By: Yanti Mohd Shah
Deposited On:01 Oct 2023 00:50
Last Modified:01 Oct 2023 00:50

Repository Staff Only: item control page