
 

 

CONSTRUCTION AND CHARACTERIZATION OF RECOMBINANT 

ESCHERICHIA COLI FOR PRODUCTION OF XYLITOL FROM MIXED 

SUGARS 

 

 

 

 

 

 

 

 

 

 

 

 

NORADILIN BINTI ABDULLAH 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA



CONSTRUCTION AND CHARACTERIZATION OF RECOMBINANT 

ESCHERICHIA COLI FOR PRODUCTION OF XYLITOL FROM MIXED 

SUGARS 

 

 

 

 

 

 

 

 

NORADILIN BINTI ABDULLAH 

 

 

 

 

 

 

 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Doctor of Philosophy (Bioprocess Engineering) 

 

 

      

Faculty of Chemical and Energy Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

DECEMBER 2022 



v 

ACKNOWLEDGEMENT 

Alhamdulillah. Alhamdulillah. Alhamdulillah. 

It has been a long journey of many ups and even more downs. It was not easy 

to reach this stage of completion. Through here, I am grateful for the immense love 

of God and the love of people around me.  

Firstly, I am sincerely thankful to my supervisor, Prof Dr Rosli Md Illias for 

his relentless guidance and assistance in completing my PhD journey. Thank you for 

not giving up on me and for being patient with my abundant shortcomings. I also 

thank you for the frequent financial assistance to us extend-students which helped us 

scrape through our student lives. 

I am also thankful to the Ministry of Higher Education (MoHE) and UTM for 

sponsoring part of my studies, to Dept of Biosciences (formerly FBME) for their 

facilities, and especially to lab technicians Fiziey, Hairol and En Yaakop for much 

assistance during my analysis. 

My gratitude also goes to my former colleagues in ‗Lab Genetik‘, Atul, Faiz, 

Joyce, Hasma, Dayah, Abbas, Joanne, Ummu, Kak Iza, Intan, Ling, Yeng, Aishah, 

Yan, Bai, Nami, Miza, Kak Nard, Amal, Samson, Kimi, Kak Eda, and Shalyda. 

Working in the lab was especially lively thanks to all of you. Special thanks to Atul 

for keeping me company during my many overnight lab works; and also to Atul, 

Faiz, Dayah, Hasma, Aishah and Joyce for keeping tabs on me when I was lost. 

Thank you for the endless encouraging words and support.   

My deep appreciation also goes to my emotional backbone, my Ma whose 

words and prayers comfort me in many ways. To my brothers, sisters, nieces and 

nephews whose company I seek during my bleak days. To my spiritual mentors Kak 

Su, Mck Anisah, Mck Nailah and Kak Syifa‘, whose advice helped shaping me from 

going astray. To my good friends in UTM, Limah, Mun, Kak Suraya, Kak Amy, 

Yam, Aida, Kak Ida, Ziran, Siah, Sarah, Zida, and especially Kak Lib for supporting 

me in completing this journey.  

Finally, I also extend my gratitude to everyone who has directly and 

indirectly involved in finishing this thesis. Without all of you, I doubt I could reach 

this final step today. Thank you. 

  



vi 

ABSTRACT 

Development of a microbial system for production of value-added chemicals 

has garnered interest for its benefits of low operational cost and greater substrate 

specificity. Microbial production of xylitol is highly desired for its ability to produce 

xylitol from unpure carbon sources mainly from lignocellulosic waste. While recent 

studies on xylitol production focused on utilizing mixed sugars for xylitol 

production, this required the expression of multiple genes to enable simultaneous 

xylitol conversion from glucose, xylose and arabinose which leads to cell‘s 

metabolic burden. Moreover, manipulation on the cell is also needed to remove 

catabolite repression present in the cell. This is the first study that describes xylitol 

production from multiple sugars (glucose, xylose and arabinose) in Escherichia coli 

BL21 expressing only a single gene, xylitol 5-phosphate dehydrogenase (XPDH). 

XPDH converts D-xylulose-5-phosphate, an intermediate in E. coli pentose phosphate 

pathway to D-xylitol-5-phosphate which is then hydrolyzed to D-xylitol by 

phosphatase. XPDH from Clostridium difficile was cloned into E. coli and screened 

for xylitol production using high pressure liquid chromatography analysis. Then, 

xylitol production was improved through metabolic engineering by deleting 

competing pathways and process optimized using one factor-at-a-time (OFAT) 

method. Initial screening of xylitol production revealed that E. coli BL21 expressing 

XPDH (NA116) was able to produce xylitol from each sugar, glucose, xylose and 

arabinose (supplied at 10 g/L) with final xylitol of 0.283 g/L, 0.518 g/L and 2.09 g/L 

respectively. Metabolic manipulation of the E. coli was made by deleting competing 

pathways in glycolysis and pentose phosphate pathway, namely phospoglucose 

isomerase (pgi), ribose isomerase A (rpiA), and ribose isomerase B (rpiB) genes. 

Screening of the mutants revealed highest xylitol production from arabinose by 

NA207 (∆rpiA) mutant, with final xylitol produced of 3.91 g/L. Further manipulation 

of NA207 strain was made by introducing ptsG deletion to allow simultaneous 

carbon uptake in the presence of glucose for mixed sugars fermentation, yielding 

NA223 (∆rpiA∆ptsG) strain.  The result revealed that NA223 showed 4 times more 

arabinose uptake in the mixed sugar culture compared to NA116, with final xylitol 

production of 1.18 g/L and 0.815 g/L respectively. Optimization of NA223 mutant 

was done by using OFAT method manipulating several parameters; inducer 

concentrations, temperature, media type and initial pH. The final parameters 

manipulation showed to have improved xylitol production to 5 times compared to 

initial conditions with 1.674 g/L  in 0.05mM IPTG, 3.687 g/L in 25 °C, 3.95 g/L in 

buffered YT broth (BYT) medium, and 5.216 g/L in initial pH 8.5 of BYT. This 

study shows that xylitol conversion from mixed sugars is possible by expressing only 

a single heterologous gene, XPDH in E. coli while ptsG deletion alleviates carbon 

catabolite repression by allowing simultaneous arabinose uptake in the presence of 

glucose.   
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ABSTRAK 

Pembangunan sistem mikrob untuk menghasilkan bahan kimia nilai tambah 

menjadi satu tarikan kerana kos operasinya yang rendah dan spesifikasi  substrat 

yang lebih luas. Penghasilan xilitol menggunakan mikrob sangat dikehendaki kerana 

ia boleh menghasilkan xilitol daripada sumber karbon tidak bersih daripada sisa 

lignoselulosa. Kebanyakan kajian terkini mengenai pengeluaran xilitol memberi 

fokus kepada penggunaan gula campuran untuk penghasilan xilitol, ia memerlukan 

ekspresi beberapa gen untuk membolehkan penukaran xilitol secara serentak 

daripada glukosa, xilosa dan arabinosa yang boleh mengakibatkan terjadinya beban 

metabolik kepada sel. Selain itu, manipulasi pada sel  juga perlu dilakukan bagi 

membolehkan penindasan katabolit dalam sel dihapuskan. Kajian ini adalah kajian 

pertama yang melaporkan penghasilan xilitol daripada beberapa gula secara serentak 

(glukosa, xilosa dan arabinosa) dalam Escherichia coli BL21 dengan ekspresi satu 

gen sahaja, iaitu xilitol 5-fosfat dehidrogenase (XPDH). XPDH menukarkan D-

xilulosa-5-fosfat iaitu satu metabolit perantara dalam laluan pentosa fosfat E. coli 

kepada D-xilitol-5-fosfat, yang kemudiannya dihidrolisiskan kepada xilitol oleh 

fosfatase. XPDH daripada Clostridium difficile telah diklonkan ke dalam E. coli dan 

disaring untuk penghasilan xilitol menggunakan analisis kromatografi cecair tekanan 

tinggi. Kemudian, pengeluaran xilitol juga dipertingkatkan melalui kejuruteraan 

metabolik dengan membuang laluan saingan dan melakukan proses fermentasi yang 

dioptimakan melalui kaedah satu faktor pada satu masa (OFAT). Saringan awal 

pengeluaran xilitol menunjukkan bahawa E. coli-XPDH (NA116) mampu 

menghasilkan xilitol daripada setiap gula yang diuji iaitu glukosa, xilosa dan 

arabinosa (dibekalkan pada 10 g/L) dengan xilitol sebanyak 0.283 g/L, 0.518 g/ L 

dan 2.09 g/L mengikut turutan. Manipulasi laluan metabolik E. coli dibuat dengan 

memadamkan laluan bersaing dalam laluan glikolisis dan pentosa fosfat, iaitu 

fospoglukosa isomerase (pgi), ribosa isomerase A (rpiA), dan ribosa isomerase B 

(rpiB). Saringan terhadap setiap mutan mendapati mutan NA207 (∆rpiA) 

menghasilkan xilitol tertinggi sebanyak 3.91 g/L menggunakan arabinosa. Justeru, 

manipulasi pada mutan NA207 dilakukan dengan memadamkan gen ptsG untuk 

membolehkan pengambilkan karbon serentak bersama glukosa bagi fermentasi 

menggunakan campuran gula, yang menghasilkan mutan NA223 (∆rpiA∆ptsG). 

Keputusan kajian menunjukkan bahawa NA223 dapat menggunakan campuran gula 

lebih banyak semasa glukosa masih ada dalam media fermentasi berbanding NA116, 

dan menghasilkan xilitol yang lebih tinggi sebanyak 1.18 g/L berbanding 0.815 g/L 

pada asalnya. Pengoptimuman mutan NA223 seterusnya dilakukan dengan 

menggunakan kaedah OFAT, dengan manipulasi beberapa parameter iaitu kepekatan 

induksi, suhu, jenis media dan pH awal. Manipulasi parameter terakhir  

menunjukkan pengeluaran xilitol bertambah sebanyak 5 kali ganda berbanding 

dengan kondisi awalnya, dengan peningkatan pada setiap parameter iaitu 1.674 g/L 

dalam 0.05mM IPTG, 3.687 g/L dalam 25 °C, 3.95 g/L dalam medium buffer YT 

(BYT), dan 5.216 g/L dalam pH awal 8.5 BYT. Kajian ini menunjukkan bahawa 

xilitol berjaya dihasilkan daripada campuran gula dengan ekspresi hanya satu gen 

heterolog, XPDH dalam E. coli manakala pemadaman ptsG berjaya mengurangkan 

tindakan penindasan katabolit dengan membenarkan pengambilan gula arabinosa dan 

xilosa secara serentak dalam kehadiran glukosa dalam sel. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

From our food additives to our medicines, the use of fine chemicals 

encompasses a broad range of applications in our lives. Fine chemicals are defined as 

chemicals with specific molecular characteristics which are produced at low quantity 

but expensive (Mullin, 2012). Being essential building blocks for various 

manufacturing products, the demands for fine chemicals has driven the chemical 

industry forward for its production and development. Generally, chemical industry 

heavily relies on fossil feedstocks as raw material for chemical production. This pose 

as a major problem due to its environmental issue and being a non-renewable carbon 

source (Straathof et al., 2019). Meanwhile, lignocellulosic biomass is sustainable, 

abundant and readily available source for chemical feedstock with the advantage of  

releasing zero net carbon emission to the atmosphere (Nanda et al., 2016). Therefore, 

the shift to using renewable lignocellulosic biomass as a feed source has become a 

huge topic explored for fine chemicals production. 

Lignocellulosic biomass is an organic material derived from municipal or 

industrial wastes, agricultural residues, wood residues and dedicated crops such as 

switch grass (Fuente-Hernandez et al., 2013; Mohamad et al., 2015). The biomass is 

composed of three main components which are cellulose, hemicellulose and lignin. 

The two most abundant components, cellulose and hemicellulose are the main source 

for sugar monomers for bioconversion. Cellulose is made up from glucose monomers 

linked by β-(1→4)-glycosidic bonds while hemicellulose is made up from a variety 

of pentose (i.e D-xylose and L-arabinose) and hexose sugars (i.e D-glucose, D-

mannose, and D-galactose) (Hayes, 2015; Kim et al., 2010). Hydrolysis of 

lignocellulosic biomass release the sugar monomers and later used for bioconversion
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to produce value-added chemicals and biofuels, either by biological or chemical 

means. Bioconversion of lignocellulosic biomass generated a wide variety chemicals 

such as succinic acid, acetic acid, lactic acid, acetone, furfural, butyric acid and 

xylitol (Peng et al., 2011).  

Xylitol is a five-carbon sugar alcohol that is obtained from hemicellulosic 

sugar monomer, xylose. Its structure is composed of five hydroxyl groups which 

makes it highly soluble in aqueous solution (Grembecka, 2015). Xylitol is included 

among ten most promising fine chemicals in the production of fuels and 

pharmaceutical/chemical products (Bozell and Petersen, 2010), due to the presence 

of multiple functional groups which makes it an excellent building block for 

transformation into high-value bio based chemicals or materials (Peng et al., 2011). 

The industrial application of xylitol is diverse, ranging from food additives to 

pharmaceutical products given to its properties of having higher sweetness level than 

sucrose, anticariogenic, insulin dependent metabolism and pharmacological 

properties (O‘Donnell and Kearsley, 2012). Demand for xylitol has steadily 

increased over the years with more than forty times increment in its production over 

four decades, from 6000 tons in 1978 to 190.9 thousand tons in 2016. It was 

forecasted to further increase to 266.5 thousand tons by 2022 (Delgado Arcaño et al., 

2020; Hyvönen et al., 1982). 

Current industrial production of xylitol is done through chemical 

hydrogenation of xylose using nickel catalyst, which operated at high temperature 

and high pressure (Albuquerque et al., 2014). The process requires the use of pure 

xylose which is obtained from xylan-rich hemicellulosic hydrolysate, typically 

prepared by acid hydrolysis. However, due to the presence of other sugar monomers 

(mannose, arabinose, galactose, and glucose) and other impurities (proteins, metal 

ions and color) in the hydrolysate, extensive purification steps to separate xylose are 

necessary. The xylose-rich hydrolysate is then hydrogenated to produce xylitol at 

high temperature of 8-140 °C and pressure up to 50 atm (Pal et al., 2016; Parajó et 

al., 1998). Other than being energy intensive, the process also requires the use of 

highly sensitive catalyst and multiple steps for xylitol separation and purification 

(Delgado Arcaño et al., 2020; Rafiqul and Sakinah, 2013). These factors led to high 
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production cost of xylitol, with more than 10 times of sucrose conversion to sorbitol 

(Peng et al., 2011). Therefore, a milder alternative for xylitol production using 

microbial bioconversion is highly desirable as it operates at milder conditions and 

also environmentally sustainable. 

Biotechnological methods have been used to study a variety of 

microorganisms for the conversion of xylitol, which ranged from fungi, yeast and 

bacteria. Compared to chemical process, this system is more desirable because 

biotechnological xylitol synthesis is less expensive, and allows the use of unpure 

xylose, which reduce much cost on the initial multiple purification steps  

(Venkateswar Rao et al., 2016). Naturally, certain yeast, bacteria and fungi can 

synthesize xylitol from xylose such as Candida sp (Barbosa et al., 1988; Granström 

et al., 2007a), Debaromyces hansenii (Sampaio et al., 2008), Pichia stipites (Hahn-

Hägerdal et al., 2007), Corynebacterium sp (Yoshitake et al., 1971), Mycobacterium 

smegmatis (Izumori and Tuzaki, 1988), and Enterobacter liquifaciens (Yoshitake et 

al., 1973), Aspergillus niger and Penicillum sp (Sampaio et al., 2003). Among these, 

highest xylitol production from natural producers were recorded by yeasts, with 77.2 

g/L xylitol yield in Candida guilliermondii FTI-20037118 (Barbosa et al., 1988). The 

main enzyme for xylitol conversion in microbes is xylose reductase, XR which 

hydrolyzes xylose into xylitol by the aid of NADPH cofactor. Xylitol is then secreted 

out of the cell or further metabolized by xylitol dehydrogenase, XDH into xylulose 

for metabolism (Chen et al., 2010). In recent decades, many studies have explored to 

modify XR and XDH through mutation or genetic engineering to improve xylitol 

production in microbes.  

While xylitol conversion from xylose has developed widely, several studies 

have also reported xylitol conversion from D-glucose and L-arabinose which are 

another two major sugar components in hemicellulose. The earliest report of xylitol 

conversion from glucose was done through sequential fermentations of three 

microbes, Debaryomyces harseniii, Acetobacter suboxydans, and Candida 

guilleiermondii var. soya which converted glucose to D-arabitol, then D-arabitol to D-

xylulose and D-xylulose to xylitol respectively. The xylitol yield was 18 g/L from 

155 g/L supplied glucose, with 11% xylitol conversion (Onishi and Suzuki, 1969). 
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Another approach for xylitol conversion from glucose was made by using xylitol 

phosphate dehydrogenase enzyme, XPDH from Lactobacillus rhamnosus expressed 

in Bacillus subtilis. XPDH catalyzes the conversion of D-xyulose-5-phosphate to D-

xylitol-5-phosphate which is further hydrolyzed by phosphatase into xylitol 

(Povelainen and Miasnikov, 2007). The study reported xylitol yield of 2.3 g/L from 

10 g/L glucose (23% xylitol conversion). Meanwhile, xylitol conversion from 

arabinose was first reported in engineered Escherichia coli by the expression of three 

heterologous genes for ATX pathway, encoding for L-arabinose isomerase (araA), D-

psicose 3-epimerase (DPE) and L-xylulose reductase (LXR) (Sakakibara et al., 2009). 

In this pathway, L-arabinose is converted to L-ribulose, then to L-xylulose and finally 

xylitol respectively. The study reported final conversion of 14.5 g/L xylitol from 15.2 

g/L arabinose, with 95% conversion after 30 hours. Similar strategies was also 

applied in C. glutamicum for conversion of xylitol from arabinose, which gave a 

yield of 4.4g/L xylitol from 6.1 g/L arabinose consumed, with 72% conversion (Dhar 

et al., 2016). These studies showed that manipulation of genes and pathways made 

conversion of xylitol from other sugars possible with many outlooks for further 

improvement. 

It is interesting to note that many recent microbial xylitol conversion 

researches have focused on developing a system that could use multiple sugars 

present in hemicellulose. E. coli is among popular hosts as cell biocatalyst for 

bioproduct conversion has been one of the main focus in this field given to its 

characteristics of robust growth, prone to genetic manipulation, high cell viability 

and efficient production. Development of a microbial system for xylitol production 

involves two approaches, molecular strategies such as metabolic engineering, and 

modification of process parameters for improved xylitol yield. This study explores 

the production of xylitol from multiple sugar, xylose, glucose, and arabinose using 

the expression of a single gene, XPDH in E. coli. The host is also subjected to 

metabolic engineering for improved pathway which aids in xylitol conversion and 

also enables simultaneous utilization of mixed sugars in E. coli. Finally, xylitol yield 

is also enhanced by manipulation of fermentation parameters to obtain optimal 

conditions for xylitol production. 
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1.2 Problem Statement 

Biotechnological production of xylitol is advantageous to current chemical 

production by being environmentally sustainable and cost effective due to its mild 

operational conditions and reduced multiple purification steps for substrate 

preparation from hemicellulosic biomass. Since glucose, xylose and arabinose are 

three major sugars in hemicellulosic biomass, developing a system to utilize these 

sugars for xylitol production is highly desirable. While significant improvement has 

been developed in xylitol research, the majority of research has focused on xylitol 

production only from xylose and only a limited number of reports exist for xylitol 

production from glucose and arabinose. Moreover, the studies also reported the 

utilization of multiple gene expressions to allow xylitol production from the other 

sugars. This could lead to metabolic burden and reduced performance of the cell. 

Another strategy of using dual or sequential fermentation system has also been 

applied for the same purpose which requires more preparation steps and time. Thus a 

simpler system for xylitol production from multiple sugars should be explored to 

address this problem.  

1.3 Objectives of the Study 

In order to achieve a microbial system for xylitol conversion from multiple 

sugars, the objectives of this research are: 

(a) To construct and study a recombinant E. coli BL21 for xylitol 

synthesis from glucose, xylose and arabinose. 

(b) To modify metabolic pathway for xylitol production in E. coli BL21 

(c) To optimize fermentation conditions for highest xylitol production 

from mixed sugars in E. coli BL21. 
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1.4 Scopes of the Study 

The scope of study listed below will be used to achieve the objectives stated.  

i. The first objective was defined with the following scopes; cloning, 

construction and evaluation of XPDH enzyme for xylitol conversion 

in E. coli BL21. Investigation of xylitol production from glucose, 

arabinose and xylose by XPDH in E. coli BL21 is done by HPLC 

analysis. 

ii. The scope for second objective is achieved by conducting metabolic 

pathway optimization through gene deletions for xylitol production 

from single sugar, and conducting genetic manipulation for mixed 

sugar utilization in E. coli BL21 for xylitol production from mixed 

sugars. 

iii. The final objective has the following scope; optimization of the 

fermentation conditions by studying the effects of (1) inducer 

concentration, (2) post induction temperature, (3) media type and (4) 

initial pH for maximum xylitol production using one-factor-at-a-time 

(OFAT) method. 
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