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ABSTRACT 

Recently, energy consumption has become a crucial consideration especially 

for energy-intensive distillation process. This issue becomes worse for a multi-

component process which will involve a series of distillation columns for one process. 

Furthermore, the absence of a reliable process to cater for a big production with desired 

product purity would be the reason to maintain this distillation process. Hence, the 

only way to solve the issue is to improve the energy efficiency of the distillation 

process. For that, this study aimed to develop a new holistic, systematic and 

comprehensive framework for a feasible energy integrated distillation column 

sequence (EIDCS). The feasibility aspects in this study can be divided into 

process/design feasibility and economic feasibility. The proposed framework consists 

of six stages. It started from the formulation and extraction of the feed information in 

stage 1 before moving on to the step of column sequencing in stage 2 which is based 

on the number of the components; either in a manual energy analysis for all possible 

sequences for less than 5 components or straightaway to the implementation of the 

driving force method for the vice-versa case. In stage 3, simulations for the selected 

sequences were carried out and the results were brought to stage 4 for application of 

the thermal pinch analysis via problem table algorithm (PTA) for a range of ∆Tmin from 

5 to 40 °C. Then the total energy requirement (TER) was obtained and the heat 

exchanger network (HEN) in a form of a grid diagram (GD) was developed to meet 

the proposed design. The process/design feasibility was then obtained based on the 

value of the ft correction factor for each heat exchanger in the process. Then, the 

design(s) underwent an economic analysis in stage 5 involving the calculation of 

capital costs (CC) and annual operating costs (AOC). Lastly, an optimal solution in 

terms of the arrangement of the sequence and the ∆Tmin was obtained from the 

calculation of the multi-objective functions in stage 6. Five case studies had been 

selected to evaluate and verify the proposed framework. It successfully recorded a 

range of energy saving from 30 to 42% compared to the existing sequence. The 

optimum sequence for case study 1 is split sequence with ∆Tmin value from 5 to 30 °C. 

split-1D sequence from 5 to 20 °C is regarded as the optimum sequence for case study 

2 and case study 3. For case study 4 and 5, the optimum sequences are split-1-split 

(∆Tmin from 5 to 25 °C) and split-1-D-split-2-D (∆Tmin from 5 to 20 °C). All optimum 

designs can be regarded as process feasible whereby all heat exchangers in the process 

recorded a value of ft correction factor of 1.0. Besides, the methods also reduced the 

CC and AOC of the process to $870,000 and $4.28 M for case study 3. The same costs 

have been reduced approximately 45% for the CC and 10% for the AOC for case study 

4. Case study 5 also followed the same trend with a cost saving at $476,000 for CC 

and around $2.78 M for the AOC compared to the existing sequence. Overall, the 

results suggested that the framework has successfully produced a feasible EIDCS for 

all cases in a holistic, systematic and comprehensive manner.  
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ABSTRAK 

Kebelakangan ini, penggunaan tenaga menjadi pertimbangan yang amat 

mustahak terutama untuk proses tenaga intensif penyulingan. Isu ini bertambah buruk 

untuk proses pelbagai komponen untuk siri turus penyulingan bagi sesuatu proses. 

Tambahan pula, ketiadaan proses yang mampu untuk menghasilkan produk secara 

besar-besaran bersama ketulenan produk yang dikehendaki menjadi sebab untuk 

proses penyulingan ini terus dikekalkan. Oleh itu, hanya satu cara menyelesaikan isu 

ini adalah dengan memperbaiki kecekapan tenaga bagi proses penyulingan ini. Untuk 

itu, kajian ini menyasarkan kepada pembangunan kerangka baharu yang holistik, 

sistematik dan komprehensif bagi turutan turus penyulingan terintegrasi-tenaga 

(EIDCS) yang boleh dilaksanakan. Aspek kebolehlaksanaan dalam penyelidikan ini 

dapat dibahagikan kepada kebolehlaksanaan proses/rekabentuk dan kebolehlaksanaan 

ekonomi. Kerangka yang dicadangkan ini mempunyai enam peringkat. Ianya bermula 

daripada formulasi dan pengekstrakan maklumat masukan pada peringkat 1 sebelum 

beralih kepada langkah menghasilkan turutan pada peringkat 2 yang ditentukan oleh 

bilangan komponen, sama ada tenaganya dianalisis secara manual bagi komponen 

kurang daripada 5 atau terus sahaja kepada kaedah pelaksanaan daya pacu untuk kes 

sebaliknya. Pada peringkat 3, simulasi untuk turutan terpilih telah dijalankan dan 

hasilnya dibawa ke peringkat 4 bagi aplikasi analisis jepit termal melalui algoritma 

jadual masalah (PTA) untuk julat ∆Tmin dari 5 °C ke 40 °C. Kemudian, jumlah 

keperluan tenaga (TER) diperolehi dan rangkaian penukar haba (HEN) dalam bentuk 

rajah grid (GD) dibangunkan untuk menyesuaikannya dengan rekabentuk yang 

dicadangkan. Kebolehlaksanaan dari segi proses/rekabentuk diperoleh berdasarkan 

kepada nilai faktor pembetulan ft untuk setiap penukar haba dalam proses tersebut. 

Seterusnya, rekabentuk dinilai secara ekonomi di peringkat 5 yang mana melibatkan 

pengiraan kos modal (CC) dan kos operasi tahunan (AOC). Akhir sekali, penyelesaian 

optimal berdasarkan kepada penyusunan turutan dan ∆Tmin diperoleh daripada 

pengiraan fungsi multi-objektif pada peringkat 6. Lima kajian kes dipilih untuk menilai 

dan mengesahkan kerangka yang dicadangkan. Ia telah berjaya merekodkan 

penjimatan tenaga antara 30% hingga 42% berbanding turutan sedia ada. Turutan 

optimum untuk kajian kes 1 ialah turutan split dengan nilai ∆Tmin daripada 5 °C ke 30 

°C. Turutan split-1D daripada 5 °C ke 20 °C disimpulkan sebagai turutan optimum 

bagi kajian kes 2 and kajian kes 3. Untuk kajian kes 4 dan 5, turutan optimum adalah 

split-1-split (∆Tmin daripada 5 °C ke 25 °C) dan split-1-D-split-2-D (∆Tmin daripada 5 

°C ke 20 °C). Kesemua rekabentuk optimum boleh dianggap sebagai 

berkebolehlaksanaan secara proses di mana kesemua penukar haba di dalam proses 

tersebut mencatatkan nilai faktor pembetulan ft bersamaan 1.0. Selain itu, kaedah-

kaedah tersebut juga menurunkan CC dan AOC kepada $870,000 dan $4.28 juta untuk 

kajian kes 3. Kos-kos yang sama juga diturunkan kepada sekitar 45% untuk CC dan 

10% untuk AOC bagi kajian kes 4. Kajian kes 5 turut mengikut trend yang sama 

dengan penjimatan kos sebanyak $476,000 untuk CC dan anggaran $2.78 juta untuk 

AOC berbanding turutan asal. Secara keseluruhan, hasil penyelidikan menunjukkan 

bahawa kerangka tersebut berjaya menghasilkan EIDCS yang boleh dilaksanakan 

untuk semua kajian kes secara holistik, sistematik dan komprehensif. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Study 

Distillation is a well-known process and considered as a mature technology in 

a chemical and petrochemical processing plant. It is simply because it can 

accommodate for mass production of the intended products (Bisgaard et al., 2017). 

However, two distinctive issues could arise from the distillation process whereby both 

of it involves energy usage: 1) environmental issues and the increase in stringency of 

the government environmental policy pertaining the carbon dioxide (CO2) emissions, 

and 2) the efficiency of the process itself which ultimately determines the plant 

economic and business profitability (Halvorsen and Skogestad, 2011). The latter 

statement was strengthened by the fact that the distillation process accounted for more 

than 50 % of plant operating cost and 3 % of world energy consumption (Cui et al., 

2016). This has paved a way for several options to overcome the issues.  

The term “Energy-Efficient Distillation” has been used by Jobson (2014) to 

emphasize the methods that can be employed for energy saving in a distillation 

process. The methods listed are: 1) conceptual design of simple columns, 2) operation 

and control, 3) advanced and complex column configurations, 5) evaluation of energy 

requirements and 5) heat integration of distillation. 

The simplest method to achieve the energy-efficient distillation process is the 

conceptual design of the column which involved several design parameters such as 

degree of freedom for column design, column operating pressure, number of stages, 

feed condition, feed stage location and types of utilities and auxiliary equipment 
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(Jobson, 2014). All the parameters mentioned have the influence in determining the 

energy consumption in the distillation column. However, it is mostly suitable for a 

single column scenario whereby it cannot cater for more complex separation processes 

such as multi-component distillation columns sequence. 

The role of column operation and process control are essential towards the 

energy-efficient distillation columns since it is related to the reflux, production 

capacity and purity of the product(s). In the economic perspective, the trade-off 

between those three parameters needs to be well managed, i.e. the higher the reflux, 

the higher the purity of the products but in return also demand higher energy 

consumption and can also become a hindrance in terms of the production capacity 

itself. Furthermore, the column condition needs to be in a good shape during operation 

especially the important column conditions such as temperature, pressure, flowrate, 

etc. (namely process set points in process control) and to compensate for any related 

disturbances as well. This explains why monitoring, control, maintenance, and 

operational management (dynamic studies) become a key to operate the distillation 

column efficiently (Jobson, 2014). The outcome of one particular research (Li et al., 

2017) showed that the improved dynamic configuration has been successfully 

compensated the process disturbances which are flowrate and composition in the 

extractive distillation columns for the separation of 2-methoxy ethanol/toluene. 

Both methods for energy-efficient distillation columns explained previously 

involved a simple and conventional distillation column. There is also a method namely 

advanced column or complex column configuration which increasingly become an 

attractive way to save energy specifically for distillation processes. For instance, the 

Double Effect Distillation (DED) column has been proposed by Bessa et al. (2012) for 

the multi-component alcohol mixture. It resulted in a 54 % reduction in terms of steam 

usage compared to the conventional distillation column. Meanwhile, Díaz and Tost 

(2016) further investigation on the advanced column configuration has been done 

including DED  and Vapor Compression Distillation (VCD) for ethanol and isobutanol 

separation. The study proved that both methods successfully reduced the energy 

consumption although the latter performs better at 25 to 30 % and 39 to 40 % lower 

than DED for isobutanol and ethanol, respectively. Internally Heat Integrated 
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Distillation Column (HIDiC) is an extended version of VCD and the research on it has 

been started as early as 1977 (Olujic et al., 2003). In a recent study by Li et al. (2016), 

HIDiC has been modified with the addition of a heat pump and being called 

intensified-HIDiC (int-HIDiC). The researchers have demonstrated that the 

performance of int-HIDiC is more superior compared to the conventional HIDiC and 

VCD itself and of course conventional distillation column in such a way that the 

system did not require a reboiler and low-pressure steam anymore. 

The other method for energy-efficient distillation columns is the energy 

evaluation by employing several methods such as: 1) distillation column modelling, 2) 

thermodynamic analysis in the column and 3) thermal driving force method. For 

distillation column modelling, it can be a single column modelling and need to be 

synchronized with a sequence model to link it from one column to another in the case 

of multi-component system or a complex column configuration. The former is being 

called the shortcut method whereby it consists of a simple model such as Fenske, 

Underwood and Gilliland models that can be used to determine the estimation of reflux 

ratio, numbers of stages and feed location at a given process condition. It can also be 

used for early-stage of energy analysis for the proposed distillation columns sequence. 

Meanwhile, the latter is a rigorous method that is a stage by stage modelling and 

involves with more complex equation (mass and energy balance) and it can be a very 

good way to model the sequence of the distillation column as being explained in the 

literature (Rev et al., 2001). The authors employed the shortcut method to study the 

energy loss in the distillation column sequence and emphasized the potential of the 

Petlyuk Column for energy-saving via a rigorous simulation environment. 

Thermodynamic analysis can be a part of the energy evaluation as well mainly on the 

reversible distillation (Olujic et al., 2003). The ideal case for reversible distillation is 

as simple as a binary column whereby it can be very challenging when involved with 

multi-component system. The main point in the study is the emergence of HIDiC as 

one of the attractive ways to conserve energy. As for the thermal driving force, it refers 

to the exergy analysis for measuring the irreversibility of the process. 
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The method suggested that the thermal profile of the process in the feed condition will 

largely affect the energy consumption of the process. Therefore, it will involve the 

addition of a pre-heater/cooler or side condenser/reboiler in the distillation process.  

The last method enlisted by Jobson (2014) in the energy-efficient distillation 

column is a quite familiar process; heat integration. The concept of heat integration is 

very popular and is classified as one of the methods for process intensification 

(Stankiewicz and Moulijn, 2000). The concept involves the determination of heat 

exchange and heat recovery; heat sink and heat source; heating load and cooling load; 

and other related terms used in the literature (Jobson, 2014). By studying the available 

process flowsheet e.g. conventional distillation column, the pinch analysis can be used 

as a method to determine the energy requirement of the distillation process. Then, the 

possible energy saving will be generated using the heat exchanger network (HEN) grid 

diagram. This will trigger the question; can this method be combined with other 

suitable methods in the earlier paragraph? If yes, how much energy can be saved? This 

is one of the questions that needs to be answered in this study. 

1.2 Problem Statement 

Distillation is an energy-intensive process in chemical and petrochemical 

industry. There are two perspectives to establish the real energy-related issue behind 

the distillation process: 1) the energy usage of the distillation which accounted for 50 

% of energy demand in the plant and 3 % of global energy consumption, and 2) the 

multi-component distillation process which further increases the energy consumption. 

Basically, both scenarios have been pointing in the same direction which is a huge 

amount of energy consumption. Despite that, distillation remains an option for the 

separation process in the chemical and petrochemical industry due to its versatility in 

terms of production and quality of the product itself. Therefore, it is not easy to replace 

the distillation process with other technology especially when  
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dealing with retrofitting scenarios. The key to continually employ distillation column 

is to improve the efficiency of the process, specifically the distillation columns 

sequence. It will then lead to the ultimate goal in terms of economy, and environmental 

sustainability.  

According to Rathore et al. (1974), a good chemical process should address 

these two sub-problems: 1) sequence of the process and 2) heat recovery system. The 

sequence of the process is related to the arrangement of distillation columns. There 

will be a superstructure of distillation sequence needed to be addressed prior to 

determine the optimal distillation columns sequence (sequence with lowest energy 

consumption) via mathematical programming. This will lead to complexity especially 

for the multicomponent distillation process whereby much tedious mathematical 

programming works are required. On the other hand, the heat recovery system for a 

distillation column can be regarded as the energy integration in the process. The 

process can be done with the background process namely process-to-process energy 

integration. Nevertheless, since the energy consumption of distillation column is huge, 

which originated from the condenser and reboiler of the column, there is also an 

opportunity for a utility-to-utility energy integration which led to the energy 

integration within the distillation process. 

For utility-to-utility energy integration, there will be many possibilities for the 

exchangeable heat of the utility streams resulting the emerging of another 

superstructure to determine the optimal heat exchanger network within the distillation 

process. Furthermore, the problem will also be amplified if the sequence superstructure 

is to be considered as well to meet the definition of a good process as suggested by 

Rathore et. al (1974).  

Therefore, this study will utilize the graphical methods to solve the complexity 

from both superstructure scenarios. This can be done by employing a driving force 

method, one of the recent conceptual process synthesis approaches that has been 

introduced by Bek-Pedersen et al. (2000). This will ensure at least a nearly optimal 

sequence could be achieved despite of using the mathematical programming. This will 

eliminate the issue pertaining the sequence superstructure. For the integration 
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superstructure (based on forward and backward integration by Masoumi & 

Kadkhodaie (2012)), the thermal pinch analysis will be employed to complement the 

former method just now. The well-established method (Klemeš, 2013) with the 

graphical feature of thermal pinch analysis will be expected to further the energy 

saving of the process. The framework that integrates these two graphical methods has 

yet to be explored so far in terms of the feasibility either by the process feasibility or 

economic feasibility. Furthermore, the effect of ∆Tmin in the heat integration within the 

distillation process has not been addressed as well particularly when involving the 

optimal distillation columns sequence. Therefore, this study proposes a sequential 

framework of graphical methods namely Energy Integrated Distillation Columns 

Sequence (EIDCS) for a systematic energy saving approaches for the distillation 

process. The ultimate goal for the proposed framework is the determination of the 

optimal sequence with the optimal ∆Tmin. 

1.3 Objective of the Study 

Based on the research background and problem statement discussed earlier, the 

main objective of this study is to develop a new holistic, systematic and comprehensive 

framework for the energy integrated distillation columns sequence (EIDCS) by taking 

into account process feasibility, as well as the economic analysis in designing an 

optimal EIDCS in an easier, efficient and systematic manner. 

There are some specific objectives that have to be fulfilled in achieving the 

main objective, which are: 

1. To develop the new framework for designing optimal energy integrated 

distillation columns sequence problem.  

2. To apply the sequencing method of manual analysis and the driving force 

method in determining the optimal solution to the energy integrated distillation 

columns sequence synthesis problem. 

3. To apply the thermal pinch analysis method in determining the optimal solution 

to the energy integrated distillation columns sequence synthesis problem. 
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4. To verify the capability of the newly developed framework in solving energy 

integrated distillation columns sequence problem by considering into account 

the process feasibility and economy criteria using the case studies.  

1.4 Scopes of the Study 

To achieve the intended research objectives, the scope of research has been 

outlined as followed: 

(a) Studying the state-of-the-art development and technologies related to energy 

integrated distillation columns (EIDCS) sequence synthesis, design, process 

feasibility and identify gaps and potential improvement for EIDCS sequence 

design and analyses. 

(b) Developing a new holistic and comprehensive framework for designing a 

feasible EIDCS sequence. The development includes process feasibility and 

economic analyses to the established EIDCS sequence methodology. Specific 

scopes include: 

(i) Using commercial process simulator such as ASPEN HYSYS V10 to 

simulate the distillation columns sequence and analyze the energy 

requirement for each analyzed sequence. 

(ii) Extending the established EIDCS sequence methodology according to 

the number of chemical/petrochemical components/products in the 

system. 

(iii) Extending the established EIDCS sequence by including process 

feasibility and economic analyses for improving further the potential of 

energy saving.  

(c) Applying the manual energy analysis and driving force-based distillation 

column sequence design concept in determining the optimal solution to the 
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feasible EIDCS sequence synthesis problem. The specific scope is to determine 

the optimal sequence of distillation columns that requires less energy. 

(d) Applying the thermal pinch analysis method in determining the optimal 

solution to the EIDCS sequences synthesis. Specific scopes are: 

 

(i) Applying the method of thermal pinch analysis in determining the 

optimal heat exchanger network within the existing and driving force 

sequences for improving further the potential of energy saving. 

(ii) Selecting the optimal value of ∆Tmin starting from 5 to 40 oC which 

satisfying design (energy saving), process feasibility and economy 

criteria. 

(iii) Applying the Problem Table Analysis (PTA) and Grid Diagram (GD) for 

designing heat exchanger network within the existing and driving force 

sequences. 

(e) Verifying the capability of the newly developed framework in solving complex 

EIDCS sequence problem by considering into account the process feasibility 

and economy criteria using case studies. In addition the multi-objective 

calculation or parametric analysis is used to obtain the optimal EIDCS. 

1.5 Research Contributions 

Through the work conducted in this study, several key contributions have been 

identified as follows: 

(a) A new holistic and comprehensive EIDCS sequence framework 

The new holistic and comprehensive framework for designing a feasible 

EIDCS sequence developed in this study can be applicable for any numbers of 

chemical/petrochemical components.  
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(b) Utility-to-utility heat integration 

In the field of energy integration, many efforts have been done to integrate the 

energy stream based on process-to-process integration or so called the process 

integration with the background process. Therefore, this research will look at 

the potential for the process integration within the distillation process since the 

higher availability of the exchangeable heat particularly from condenser and 

reboiler.   

(c) Solving the superstructure complexity 

The determination of the optimal distillation columns sequence (the sequence 

with less energy consumption) requires vast analysis of the sequence 

superstructure. In addition to that, for the purpose of the energy integration, the 

integration superstructure should also need to be considered for further energy 

saving. This will lead to the complexity of the process and requires a tedious 

analysis works. Therefore, by employing the two-step sequential graphical 

method, it will solve both sequence and integration superstructure of the 

problem. 

(d) Enhance energy saving 

 The energy saving for the distillation process can be enhanced in two steps, 1) 

the determination of the optimal sequence with less energy consumption compared to 

the existing sequence and 2) further energy saving via utility-to-utility energy 

integration. This will ensure higher energy saving for the distillation process. 

(e) Better feasibility with regards to the value of ∆Tmin 

The EIDCS framework can be more feasible compared to the existing sequence 

since it promotes more exchangeable heat so that the process will maintain the energy 

saving throughout a range of ∆Tmin. 
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Several publications have been successfully published from this study as a part 

of the intellectual contributions. The lists of publications and achievements that have 

been accomplished during the study period and the key contribution of the knowledge 

can be referred in the List of Publications. 

1.6 Thesis Organization 

There are five chapters in this thesis. The first chapter includes the background 

of the studies and the problem statements that lead to the formulation of EIDCS 

framework. Then the objectives and related scopes are outlined including the research 

contributions. Chapter 2 explains in details the development of the conceptual process 

synthesis and the thermal pinch analysis over the years to be associated with the 

formulation of EIDCS. The methodological framework is then proposed and explained 

in Chapter 3. It consists of the process categorization, driving force plot, shortcut and 

rigorous simulations, thermal pinch analysis, process feasibility analysis and economic 

analysis and the calculation of multi-objective functions. Chapter 4 details-out the 

results and discussion on the application of the EIDCS framework to the selected case 

studies. The effect of the value of ∆Tmin towards the final output of the EIDCS 

framework is also discussed. Finally, the listed objectives are answered and concluded 

in Chapter 5. Besides, future works are also be suggested in the same chapter. 
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