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ABSTRACT 

Bisphenol A (BPA) is grouped under endocrine disrupting compound (EDC), 

which accumulating in most Southeast Asia rivers from 8 ng/L to 36.9 ng/L. It is a 

common plasticizer have been in plastic bottles, water pipes, and toys and enters our 

household water after being exposed to heat, acid, or base. Continuous exposure to 

BPA may lead to myocardial infraction, cardiac hypertrophy, preterm birth, and neuro-

behavioral disturbances. This study developed a novel photocatalytic membrane to 

remove BPA from water body efficiently. The photocatalysis process was chosen to 

be a hybrid with membrane in this work as it is safe and has no secondary by-product. 

Copper (I) oxide (Cu2O), also known as cuprous oxide, is a type of semiconductor 

which is nontoxic and able to work under visible light with its low band gap of 2.2 eV. 

In this study, Cu2O was incorporated into polyvinylidene fluoride (PVDF) based dual-

layer hollow fiber membrane at different Cu2O to PVDF ratios, namely 0.25, 0.50, and 

0.75. The outer dope layer flowrate was also varied at 3, 6, and 9 ml/min. The 

membranes were analyzed for scanning electron microscope, contact angle, porosity, 

tensile strength test, atomic force microscopy, X-ray diffraction, dispersive energy X-

ray, Fourier-transform infrared spectroscopy, and water flux measurement. Based on 

the finding, a higher outer dope flowrate increased the outer layer finger like structure 

and thickness. 6 ml/min outer dope flowrate had the highest porosity (63.13% ± 5.09), 

and water flux (4919.02 ± 42.52 L/m2h). Meanwhile, the increase in photocatalyst 

loading had increased the Cu2O agglomeration in the outer layer membrane, copper 

mapping in the outer layer membrane, and surface roughness. The DLHF membrane 

with a Cu2O/PVDF ratio of 0.5 possessed the highest water flux (13890.99 ± 164.96 

L/m2h) and the lowest contact angle (58.90° ± 1.72). Thus, the selected membranes 

were observed for their performance to degrade BPA with 10, 20, and 30 mg/L 

concentrations under visible light irradiation for 360 minutes. The treated water sample 

was analysed for the leaching test. The best membrane configuration as photocatalytic 

membrane is 0.50 Cu2O/PVDF ratio with 6 ml/min outer dope flowrate with the ability 

to remove 75 % of 10 mg/L BPA, 69.23 % of 20 mg/L BPA and 68.42 % of 30 mg/L 

BPA in 360 minutes under visible light irradiation. In conclusion, Cu2O/PVDF DLHF 

membrane is able to remove BPA under visible light irradiation. 
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ABSTRAK 

Bisphenol A (BPA) tergolong di dalam kumpulan sebatian yang mengganggu 

endokrin (EDC) yang semakin terkumpul di kebanyakan sungai di Asia Tenggara dari 

8 ng/L ke 36.9 ng/L. Ia merupakan pemplastik lazim dalam botol plastik, paip air dan 

permainan kanak-kanak dan berupaya memasuki sumber air rumah selepas terdedah 

pada haba, asid dan alkali. Pendedahan berterusan terhadap BPA boleh menyebabkan 

infraksi miokardium, hipertrofi jantung, kelahiran pramatang dan gangguan tingkah-

laku neuro. Dalam kajian ini, satu membran fotomangkin novel telah dibangunkan 

untuk menyingkirkan BPA dari sumber air secara efisien. Proses fotomangkin telah 

dipilih untuk dihibridkan bersama membran kerana ianya selamat dan tiada hasil 

sampingan sekunder terhasil. Kuprum (I) oksida (Cu2O) atau dikenali sebagai kuprus 

oksida adalah sejenis semikonduktor yang tidak bertoksik dan berupaya bekerja di 

bawah cahaya tampak dengan sela jalurnya yang rendah, 2.2 eV. Melalui kajian ini, 

Cu2O telah digabungkan bersama membran dua lapis gentian berongga polivinilidena 

flourida (PVDF) dengan nisbah Cu2O kepada PVDF yang berbeza, 0.25, 0.50 dan 0.75. 

Kadar aliran lapisan luar juga telah divariasikan pada 3, 6 dan 9 ml/min. Membran 

telah dianalisa menggunakan mikroskop elektron imbasan, sudut sentuh, keliangan, 

ujian kekuatan tegangan, mikroskopi daya atom, pembelauan sinar-X, sinar-X sebaran 

tenaga, spektroskopi inframerah transformasi Fourier dan pengukuran fluks air. 

Berdasarkan keputusan kajian, struktur kadar air dop luar tinggi meningkatkan struktur 

jari lapisan luar dan ketebalan. Kadar aliran lapisan luar 6 ml/min mempunyai 

keliangan paling tinggi (63.13% ± 5.09) dan fluks air (4919.02 ± 42.52 L/m2h). 

Manakala, peningkatan muatan fotomangkin meningkatkan pengaglomeratan Cu2O 

pada lapis luar membran, pemetaan kuprum pada lapis luar membran dan kekasaran 

permukaan membran. Membran DLHF dengan nisbah Cu2O/PVDF 0.5 mempunyai 

fluks air paling tinggi (13890.99 ± 164.96 L/m2h) dan sudut sentuh paling rendah 

(58.90° ± 1.72). Membran terpilih telah dicerap untuk prestasinya untuk penurunan 

BPA dengan kepekatan 10, 20 dan 30 mg/L dibawah sinaran cahaya tampak selama 

360 minit. Sampel air terawat telah dianalisa untuk ujian larut lesap. Konfigurasi 

membran fotomangkin terbaik adalah nisbah Cu2O/PVDF 0.5 dengan kadar aliran 

lapisan luar 6 ml/min berupaya mendegradasi 75% BPA 10 mg/L, 69.23% BPA 20 

mg/L dan 68.42% BPA 30 mg/L dalam 360 minit dibawah sinaran cahaya tampak. 

Kesimpulannya, membran DLHF Cu2O/PVDF berjaya menyingkirkan BPA di bawah 

sinaran cahaya tampak.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of study 

According to the World Health Organization (2019), by 2025, half of the 

world's population will face significant challenges with access to safe drinking water. 

Even now, 2 billion people use faeces-contaminated water as drinking water (Shakya 

et al., 2021). Contaminated water transmits diseases such cholera, hepatitis A, polio, 

diarrhea and dysentery. According to Environmental Protection Agency (2016), 

compounds that labelled as contaminants in water are nitrogen, salts, metals, toxins, 

bleach, microorganisms, uranium, cesium, human drugs, animal drugs and endocrine 

disrupting compounds (EDCs). Thus, more efforts need to start from now to prepare 

the world for water crisis in 2025. Contaminants from water need to remove so it can 

be use as drinking water. 

Because of estrogenic effect, toxicity, durability, and bioaccumulation, EDCs, 

a collection of organic compounds, have garnered worldwide interest. Humans' 

exposure to EDC through drinking water and tap water leads to the risk of health issues 

(Wee and Aris, 2017). Bisphenol A (BPA) is a member of EDCs found in each house, 

as it is one of food and beverages packaging composition. It demands also increasing 

annually worldwide (Corrales et al., 2015). BPA can be detected in municipal and 

industrial wastewater due to leaching, domestic waste combustion, or plastic 

degradation (Santhi et al., 2012). It affects not only human health but also animals. 

Reproduction problems such as fertility, miscarriage, and premature deliveries, human 

development problems such as neurodevelopment and birth weight, and metabolic 

problems such as cardiovascular disease, obesity, and hypertension are the main target 

of BPA as it is an endocrine disruptor compound (Rochester, 2013). BPA also disturbs 

animals' reproduction systems and hormone signals (Larsen, 2015).  
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BPA is widely used in various industries. The concentration of BPA found in 

the environment is also quite high, but there is less concern to remove it extensively 

(Rochester, 2013). Surface water in Asia itself exceeded 80 % of Canadian Predicted 

No Effect Concentrations of BPA, which is 750 ng/L. Meanwhile, Europe exceeded 

63.4 %, North America exceeded 56.3 %, and Asia exceeded 52.4 % for effluent water 

(Corrales et al., 2015). BPA has been removed by several methods, including 

adsorption, nanofiltration, biological method, and emulsion liquid membrane (A 

Boukhelkhal et al., 2016; Abdel-Fatah, 2018; Iosob et al., 2016; Kumar et al., 2019). 

However, these methods still have limitations to remove BPA optimally without 

producing secondary compounds, green process, less fouling, short time duration of 

treatment, and good stability.  

The Photocatalysis concept was first discovered in 1911 by Dr Alexander 

Eibner, originally from Germany (Coronado et al., 2013). He found that zinc oxide 

could bleach Prussian blue, a dark blue pigment, under the presence of illumination 

(Nawaz et al., 2021). The photocatalysis process is low in cost, but it is also reusable, 

eco-friendly, and able to degrade completely compared to other treatment processes 

(Kumar et al., 2014). This process can activate when the photocatalyst is irradiated 

with visible light or UV light, depending on its bandgap energy. Few factors affect the 

photocatalysis process; light intensity, amount of catalyst, temperature, structure, size, 

pH, surface area, and pollutants concentration. This process has been used in organic 

pollutant degradation, especially in wastewater, hydrogen production, air purification, 

and disinfectant (Saravanan et al., 2017). It removed contaminants in water, including 

organic compounds, textile dyes, EDCs, and pharmaceutical drugs (Ismail et al., 2019; 

Kamaludin et al., 2018; Wang et al., 2018).  

A chemically stable, photocorrosion stable, low cost, safe, and can get 

activated when exposed under visible light irradiation photocatalyst is needed. Copper 

(I) oxide (Cu2O) is chosen because of its narrow band gap semiconductor. It has a 2.0 

– 2.4 eV of band gap value, which can get activated after being exposed under visible 

light, which is cost effective as solar light is also considered as a visible light source 

(Koiki and Arotiba, 2020). Besides, it also has a lower recombination rate (Imtiaz et 

al., 2019). It is chemically stable and can be found abundant naturally. Cu2O is also 
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applied in various areas such as sensor application, solar cells, photocatalysis, and 

water splitting (Koiki and Arotiba, 2020). Cu2O also has a high affinity towards 

organic contaminants (Jing et al., 2014). Based on a previous study, Cu2O is capable 

of removing up to 95% of 45 mg/L of BPA (Losada-Garcia et al., 2020). A visible 

light photocatalyst is needed as it can fully utilized 45% of the visible light solar 

spectrum rather than only 5% of the UV solar spectrum. Visible light photocatalysis 

advantages on its clean, use low-cost visible light as driving force, and renewable 

(Chen et al., 2016).  

Cooperating photocatalytic technology and membrane technology maintains 

the advantages of photocatalytic technology to degrade high concentrations of organic 

pollutants in wastewater and benefits from rapid reaction speed and extensive 

degradation (Wang, 2018). Other than that, the photocatalytic membrane is the hybrid 

of the filtration and photocatalysis process, no recovery treatment is needed for the 

photocatalyst as it is immobilized on the membrane and has a longer membrane 

lifetime as it has self-cleaning properties (Nascimbén Santos et al., 2020).  

DLHF membrane is a hollow fiber membrane that consists of two-layer, the 

inner layer, and the outer layer. DLHF have been applied in various kinds of field, 

such as forwarding osmosis, nanofiltration, separation of gas and liquid, and protein 

separation (Kamaludin et al., 2017). Besides, it also has been applied in pervaporation 

and membrane distillation (Setiawan et al., 2012). DLHF membrane has good 

flexibility as two different polymer dope solutions are used in fabrication, and each 

layer integrated together makes the membrane reduce certain individual materials 

weakness (Setiawan et al., 2012). DLHF membrane also has a larger area per unit 

volume and has its mechanical support than other membrane types (Khan et al., 2018). 

Once it is integrated with photocatalyst become photocatalytic DLHF membrane, outer 

layer acts as degradation site, and inner layer plays its role as a separation layer. Thus, 

DLHF membrane is among the most suitable membrane configurations to cooperate 

with photocatalyst and form a photocatalytic DLHF membrane.  
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1.2  Problem statement 

Several methods have been attempted to remove BPA, which are adsorption 

(Boukhelkhal et al., 2016), nanofiltration (Abdel-Fatah, 2018), biological agents (Alin 

et al., 2016), and emulsion liquid membrane (Mondal et al., 2018). Membrane fouling, 

limited to a certain particle size of pollutants, longer duration, and bad membrane 

stability are among the limitations of these conventional methods (Boukhelkhal et al., 

2016; Abdel-Fatah, 2018; Alin et al., 2016; Mondal et al., 2018). Meanwhile, the 

current development on the photocatalytic membrane is mainly on UV light. Various 

studies reported on the photocatalytic membrane, but it emphasizes utilizing UV light 

as a source of light rather than using visible light, as reported by Argurio et al. (2018) 

and Nyamutswa et al. (2020). Other than that, there is no study reported on using Cu2O 

as a visible light photocatalyst in the membrane, not to mention in the DLHF 

membrane. Thus, this becomes a novelty of this study.  

In this study, Cu2O was chosen as a visible light photocatalyst because of its 

narrow bandgap, which lies between 2.0 – 2.4 eV, as it is a good potential in harvesting 

solar energy. This compound is abundant, non-toxic, can be synthesised easily, has a 

good visible light absorber, and is cheap (Koiki and Arotiba, 2020).  Moreover, this 

compound can be found abundant naturally and also chemically stable 

(Muthukumaran et al., 2019). Cu2O was incorporated in the DLHF membrane to 

produce a simultaneous filtration and photocatalytic process. Other than that, the 

incorporation is to immobilize the Cu2O thus, no secondary treatment is required to 

separate photocatalyst from BPA solution. The Cu2O also has a longer lifetime and 

can be recycled compared to in suspension form (Teixeira et al., 2016). Immobilization 

of Cu2O also could prevent any suspension left in the BPA solution after the treatment 

process compared to the suspended photocatalyst. Deposition of Cu2O into the DLHF 

membrane structure by co-extrusion method is preferred as it can prevent fouling, and 

the hydrophilicity can be controlled (Zakria et al., 2021). Co-extrusion technique is 

more favourable compared to other spinning techniques due to it could reduce the risk 

of the inducing defect, adhesion between layers also improved, able to make structures 

of multifunction in a single process, and each layer provides a specific feature (Ullah 

Khan, Othman, A F Ismail, et al., 2018).  Photocatalytic membrane exists in a few 
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configurations, such as hollow fiber membrane, flat sheet membrane, and tubular 

membrane. A hollow fiber membrane is a preferable configuration as its module 

processing is very easy, less expensive, and stable compared to the others (Wang, 

2018). Hollow fiber membrane has two configurations: single-layer hollow fiber 

(SLHF) membrane and dual-layer hollow fiber (DLHF) membrane. However, the 

DLHF membrane has more advantages in comparison to the SLHF  membrane when 

it comes to the amount and specific location of the nanoparticles that can be loaded 

into the membrane matrix (Kamaludin et al., 2017). The membrane's lifetime could 

also be enhanced as photocatalyst has self-cleaning properties (Wan et al., 2020). 

Moreover, this method could prevent photocatalyst leaching and low energy use 

(Zakria et al., 2021).  

As Cu2O needs the presence of visible light irradiation, the Cu2O was in the 

outer layer of the DLHF membrane as it was mixed up with PVDF during dope 

preparation and co-extruded together with an inner layer of the membrane. There is no 

study incorporating Cu2O with PVDF in the DLHF membrane yet for BPA removal 

application. Outer dope flowrate 3 ml/min, 6 ml/min, and 9 ml/min were chosen based 

on research by Kamaludin et al. (2018) with some alterations to study the effect of 

outer dope flowrate on the outer layer thickness, membrane morphology, and 

membrane permeability. The ratio of Cu2O to PVDF, 0.25, 0.5, and 0.75 also was 

chosen based on research by Kamaludin et al. (2019) with some modifications. The 

different ratio of Cu2O to PVDF was varied to study the effect of photocatalyst amount 

on the photocatalytic performance to remove BPA. The optimum outer dope flowrate 

and optimum ratio of Cu2O to PVDF resulting the best membrane in terms of 

morphology, permeability, hydrophilicity, water flux, and photocatalytic performance. 

On the other hand, the BPA concentration varied to analyse the membrane capability 

to remove BPA. The photocatalyst amount and amount of pollutants affect the 

photocatalytic membrane performance (Saravanan et al., 2017). Meanwhile, the outer 

layer thickness affects membrane morphology and permeability (Marino et al., 2018). 

Overall, integrating Cu2O into the DLHF membrane will produce a visible light 

photocatalytic membrane with good morphology and degradation activity of BPA. 
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1.3 Research objectives 

The aim of the present study is to develop a PVDF/Cu2O based photocatalytic 

DLHF membrane for the efficient removal of BPA from contaminated water under 

visible light irradiation. 

The specific objectives for this study are: 

1. To examine the influence of outer layer dope flowrate on the physical and 

chemical characteristics of the DLHF membrane fabricated via co-extrusion 

technique. 

2. To investigate the effect of Cu2O loading in the outer layer on physicochemical 

properties of the DLHF membrane.   

3. To evaluate the photocatalytic performance of the Cu2O/PVDF dual layer 

hollow fiber membrane in removing Bisphenol A at various concentrations and 

analyse the treated water for leaching copper element from the membrane.  

 

1.4 Scope of study 

The present study is conducted to investigate the removal of BPA from water 

by photocatalytic DLHF membrane. In order to achieve the objectives of this research, 

the following scopes are outlined:  

Scope of objective 1: 

1. Preparing 0.25 ratio of Cu2O/PVDF DLHF dope solutions. 3.75 wt.% of copper 

oxide (Cu2O) as the photocatalyst, 15 wt.% of polyvinylidene fluoride (PVDF) 

as the polymer with 81.25 wt.% of dimethylacetamide (DMAc) as a solvent for 

outer layer dope solution and 15 wt.% for PVDF, 3 wt.% for polyethylene 



 

7 

glycol (PEG) which act as pore former and 82 wt.% for DMAc for inner layer 

dope solution 

2. Fabricating photocatalytic dual layer hollow fiber membrane which can work 

under visible light by using dry/wet phase inversion co-extrusion technique 

with different outer layer dope extrusion flow rate 3 ml/min, 6 ml/min, and 9 

ml/min and fixed other spinning condition. The fabricated membrane was 

subjected to post-treatment, dried at room temperature, and stored until further 

used.  

3. Characterizing the 0.25 Cu2O/PVDF dual layer hollow fiber membrane with 

different outer dope flowrate physico-chemical characteristics by scanning 

electron microscopy (SEM) under several magnifications, contact angle, 

membrane porosity, flux measurement, and Fourier-transform infrared 

spectroscopy (FTIR). 

Scope of objective 2:  

1. Preparing inner and outer dope solution with varied ratios, polyethylene glycol 

(PEG) as pore former and dimethylacetamide (DMAc) as solvent. Inner dope 

suspension solution consists of PVDF/PEG/DMAc with the concentration of 

15/3/82 wt.%. While PVDF/Cu2O/DMAc as outer dope suspension solution 

with different ratio concentration 15/3.75/81.25 wt.% (0.25), 15/7.5/77.5 wt.% 

(0.5) and 15/11.25/73.75 wt.% (0.75).  

2. Fabricating photocatalytic dual-layer hollow fiber membrane which can work 

under visible light by using dry/wet phase inversion co-extrusion technique 

with the optimum outer layer dope extrusion from objective 1 and fixed other 

spinning conditions. The fabricated membrane was subjected to post-

treatment, dried at room temperature, and stored until further used.  

3. Characterizing the Cu2O/PVDF dual layer hollow fiber membrane with 

different loading ratio Cu2O/PVDF 0.25, 0.50, and 0.75 physico-chemical 

properties using atomic force microscopy (AFM), contact angle, membrane 

porosity, tensile strength and elongation at break, energy dispersive X-ray 

(EDX) and Fourier-transform infrared spectroscopy (FTIR). 
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Scope of objective 3: 

1. Evaluating the removal of BPA with the concentration of 10 mg/L, 20 mg/L, 

and 30 mg/L by using Cu2O/PVDF visible light photocatalytic dual layer 

hollow fiber membrane using the submerged photocatalytic system which 

consists of 23 cm length membrane in U-shape membrane module under 

visible light irradiation and assisted with UV-Vis spectrophotometer. 

2. Analysing the treated sample to detect the leaching of Cu2O from the 

Cu2O/PVDF dual layer hollow fiber membrane into the water body using ICP-

OES analysis.   

 

1.5 Significance of study 

DLHF membrane has been widely studied and well published in recent years, 

but for visible light photocatalytic membrane, removing EDC is quite unexplored. 

Using semiconductor Cu2O, which has narrow bandgap, is chemically stable, and is 

widely applied in various industries, are good characteristics for it to function as an 

excellent photocatalyst. BPA exists in our drinking water and causes various health 

problems to humans and animals as it is an endocrine-disrupting compound. Few 

studies reported on the removal of BPA using photocatalytic membrane but need the 

presence of ultraviolet light. Photocatalytic Cu2O/PVDF DLHF membrane eventually 

saves the electricity cost as it just needs visible light and can be operated in the night 

with a visible lamp or under sunlight irradiation. BPA can be removed using this 

photocatalytic Cu2O/PVDF DLHF membrane without producing side effects or 

secondary compounds towards the environment as the photocatalytic process will 

totally degrade contaminants. This membrane can be used in wastewater treatment 

plants to remove the BPA totally. Thus, preparing the environment with BPA-free will 

improve the household water quality in Malaysia. Moreover, this study will contribute 

to society's prolonging healthiness with free from various health problems, especially 

related to the endocrine system. As a result, there will be significant enhancement in 

fulfilling the Environmental Protection Act (2012) and 6th and 7th Sustainable 
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Development Goal (SDG), which provide clean water and sanitation and affordable 

and clean energy, respectively.  

1.6 Thesis organization 

This thesis is organized into five chapters that describe original works on the 

fabrication of visible light photocatalytic DLHF membrane with different loading of 

Cu2O nanoparticles and different outer dope flowrate for application towards 

degradation and separation process of BPA in contaminated water. 

Chapter 1 briefly introduces the issues that lead to the current study. Three 

objectives of the study were identified, followed by the scopes of study to attain these 

objectives. Chapter 2 describes the literature review on the occurrence and side effects 

of BPA exposure and conventional methods to remove BPA. Other than that, a 

comprehensive review was presented on the photocatalytic mechanism, factors 

affecting the photocatalysis process, and visible light photocatalyst. Besides, the 

review also describes membrane technology and dual-layer hollow fiber membrane 

configuration and development. Chapter 3 provides the research frameworks. All the 

materials, experimental setups, working procedures and analytical methods for 

synthesized nanoparticles, fabrication of membrane, characterization techniques, and 

membrane performance evaluations were described.  

Chapter 4 explains the fabrication of Cu2O/PVDF DLHF membrane using the 

dry wet phase inversion co-extrusion technique. Different outer dope flowrate also 

applied on the membrane. The different ratio between Cu2O and PVDF was varied in 

the outer dope solution.  The effect of different outer dope flowrate in DLHF 

membrane was investigated on morphological analysis and permeability. The 

chemical properties of the membrane also well investigated. The membrane 

performances on BPA degradation were evaluated using a submerged membrane 

photoreactor. The degradation result compared with the previous study. The treated 

water sample was analysed to detect the leaching of copper components from the 



 

10 

membrane into the water sample. Chapter 5 is to conclude this thesis, the general 

conclusion of this study, and some recommendations for future works have been listed. 
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