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ABSTRACT 

Wireless Sensor Networks (WSNs) have been used in many domains for 

instance in business applications, industrial applications, and military applications to 

monitor a phenomenon, track an object, or control a process. As the sensor nodes 

communicate continuously from the target phenomenon to the base station, hundreds 

of thousands of multivariate data are collected from sensor nodes will be analysed at 

the endpoint called base station or sink node for decision making. Unfortunately, data 

is not usually accurate and reliable which will affect the decision making at the base 

station. There are many reasons that cause inaccurate and unreliable data such as 

malicious attack, harsh environment as well as sensor node failure. In the worst-case 

scenario, the node failure will also lead to the dysfunction of the entire network. Thus, 

anomaly detection is used to ensure that the data acquired at the endpoint is accurate. 

On the other hand, as sensor nodes possess resources constraint in terms of energy, 

processing, and storage, therefore, anomaly detection techniques must be designed in 

a lightweight manner. Meanwhile, existing anomaly detection techniques pose 

weaknesses as these have high computational and communication cost, ignore 

multivariate data and features’ correlation, and some are parameter-dependent. The 

purpose of this research is to design and develop an efficient and effective anomaly 

detection scheme for WSN by minimizing the resource constraint in WSNs. This 

purpose can be achieved by first, applying the feature selection method to select 

significant features for minimizing the resource utilization. Second, designing an 

efficient network structure of WSNs architecture based on a data aggregation scheme 

for reducing data transmission in the network. Third, designing lightweight anomaly 

detection scheme (CESVM-DR) using One-class Support Vector Machine (OCSVM) 

anomaly detection scheme and incorporating dimension reduction technique based on 

Candid Covariance-Free Incremental Principal Component Analysis (CCIPCA) to 

minimise the computational complexity of covariance matrix in CESVM. Lastly, 

enhancing the efficiency and effectiveness of the anomaly detection scheme by 

designing the distributed anomaly detection scheme (DCESVM-DR). The 

effectiveness and efficiency of the proposed anomaly detection schemes were tested 

using real-world datasets as well as soil data collected from the palm oil plantation. 

The results show the proposed CESVM-DR anomaly detection scheme with an 

average of 92%–100% detection accuracy using the real datasets while minimizing the 

computational complexity and energy overhead. Meanwhile, exploiting the correlation 

between sensor nodes to detect the anomalies on the DCESVM-DR has enhanced the 

effectiveness results as well as minimised the memory complexity and energy 
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ABSTRAK 

Rangkaian Penderia Tanpa Wayar (WSN) telah digunakan dalam banyak 

domain contohnya dalam aplikasi perniagaan, industri dan ketenteraan untuk 

memantau fenomena, menjejak objek atau mengawal proses. Apabila nod pengesan 

berkomunikasi secara berterusan daripada fenomena sasaran ke stesen pangkalan, 

ratusan ribu data berbilang variasi dikumpulkan daripada nod pengesan akan dianalisis 

pada titik akhir yang dipanggil stesen pangkalan atau nod sink untuk membuat 

keputusan. Malangnya, data biasanya tidak tepat dan boleh dipercayai yang akan 

menjejaskan pembuatan keputusan di stesen pangkalan. Terdapat banyak sebab yang 

ditimbulkan oleh data yang tidak tepat dan tidak boleh dipercayai seperti serangan 

berniat jahat, persekitaran yang kasar serta kegagalan nod sensor. Dalam senario 

terburuk, kegagalan nod, sebaliknya, juga akan menyebabkan kepada keseluruhan 

rangkaian tidak berfungsi. Oleh itu, pengesanan anomali digunakan untuk memastikan 

bahawa data yang diperoleh pada titik akhir adalah tepat. Sebaliknya, memandangkan 

nod sensor mempunyai kekangan sumber dari segi tenaga, pemprosesan dan 

penyimpanan, oleh itu, teknik pengesanan anomali mesti direka dengan cara yang 

ringan. Sementara itu, teknik pengesanan anomali sedia ada terhad dari segi kos 

pengiraan dan komunikasi yang tinggi, mengabaikan data berbilang variasi dan 

korelasi ciri manakala sesetengahnya bergantung kepada parameter. Tujuan 

penyelidikan ini adalah untuk merekabentuk dan membangunkan skim pengesanan 

anomali yang cekap dan berkesan untuk WSN dengan meminimumkan kekangan 

sumber dalam WSN. Tujuan ini boleh dicapai dengan pertama sekali, menggunakan 

kaedah pemilihan ciri untuk memilih ciri penting untuk meminimumkan penggunaan 

sumber. Kedua, merekabentuk struktur rangkaian yang cekap seni bina WSN 

berdasarkan skema pengagregatan data untuk mengurangkan penghantaran data dalam 

rangkaian. Ketiga, merekabentuk skim pengesanan anomali ringan (CESVM-DR) 

menggunakan skema pengesanan anomali Mesin Vektor Sokongan Satu (OCSVM) 

dan menggabungkan teknik pengurangan dimensi berdasarkan Analisis Komponen 

Utama Tanpa Kovarian Tambahan (CCIPCA) untuk meminimumkan kerumitan 

pengiraan matriks kovarians dalam CESVM. Akhir sekali meningkatkan kecekapan 

dan keberkesanan skim pengesanan anomali dengan merekabentuk skim pengesanan 

anomali teragih (DCESVM-DR). Keberkesanan dan kecekapan skim pengesanan 

anomali yang dicadangkan diuji menggunakan set data dunia sebenar serta data tanah 

yang dikumpul dari lading sawit. Keputusan menunjukkan skim pengesanan anomali 

CESVM-DR yang dicadangkan dengan purata ketepatan pengesanan 92-100% 

menggunakan set data sebenar sambil meminimumkan kerumitan pengiraan dan 

overhed tenaga. Sementara itu, mengeksploitasi korelasi antara nod sensor untuk 

mengesan anomali pada DCESVM-DR telah meningkatkan hasil keberkesanan serta 

meminimumkan kerumitan memori dan tenaga. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

With the advancement of digital technology from the past few decades,  every 

digital equipment and appliance are expected to be embedded with tiny yet powerful 

devices called sensor node. Furthermore, the wireless communication between 

physical item and sensor to exchange information for smart living in the future has 

been coined as the Internet of Things (IoT). In the world of modern wireless 

telecommunications, IoT is a revolutionary paradigm that is rapidly growing. (Atzori 

et al., 2010).  When these sensor nodes communicate together to collect large amount 

of data from targeted area via the wireless channel, they are called Wireless Sensor 

Networks (WSNs). Businesses, industries, and the military have utilised WSNs to 

track an object or monitor a phenomena. Besides, many types of research areas have 

emerged from the WSNs domain such as from routing protocol, security, and privacy 

to data mining and many other. Nevertheless, currently researches are concerned in 

improving the performance of the WSNs technologies (Ayadi, Ghorbel, Obeid, et al., 

2017). 

In general, the sensor nodes are equipped with sensing, processing, radio, and 

power unit, yet they have limited resource in term of energy, computation, and storage 

(Gao et al., 2020). Frequently, a large number of the sensor nodes are deployed widely 

in the target environment and continuously communicate the phenomenon 

measurement like ambient temperature, relative humidity, soil moisture, and wind 

speed to the base station. Therefore, in most situations, sensor data need to collect 

accurate and reliable measurement for data analysis and decision-making especially in 

a critical domain such as in meteorology station, the military application as well as 

security monitoring.  
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Unfortunately, the raw data collected from WSNs communication usually are 

not reliable and inaccurate due to imperfect nature of WSNs (Ayadi, Ghorbel, Obeid, 

et al., 2017). According to Zhang et al., (2008) the reasons that lead to the unreliable 

and inaccurate data is due to sensor nodes are deployed in harsh and unattended 

environment, and these sensors are also vulnerable to malicious attacks.  In addition, 

resource constraint imposed by sensor nodes makes the device fails to operate properly 

thus reduces data accuracy. Therefore, data collected from these sensor nodes are often 

generates missing data, duplicated or error records. In order to ensure the collected 

data is reliable and accurate for data analysis and decision-making, one of the solutions 

is to detect the erroneous data, malicious attack or the changes in the environment 

namely anomaly or outlier detection (These terms will be used interchangeable 

throughout this thesis). Anomaly detection is one of the potential approaches that can 

be considered as a solution. Anomaly detection is defined by Chandola et al., (2009) 

as the process of identifying data patterns that vary from anticipated behaviour. When 

it comes to WSNs, anomaly detection has been widely employed across a wide range 

of industries such as the military and environmental sectors. (Akyildiz et. al., 2002). 

This is due to the characteristic of low-cost, small in size and multi-functional sensor 

nodes; it helps to achieve the need of fast and cheap data collection.  

Another wide Implementation of WSNs is for agricultural in the respective 

works i.e., monitor the irrigation Morais et. al., 2005); monitor micro-climate in the 

crop field (Baggio, 2005); to detect pathological symptoms presence of in oil palm 

(Shafri and Anuar, 2008 and Mazliham et. al., 2007); control the irrigation in (Maurya 

and Jain, 2016); to investigate the effects of the environmental conditions( Ferentinos 

et al., 2017); to detect any abnormal situation in the meteorological data (Salim et al., 

2020). For instance, implementing early detection on palm oil disease namely 

Ganoderma Boninense (G.Boninence) can reduce billions of Ringgit loss (Zain et. al., 

2013; Cooper et. al., 2011; Hushiarian et. al., 2013). Therefore, one of the potential 

research utilizing the concept of WSNs is to collect potential data from palm oil 

plantation and implementing anomaly detection method to detect the palm oil disease 

Hushiarian et. al., (2013); Abdullah et. al., (2012); Markom et. al. (2009). Moreover, 

due to the geographical structure of the plantation field, deploying this sensor node 

again helps to eliminate human intervention to take the samples from the field. 
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Although WSN has been widely used to detect anomalies in various fields, it 

has many challenges that affect the efficiency and effectiveness of a detection. Again, 

these issues may arise from the resource constraint of the sensor nodes, including low 

energy, processing capability, memory or storage limitation. These limitations need to 

be considered during designing the desired solution using anomaly detection in WSNs 

domain. Possible approaches to tackle the energy consumption for WSN is by 

implementing data aggregation techniques and dimension reduction (Chitradevi et al., 

2010; Ullah and Youn, 2020; Ullah et al., 2021). As defined by Rajagopalan and 

Varshney (2006), data aggregation is the process of eliminating duplicate 

transmissions and delivering fused information to the base station by combining data 

from numerous sensors. Data aggregation helps to reduce the transmission of data 

within the network to consume fewer data communication and prolong the network 

lifetime. This approach has been used (Chitradevi et al., 2010; Bharuka and Jinwala, 

2014; Nisha et al., 2014; Otoum et al., 2018) in recent anomaly detection researches 

in developing more effective and efficient detection in term of energy usage. 

1.2 Background of the Problem 

As mentioned, the unique characteristic of sensor nodes needs few 

considerations on designing an adequate anomaly detection solution for in WSNs 

domain. Therefore, applying traditional techniques like cryptography, authentication 

or complicated detection technique for data analysis to WSNs domain is unsuitable as 

these sensor nodes are highly constrained in resources. Sensor networks have a number 

of significant issues, including energy constraints, limited computational power, 

restricted memory, and data security, for which academics have proposed many 

solutions (Ur-Rehman et al., 2014). An adequate solution design in anomaly detection 

measured in terms of their detection effectiveness as well as efficiency in leveraging 

the network's limited resources (Rassam et. al., 2013a). Effective anomaly detection 

associated with detection accuracy, detection rate, and false alarms whereas efficient 

anomaly detection associated with energy consumption and memory utilization. These 

characteristics often used as performance measures in several anomaly detection types 

of research (Zhang et. al., 2013; Rassam et. al., 2014; Ghorbel et. al. 2017; Ayadi et 
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al., 2020). In other words, the lightweight detection is an adequate solution to design 

anomaly detection in WSNs by utilizing less energy consumption and low processing 

and storage usage. Therefore, lightweight detection is a desirable characteristic of the 

anomaly detection scheme. Several solution approaches have been described in the 

previous section including the use of WSNs to collect required data from the fields for 

various detection. Figure 1.1 shows the scenario that leads to problem addressed in 

this research.  

 

Figure 1.1 Scenario Leading to the Problem 

Figure 1.1 presents the scenario in WSNs, the solution needs, challenges, and 

limitation as well as the desired solution needs to design anomaly detection scheme in 

WNS. In WSNs domain, the desired solution in designing anomaly detection is to have 

efficient detection while preserving resources and effective detection while preserving 

accuracy. According to Rassam et. al. (2013a), there are five requirements need to be 



 

5 

 

satisfied in designing and developing an efficient and effective anomaly detection 

model. These five main requirements for detection models are termed as RODAC and 

it includes; reduction of data, online detection, distributed detection, adaptive 

detection, and correlation exploitation. Online detection is the mean to ensure real-

time or near real-time detection. Meanwhile, distributed detection is to ensure 

optimum resources utilization especially for data transmission over the network. 

Meanwhile, reduction of data, preserve energy during data transmission. Correlation 

exploitation in sensor data in neighbourhoods can limit the data transmission. One of 

the factors that leads to quick sensor depletion is caused by data transmission (Rassam 

et. al. 2014). The transmission of one data bit requires as much energy as processing a 

thousand bits in a sensor. Hence, designing the energy-efficient solution is crucial in 

WSN in application such as anomaly detection. The dynamic changes of data sensed 

by the sensor need to take into account as it will affect the detection effectiveness of 

the anomaly detection model. Hence, adaptive detection is a recommended feature to 

enhance the detection effectiveness in anomaly detection, especially in a dynamic 

environment. Therefore, one needs to consider this requirement when designing an 

effective and efficient anomaly detection model. The complexity of the anomaly 

detection model or schemes also discussed in Ayadi et al., (2017) and Rassam et al., 

(2018). 

Recently, Safaei et al. (2020) and Chander and Kumaravelan (2021) have 

discussed the techniques and challenges related to anomaly detection in WSNs. Both 

studies indicate that in designing and developing and effective and efficient anomaly 

detection, these factors must be considered: resource constraints, robust 

communication with minimum communication, and computational complexity, while 

taking into account the high-dimensional data. Recent lightweight anomaly detection 

schemes show tolerable performance evaluation in terms of accuracy or detection rate. 

However, the false alarms are higher in some schemes. Current techniques present 

between 81% and  98% detection rate with false alarm rates between 2% and 40%  

(Rassam et al., 2012; Cheng and Zhu, 2015; Ayadi et al., 2017; Ghorbel et al., 2017; 

Safaei et al., 2020). Meanwhile, Chen and Li (2019) reported AUC values between 

95% and 98% and false alarm rates between 5% and 40% using different kernel widths. 
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Due to the restricted energy and harsh deployment conditions in WSNs, raw 

sensor observations frequently have low accuracy. On the other hand, Anomalies can 

be triggered by a malfunctioning sensor node, as well as network security attacks or 

unusual phenomena in the monitoring scope (Feng et al., 2017). Moreover, WSNs are 

open to both internal attacks and external attack stated by Yu et al. ( 2012). Internal 

attacks include eavesdropping, injecting fractional data, and fabricating non-existent 

records in order to disrupt the normal operation of the entire network, whereas external 

attacks involve the invader breaking through some traditional safeguards in order to 

capture sensor nodes and learn vital information from them. Due to the inconsistent 

nature of sensor nodes, the quality of the data collected by sensor nodes is unreliable 

and inaccurate. Therefore, applying any security solution or technique to the data or to 

the sensor node can ensure the high data quality. However, according to Akyildiz et 

al. (2002) and Xie et al. (2011), though WSNs is derived from the ad-hoc network, 

adopting any ad-hoc network detection schemes into WSN is not feasible due to the 

resource constraint of sensor nodes. Designing adequate solution specifically for 

WSNs need to consider its’ limitations and challenges. 

Meanwhile, the large amount of data collected from the sensor nodes composes 

of irrelevant and redundant features (Randhawa and Jain, 2017; Xue et al., 2018). 

These numerous amounts of data lead to greater resource consumption and also affects 

the detection effectiveness. This massive quantity of data, which comprises irrelevant 

and redundant characteristics, causes delayed training and testing, increased resource 

usage, and a low detection rate. (Li et al., 2009; Manbari et al., 2019). In most 

situations, normal data is more commonly presented in the WSNs environment as 

compared to abnormal data. Furthermore, the abnormal or anomalous data usually can 

be recognized by the unique pattern yet camouflaged by the normal data. Additionally, 

most of the features in the datasets are redundant or irrelevant, which can lead to higher 

training time and low detection performance (Xue et al., 2018). Therefore, feature 

selection is often performed on the collected data to select and filter the unimportant 

and irrelevant features (Kumar and Sonajharia, 2014; Xue et al., 2018). Feature 

selection is a pre-processing task that usually performed before data is fed to the 

anomaly detection scheme. Therefore, removing the irrelevant and redundant features 

can improve the classifier performance as well as the detection effectiveness. Feature 
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selection is crucial as there are too many features in the data or features that are noisy, 

irrelevant and redundant, as this will affect detection accuracy and speed. 

Moreover, multivariate data is also needed to be considered when designing an 

anomaly detection scheme as multivariate data are always sensed in the target 

phenomenon (Aldweesh et al., 2020; Safaei, Asadi, et al., 2020; M. A. Rassam et al., 

2013b). Unfortunately, the multivariate data detection is energy consuming thus 

reducing the data dimension may help on minimizing energy utilization. For effective 

analytical results, data reduction is done in order to obtain quality of knowledge 

without affecting the integrity of the original data. (Randhawa and Jain, 2017). 

Moreover, dimensionality reduction can help to minimize the space required to store 

the data when the number of dimensions increases (Poornima and Paramasivan, 2020). 

There are many types of research have proposed dimension reduction scheme when 

designing anomaly detection model, for instance, Ullah et al., (2021), Ghorbel et al., 

(2017), Erfani et al., (2016), Rassam et al., (2012), Takianngam and Usaha, (2011) 

and Siripanadorn et al., (2010). 

Apart from that, data transmission process is more energy consuming 

compared to computation process (Randhawa and Jain, 2017). This means large 

amount of energy is required for communication process (Yue et al., 2018). Moreover, 

centralized data communications by directly sending whole data to the sink or base 

station is also an inefficient solution that can also rapidly drain the sensor energy. 

Therefore, data aggregation is a widely adopted method to effectively reduce the data 

transmission volume and improve the lifetime of WSNs (Wan et al., 2019; Li et al., 

2018). Energy consumption can be reduced by aggregating the collected using 

aggregate function before forwarding to the base station compared to centralize 

solution (Gomathi and Krishnan, 2020; Liu et al., 2020). Thus, this data aggregation 

solution is considered as one of the key solutions for energy utilization by reducing 

the number of communication while transferring the whole data to base station. This 

aggregation concept has been adopted in distributed anomaly detection solution (Ullah 

et al., 2021; Otoum et al., 2018; Nisha et al., 2014; Bharuka and Jinwala, 2014; 

Chitradevi et al., 2010;) for energy efficient. Usually in distributed environment a 

special node called cluster head is used to aggregate the data sent by sensor node within 
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the specific cluster before sending the aggregated data to base station (Ullah et al., 

2021).  

Accurate data collection on the network is crucial in some scenario, such as 

health applications (Safaei, Asadi, et al., 2020). As previously discussed, a various 

factor might lead to inaccurate WSN sensory data. Measurements that deviate 

significantly from the normal pattern of sensed data are classified as outliers in the 

field of WSNs (Safaei, et al., 2020). Outliers are also defined as anomalies or 

divergences that exhibit unexpected behaviour when compared to the majority of 

sensory data. Therefore, the necessity to identify/detect outliers in deployed sensor 

nodes in WSNs is crucial. This detecting process is known as sensor outlier/anomaly 

detection. 

Meanwhile, neighbourhood correlation has advantages of detecting anomalous 

data. The distinction between anomalous data and significant events can be made by 

observing that anomalous are likely to be spatially unrelated, but significant event 

measurements are likely to be spatially associated  (Yang Zhang et al., 2010; Rassam 

et al., 2018; Kumar and Chaurasiya, 2019). Moreover, the correlation between the 

nodes can reduce the false alarm rate due to the information exchanged between the 

nodes to distinguish between the event and anomalous data. This requirement is 

closely related to distributed detection and correlation exploitation as they can 

collaborate to enhance the detection effectiveness and efficiency. Sun et. al., (2013) 

have suggested for system monitoring modules (SMM) should be integrated with 

intrusion detection modules (IDM) in the context of WSNs. SMM is used to 

monitoring the important event in the sensor environments by exploiting node 

correlations (Banu and Balasubadra, 2018; Rajasegarar et al., 2014; Kannadhasan et 

al., 2014; Arthi A, 2014; Francis and Babu, 2014). 

The existing distributed anomaly detection techniques such as Ullah et al. 

(2021), Rassam et al. (2018), Ghorbel and Abid (2015), and Zhang et al. (2013) are 

developed with the intention to attain effective and efficient detection with few 

consideration factors. Firstly, data redundancy from sensor nodes to the intermediate 

node can affect not only the excessive transmission but also the computational 
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overhead (Kumar and Chaurasiya, 2019). Thus, by transmitting some useful data can 

save energy. Secondly, when adapting the distributed solution, adequate size of the 

summary often called the normal reference model to transmit to central location need 

to be as small as possible during the data transmission in order to cope with resource 

constraint. The normal reference model is the normal state of the specific dataset used 

in anomaly detection to detect anomalies obtained by performing the data training 

process (Maya et al., 2019). Lastly, efficient transmission structure to ensure data can 

transmit to the base station even when some nodes are malfunctioning or faulty 

therefore accurate decision making can be achieved. Guo et al. (2014) and  Widhalm 

et al. (2021) categorised faulty node into function or data fault and hard or soft faults 

respectively. The second category frequently refers to anomalies or outliers that may 

be detected by utilising anomaly detection. Meanwhile, the first category is erroneous 

data, which may be addressed using data aggregation techniques (Guo et al., 2014; 

Shial et al., 2020).  

In addition, designing efficient anomaly detection needs to consider the 

complexity of the technique. One class classifier like One-Class Support Vector 

Machine (OCSVM) ( Zhang et al., 2013; Rajasegarar et al., 2008b;) and One-Class 

Principal Component Classifier (OCPCC) (Rassam et al., 2014) based anomaly 

detection are favourable in the case of anomaly detection in WSNs (Rassam et al., 

2014). One class setting assumes that the data have only one label which is normal 

data label. When the data is not fitted with the training normal data, it is considered as 

anomalous. As only one class is utilized during the anomaly detection procedure, thus 

giving the advantages in term of processing, storage as well as the training time. 

Furthermore, OCSVM and OCPCC's one-class learning methods and unsupervised 

approaches are ideal for datasets with no ground truth since these techniques do not 

require pre-labelled data, which is difficult or expensive to provide. (Chander and 

Kumaravelan, 2021; Rassam et al., 2014; Shahid et al., 2013). 

A recent review by Chander and Kumaravelan (2021) highlighted the 

limitations, issues, and requirements of the existing anomaly detection approaches in 

WSNs. In general, anomaly detection limitation includes ignoring multivariate data 

and attributes' correlation, making use of user-specified pre-set threshold values, not 
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being able to distinguish between events and errors, challenges of streaming data, the 

appropriate transmission of the reference model, and space requirement to store 

batches of data for a period of time. Meanwhile, some specific anomaly detection 

techniques suffer from parameter selection or tuning and high computational cost. To 

address these limitations, Chander and Kumaravelan (2021) highlighted the key design 

elements needed, which include a combination of unsupervised learning scheme, 

distributed approach, multivariate data, online mode, spatio-temporal correlation, 

adaptability, automated communication, differentiated event and outlier, ability to 

detect multiple anomalous types, intelligent strategy, and low computational 

complexity with high detection rate. 

1.3 Problem Statement 

Detection effectiveness and efficiency need to be considered when designing 

and developing anomaly detection scheme. Anomaly detection suffers from 

computational complexity when a large number of unrelated and unimportant 

multivariate data features are processed. As a result, detection accuracy can decrease 

while energy depletes when transmitting big amount of data. Data accuracy can also 

be affected when a malfunction or faulty node transmits the faulty or malicious data to 

sink or base station. Thus, this can lead to low detection accuracy. Therefore, feature 

selection to filter the unrelated features as well as dimension reduction are required for 

efficient and effective detection 

Meanwhile, detection efficiency can be achieved by minimizing energy 

consumption. In WSNs, processes of sensing, processing and transmitting data may 

consume a lot of energy which leads to high communication overhead. Besides, 

excessive energy consumption may happen when sensor nodes are located far from the 

base station. Therefore, data aggregation technique can be incorporated in the 

proposed distributed anomaly detection scheme while utilizing spatial neighbourhood 

correlation to reduce the excessive energy consumption. Moreover, the spatial 

correlation between the nodes can enhance the detection effectiveness when 
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anomalous data can be distinguished from common events in the network. The 

research hypothesis of this research is: 

The effectiveness and efficiency of the solution approach for detecting 

anomalous data in WSNs can be achieved by utilizing feature selection, dimension 

reduction and distributed detection to ensure efficient use of energy. 

1.4 Research Question 

The following questions are addressed in this research: 

1. How to eliminate the irrelevant and unimportant data to produce highly 

accurate detection while reducing energy consumption?  

2. What is the suitable technique to reduce transmission and data processing in 

WSN for energy consumption while prolonging the lifetime of WSN?  

3. What is the impact of transmitting long distance and big amount data on high 

energy consumption?   

4. How to design a local lightweight anomaly detection scheme for multivariate 

data in order to further reduce the energy consumption? 

5. How to further enhance the effectiveness and efficiency of the anomaly 

detection scheme by utilizing distributed and spatial-correlation approaches? 

 

 

1.5 Research Purpose  

The purpose of this research is to design and develop a lightweight 

anomaly detection scheme for WSNs using data aggregation approach in 

distributed manner with high accuracy and low false alarm, low 

communication overhead and low computational complexity. 
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1.6 Research Objective 

The main objectives of this research are: 

 

1. To design an effective WSN data transmission scheme by selecting significant 

features using Rough Set Theory and Ranking method. 

2. To design and implement a hybrid Low-Energy Adaptive Clustering 

Hierarchy (LEACH) data aggregation techniques to minimize energy 

consumption 

3. To design and develop lightweight local anomaly detection scheme by 

reducing data dimension using one class support vector machine technique 

utilizing the selected features obtained in objective (1).  

4. To enhance the efficiency of the anomaly detection scheme in objective (3) by 

developing a distributed anomaly detection scheme to distribute the energy 

consumption and detection process while utilising spatial correlation of the 

sensor nodes to improve detection effectiveness. 

 

 

1.7 Scope and Assumption 

This study is limited to the following: 

1. Data used in the study obtained from the following resources: 

a)  Palm oil soil data is collected from Malaysia plantation. These data will be 

used to illustrate the effectiveness of the proposed RST-Ranking feature 

selection technique 

b) Intel Berkeley Research Lab (IBRL), Sensorscope: Environmental Data 

for Wireless Sensor Networks includes Grand St. Bernard (GSB), 

Lausanne Urban Canopy Experiment (LUCE) and c) Patrouille des 

Glaciers (PDG), and Networked Aquatic Microbial Observing System 
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(NAMOS) will be used to validate the proposed scheme. These datasets 

are largely used by WSNs researcher especially in the anomaly detection 

area (Rassam et. al., 2013b; Zhang et. at., 2013; Rajasegarar et. al., 2007). 

2. Data aggregation is presented by combining LEACH-C and LEACH-R 

clustering-based structure and spatial-correlation between the nodes and each 

cluster as aggregator nodes to collect the data from the cluster.  

3. Network metrics such as energy consumption, node failure rate and data 

transmission rate, are used to measure the efficiency of the proposed data 

aggregation scheme as used by other researchers in the domain (Heinzelman et 

al., 2002; Wang and Zhu, 2012; Ullah et al., 2021). 

4. The performance measurements of this proposed anomaly detection scheme 

are based on effectiveness and efficiency. Effectiveness will be measured 

based on detection accuracy, detection rate, and false alarm while the 

efficiency will be measured by energy consumption and memory utilization. 

 

 

1.8 Significance of the Research 

  The significance of the research is outlined as follows: 

 

1. The unreliable and inaccurate data includes of the harsh and unattended 

environment, as well as sensor nodes are vulnerable to malicious attacks affects 

the decisions making at the base station in WSNs thus anomaly detection 

scheme is suggested for accurate data analysis. 

2. Large volume of data sensed by the sensor nodes composes of irrelevant and 

redundant features as well as the multivariate data features leads to greater 

resource consumption and also affects the detection effectiveness. 

3. High energy consumption during the data transmission in the network leads to 

energy depletion thus decreases the network lifetime. Therefore, enhancing 
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data aggregation scheme helps to prolong the network lifetime and reduce the 

communication overhead. 

4. Designing efficient and effective anomaly detection based on feature selection, 

dimension reduction, and data aggregation technique helps in reducing the 

energy consumption, therefore, prolong the network lifetime. 

5. Taking the advantages of the spatial correlation between the nodes to enhance 

the detection efficiency and effectiveness, thus minimizing the data 

transmission as well as the anomalous data and important event can be 

discriminated. 

6. Application of this research findings can benefit few application domains. One 

example is palm oil industry in term of fast detection of palm oil tree diseases 

such as Ganoderma Boninence fungus in the soil. Detecting the presence of 

Ganoderma Boninence at the early stage can lead to early treatment of the 

infected trees and reduce the revenue loss. 

1.9 Definition of Terms 

The definition of the terms used in this research as follows: 

1. Detection Effectiveness; 

 The detection accuracy and false alarm rate reflect the effectiveness of a 

detection method. The detection accuracy rate is calculated by dividing the 

number of correctly identified anomalies by the total number of anomalies. A 

false alarm is made up of two parts: a false positive and a false negative. A 

false positive occurs when a legitimate event is mistakenly classified as an 

abnormality, whereas a false negative occurs when a true anomaly is missed. 

The false alarm rate is calculated by dividing the number of false alarms by the 

number of reported anomalies (Xie et. al., 2011).  
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2. Detection Efficiency; 

Detection efficiency describes the minimum usage of the resource including 

energy consumption and memory capacity of sensor nodes in the network. 

Communication overhead, computational complexity, and memory utilization 

are measurements used to evaluate detection efficiency. 

 

3. Lightweight detection; 

Lightweight detection describes the reduction of computation complexity 

during the process of anomaly detection that leads to reduction of energy 

consumption. By reducing thus prolonging the network lifetime. 

 

4. Robustness; 

Robustness describes the success of data transmission in the network structure 

to the final destination in case of link/device failures. The robust structure can 

increase the detection accuracy. 

 

 

1.10 Thesis Organization 

This thesis is organized into seven chapters. Chapter 1 is the introduction of 

the research and it provides the problem background, objective, the importance of the 

research and its aim. Chapter 2 is the literature review which discusses the previous 

work of related to feature selection, data aggregation, WSNs, anomaly detection and 

Ganoderma disease as the case study for anomaly detection scheme. The research 

methodology that outlines the research framework into three phases is presented in 

Chapter 3. Chapter 4 discusses the proposed energy efficient scheme achieved by using 

feature selection and data aggregation approaches. The lightweight anomaly detection 

based on one-class support vector machine (OCSVM) and Candid Covariance-Free 

Incremental Principal Component Analysis (CCIPCA) and the distributed anomaly 

detection scheme are presented in Chapter 5 and Chapter 6 respectively. Lastly, the 

Chapter 7 concludes this thesis.
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