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ABSTRACT 

Lately, there has been a global trend of the use of waste materials in 

construction.  Industrial wastes such as tin slag are found in large quantities at landfills 

in Asia. Their removal will birth a safer environment since these deposits contain 

metals and radionuclides. Moreover, the use of waste aggregates may significantly 

affect the properties of mortar. Insufficient strength of mortar produced by natural fine 

aggregates has necessitated its replacement with other materials such as tin slag. The 

smoothness and roundness of natural fine aggregate reduces its bond and overall 

strength of mortar. Therefore, tin slag; with its superior aggregate properties was used 

as a natural aggregate substitute in this study. However, tin slag contains toxic metals 

and radionuclide’s, which make the material unfit for use without remediation. 

Effective microorganisms were incorporated in mortar mixes as additive. Independent 

variables considered are; replacement levels of 0%, 25%, 50%, 75% and 100%, 

dilution ratios of EM1, molasses and water, EM type (EM1, EM2) and EM to water 

ratio (EM/W). Hardened properties were determined by compressive strength, flexural 

strength, tensile strength, water absorption, ultrasonic pulse velocity and 

expansion tests. The optimum concentrations of EM that maximally improved mortar 

properties and reduced the concentration of radionuclides were determined. Fresh 

properties of tin slag mortar indicate that mortar flow increases as tin slag replacement 

increases. Mechanical properties testing show that optimum replacement is 50% of tin 

slag. The valorisation of tin slag in mortar reduced concentration of metals drastically 

below permissible limit, while inclusion of EM as additive further reduces the 

concentration of metals and radionuclides. EM1 and EM2 performed optimally in 

terms of mechanical properties and remediation of tin slag, respectively. Mortar mix 

containing 50% tin slag, 30% fly ash, 10% EM and cured at 50 ºC produced optimum 

strength. 
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ABSTRAK 

Sejak kebelakangan ini, terdapat trend global penggunaan bahan buangan 

dalam pembinaan. Sisa industri seperti sanga timah ditemui dalam kuantiti yang 

banyak di tapak pelupusan sampah di Asia. Penyingkirannya akan melahirkan 

persekitaran yang lebih selamat kerana mendapan ini mengandungi logam dan 

radionuklid. Selain itu, penggunaan agregat sisa boleh menjejaskan sifat mortar 

dengan ketara. Kekuatan mortar yang tidak mencukupi yang dihasilkan oleh agregat 

halus semulajadi memerlukannya diganti dengan bahan lain seperti sanga timah. 

Kelicinan dan kebulatan agregat halus semulajadi mengurangkan ikatan dan kekuatan 

keseluruhan mortar. Oleh itu sanga timah; dengan sifat agregat unggulnya telah 

digunakan sebagai pengganti agregat semula jadi dalam kajian ini. Walau 

bagaimanapun, sanga timah mengandungi logam toksik dan radionuklid, yang 

menjadikan bahan itu tidak sesuai untuk digunakan tanpa pemulihan. Mikroorganisma 

yang berkesan telah dimasukkan ke dalam campuran mortar sebagai bahan tambahan. 

Pembolehubah bebas yang dipertimbangkan ialah; aras penggantian 0%, 25%, 50%, 

75% dan 100%, nisbah pencairan EM1, molase dan air, jenis EM (EM1, EM2) dan 

nisbah EM kepada air (EM/W). Sifat keras ditentukan oleh kekuatan mampatan, 

kekuatan lentur, kekuatan tegangan, penyerapan air, halaju denyutan nadi, ujian 

pengembangan dan pengecutan. Kepekatan optimum EM yang meningkatkan sifat 

mortar secara maksimum dan mengurangkan kepekatan radionuklid telah ditentukan. 

Sifat segar mortar sanga timah menunjukkan bahawa aliran mortar meningkat apabila 

penggantian sanga timah meningkat. Ujian sifat mekanikal menunjukkan bahawa 

penggantian optimum ialah 50% sanga timah. Valorisasi sanga timah dalam mortar 

mengurangkan kepekatan logam secara drastik di bawah had yang dibenarkan, 

manakala kemasukan EM sebagai bahan tambahan mengurangkan lagi kepekatan 

logam dan radionuklid. EM1 dan EM2 berprestasi dengan baik secara optimum dari 

segi sifat mekanikal dan pemulihan sanga timah masing-masing. Campuran mortar 

yang mengandungi 50% sanga timah, 30% abu terbang, 10% EM dan diawet pada 50 

ºC menghasilkan kekuatan optimum.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Mortar is one of the most used materials worldwide, alongside concrete. Mortar 

is an essential composite for brick work, plastering and rendering. Globally, rapid 

infrastructural growth has increased the demand for cement mortar. Unfortunately, 

there are no exact measures of the quantity of mortar used worldwide, annually. 

However, about 4 billion tons of cement are produced annually (Wang, 2019) and a 

ton of cement produced, results in the release of about a ton of carbon dioxide (CO2), 

which contributes to global warming (Chen et al., 2010). This large volume of cement 

is majorly utilized for concrete and mortar. Thus, it is necessary to ensure the 

sustainable usage of mortar by reducing the use of cement while its toughness is 

maintained. Good mortar should optimally achieve functionality, strength and 

reliability throughout its entire design life. This reduces the probability of 

reconstruction and thus reducing cement usage and global warming. 

On the other hand, cost effective and sustainable mortar can be produced by 

utilizing wastes as aggregate replacement materials. The use of waste aggregates 

reduces the cost of mortar production and significantly affect the properties of mortar. 

The composition of mortar influences the behavior of engineering structures in terms 

of strength and protection against water and deleterious substances. However, its long-

term performance depends on the interactions with the service environment (Basheer 

et al., 2001). Thus, materials and additives that can produce good mortar must be 

harnessed for sustainable construction.  The emphasis however is on materials that 

satisfy social, economic and environmental requirements (Kibert, 1994). Sustainable 

mortar can be achieved by the use of materials, such as industrial wastes. Industrial 

wastes are readily available and cost-effective, so can be harnessed to reduce the 

pressure on natural fine aggregate (NFA), thereby promoting sustainability. 
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1.2 Problem Background 

Due to the growing concerns regarding climate change, environmental 

pollution among other factors, sustainable construction has been at the forefront 

worldwide. The use and efficacy of cement replacement materials and additives has 

been extensively studied. This decreases the negative impacts of the continued rise in 

carbon footprint, which among other things resulted in global warming. Mortar 

materials such as aggregates also have harmful environmental consequences. The 

effect has been deforestation, marine biodiversity, global warming, disruption to 

shoreline infrastructure and global coastal fishing. Reducing the consumption of 

natural aggregates by looking out for alternative materials for its replacement is highly 

necessary. Research show that waste materials, such as; steel slag (Zhao et al., 2018), 

lead slag (Ogundiran et al., 2013), copper slag (Prem et al., 2018) have similar 

properties to natural fine aggregate. Thus, focus has been on the use of wastes for 

aggregate replacement. Moreover, they are found in large quantities on landfills. The 

utilization of wastes in mortar is a cheap remedy for environmental pollution as well 

as improvement of properties of cement composites.  

Industrial wastes are mostly land-filled, chemically treated, or kept at 

repositories. Disadvantages of such disposal methods include cost and the 

unavailability of useful landmasses (Yang et al., 2018). Waste stockpiles have been 

linked to carbon dioxide emissions, as greenhouse gases are emitted from waste 

landfills (Deepa et al., 2019). Also, many industrial wastes contain high amounts of 

radionuclides which are dangerous to humans and the entire eco-system (Drinčić et 

al., 2017). Likewise, leaching of metals from these industrial wastes at landfills 

remains a major challenge especially in dynamic or extreme environments where very 

high or low pH are prevalent. For sustainable use of wastes in mortar these 

shortcomings must be addressed. 

Nowadays, waste valorisation is commonly used as a sustainable channel for 

reuse and recycling of industrial wastes. Valorisation is advantageous due to the low 

remediation cost, environmental and construction benefits. This is so because the 

encapsulation material is already provided by the cement composites, thus there is no 

added cost for encapsulation. This method provides for free a conduit for waste 
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containment. Many studies have been conducted to establish the efficacy of industrial 

wastes such as steel slag (Zhao et al., 2018), lead slag (Ogundiran et al., 2013), copper 

slag (Prem et al., 2018), foundry sand (Prasad et al., 2018), and recycled glass 

(Tamanna et al., 2020) as fine aggregate replacement material. For example, Zhao et 

al. (2018) replaced 20% of fine aggregate in concrete with steel slag. The replacement 

showed that compressive strength was improved by 28% over control concrete sample. 

Similarly, copper slag was used up to 100% as fine aggregate replacement by Prem et 

al. (2018). It was observed that 100% copper mortars had 3% compressive strength 

above control mortars replacement. The use of foundry sand and recycled glass at 10% 

replacement, has also been found to improve the mechanical properties of concrete 

(Pandey et al., 2015; Kashani et al., 2019). 

Another such industrial waste readily available and under-utilized is tin slag 

(TS). About 2 million tons of TS waste is lying idle at landfills is found worldwide, 

with about 50% of these deposits found in China (Izard & Müller, 2010). Very few 

studies have been conducted on the use of TS as replacement for fine aggregate. The 

compressive strength test showed that samples attained strength of 125.07 MPa. 

Hashim et al. (2018) applied TS as replacement of fine aggregate to produce pavement 

interlocking bricks. The study showed that the compressive strength increased by 20%, 

however, the study considered only 100% and 20% TS replacement of fine 

aggregate(Hashim et al., 2018). Likewise, Rustandi et al (2018) utilized the pozzolanic 

properties of TS by replacing 10% of cement. The TS mortar achieved only 63% 

compressive strength of the control sample at 28 days (Rustandi & Cahyadi, 2018). 

The drive towards sustainability has propelled the use of green materials such 

as microorganisms. Research studies have utilized microorganisms for improvement 

of concrete properties (Seifan et al., 2016; Basha et al., 2018; Sonali et al., 2019) while 

few researchers have studied the contribution of microorganisms in mortar (Zha et al., 

2018). Most common microorganisms are cultured organisms, especially of the 

bacillus genera (Meera and Subha, 2016; Bhagyashri et al., 2017; Jagannathan and 

Satya, 2018). However, Effective Microorganisms (EM); which is a combination of 

many microorganisms has been scantily used (Ismail and Kamaruddin, 2014). EM is 

in an already prepared form, so can be added directly in mortar. Studies have shown 

that EM may improve compressive strength of mortar up to 30% (Ali et al., 2017), 
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invariably the emission of CO2 in relation to cement use will be reduced by EM 

modification and by prolonging the service life of mortar. Another aspect few 

researchers have tested the capability of microorganisms is the remediation of 

radionuclides (Sasaki et al., 2012). 

The incorporation of TS into cement composites can foster green construction 

and reduce environmental pollution, especially with the incorporation of EM. It may 

help to minimise the sole dependence on NFA material, thus reducing the depletion 

rate of this resource and the negative environmental effects caused by sand mining. 

The valorisation of waste in mortar may be an effective way to engender sustainability 

of materials, cost effectiveness and durability of mortar. 

1.3 Problem Statement 

The replacement of Natural Fine Aggregate (NFA) with materials such as 

wastes have lately become necessary, not just because of the adverse environmental 

effects of waste, but also due to their contribution to the engineering properties of 

mortar. The smoothness and roundness of NFA reduces the compactness of cement 

composites as compared to some waste materials such as TS. However, the high 

radionuclide concentration of heavy metals present in TS poses a threat to its 

sustainable use; therefore, sustainable methods to reduce the radionuclide 

concentration to acceptable limits must be harnessed. Recent finding confirms that 

certain microorganisms can absorb radionuclides and degrade them using different 

methods including biosorption and bioaccumulation. Researchers have utilized 

cultured microorganisms for the removal of toxic elements in soils. Likewise others 

have studied the use of microorganisms to improve concrete properties (Bachmeier et 

al., 2002; Wang et al., 2016). Engineering properties have been improved according 

to past researches (Yatim et al., 2009) by different microorganisms including both 

cultured and product microorganisms like EM. However, the effects of EM on 

properties of mortar have been scantily studied. This research work intends to utilize 

effective microorganisms (EM) to remediate and improve mortar properties using TS 

to replace natural fine aggregate (NFA). In order to evaluate the hardened and remedial 
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properties of EM based TS mortar, a comprehensive study was carried out to develop 

the most favourable EM-based TS mortar. 

1.4 Research Aim 

The research work aims at developing a sustainable and radiation free EM 

based TS mortar. 

1.4.1 Research Objectives 

The objectives of the research are: 

(a) To assess the physio-chemical characteristics and mix design of TS mortar. 

(b) To evaluate the engineering and micro structural properties of TS mortar.  

(c) To investigate the remediation capacity of EM in TS mortar. 

1.5 Scope of Research 

In order to ascertain that TS is fit to be used for mortar, leaching test was 

conducted. Since TS is a waste material, the Toxicity characteristic leaching procedure 

(TCLP) test was employed to study its leaching characteristics. 

The optimum water content for TS mortar was ascertained by varying water to 

binder ratio across all replacement levels (0%, 25%, 50%, 75%, 100%). This was 

evaluated using workability and compressive strength results. Other mechanical tests 

were ascertained using the optimum water/cement (w/c) ratio. Engineering properties 

that were measured are compressive, tensile and flexural strengths, water absorption, 

expansion and shrinkage tests. 
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The various ranges adopted per variable are justified as follows: 

NFA replacement (%): Scanty studies available so far, show that 30% is the 

optimum replacement in cement composites, but since microbial modification can 

improve mortar properties, higher concentration of TS may give better results. Also, 

TS effect when used as mortar constituent has not been reported in literature, thus a 

wider range will provide better assessment of the behaviour of TS mortar. 

Dilution ratios of EM, molasses and water: Most studies that have utilized EM 

in cement-based composites have used the basic dilution ratio (5:5:90) used for 

agriculture (Hu & Qi, 2013; Norsyaza & Abdul Rahman, 2015). Since molasses 

provides food for microorganisms, more molasses may lead to better EM survival and 

improvement in mortar properties. 

EM type: Most studies have utilized EM1 in mortar and cement composites. 

The effect of other EM types has rarely been studied. Addition of EM2; which contains 

predominantly photosynthetic bacteria, may help prolong the life of other microbes 

and vice versa by their metabolites. 

1.6 Significance of Study 

i. EM is a combination of beneficial microorganisms that can reduce the 

amount of radiation in our environment due to their ability to absorb 

radionuclide’s thereby contributing to green construction. 

ii. The addition of EM and TS improves the engineering properties of TS 

mortar 

iii. TS is a waste that contains radioactive elements which makes it an 

unwanted material within dwellings and the environment in general. This 

research will provide a cheap, safe and sustainable method that will afford 

the use of TS waste in cement composites. 

iii. Its utilization as a partial or complete replacement material by the use of 

EM will help turn waste to wealth thus reduce depletion of non-renewable 

NFA and make stockpiling destinations free for utilization. 
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1.7 Flow of the Thesis 

The thesis was prepared according to the Universiti Teknologi Malaysia 

template. The thesis consists of seven chapters.  

Chapter one: A general introduction of mortar and their sustainability was presented 

in this chapter. The background and problem statement were also explained. This 

chapter also presents the study research aim, objectives, scope and significance. 

Chapter two: Information about previous research works were presented in this 

chapter. General discussion on green composites was done. Previous findings on TS 

concrete and EM-based cement composites were also discussed.  

Chapter three: This chapter explains the materials and test methods used for testing 

in accordance with the appropriate standards. 

Chapter four: The results and discussion of physical, chemical and micro-structural 

properties of materials used in this study was discussed in this chapter.  

Chapter five: Chapter 5 presents the results of the engineering and micro-structural 

properties of TS mortar and EM-based TS mortar 

Chapter six: This chapter presents the results of toxicity and radionuclide 

concentration.  The chapter generally shows the remediation capacity of EM in TS 

mortar 

Chapter seven: The conclusions and recommendations of this study were highlighted 

in this chapter. This includes research outcomes and recommendations for future 

studies. 
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