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ABSTRACT 

In orogenic belts, the far-field horizontal stresses of tectonic origin often 

control the stress regime in the nearby regions. However, due to the non-uniform 

convergence of the tectonic plates, the far-field horizontal stresses show local 

variation. The syntaxial bends in the orogenic belts are areas where the orientation of 

far-field maximum horizontal stress shows marked deviation from the general trend of 

the plate movement. The Hazara Kashmir Syntaxis (HKS), located in the western 

Himalayas, is one such structure where the major crustal-scale faults are making a 

loop. This looping of the thrust faults makes it difficult to constrain the orientation of 

the far-field horizontal stresses in the core of the HKS. The Neelum Jhelum 

Hydropower Project’s (NJHP) headrace tunnel traversing the core of the HKS revealed 

important information regarding the bedrock geology and in-situ stress state in the 

syntaxis. This information has not been previously used for constraining the far-field 

horizontal stresses in the area. The purpose of this study is to constrain the far-field 

horizontal stress in the HKS based on field observations and the geological and 

geotechnical data collected during the excavation of the headrace tunnel. The study 

utilised 3D finite element modelling approach to examine the complex interaction 

among the gravitational stresses due to current topography, exhumation-induced 

remnant stresses, excavation-induced perturbations, and far-field horizontal stresses. 

The simulated results were compared with the measured in-situ stresses for model 

validation. The simulation results demonstrated that the orientation and magnitude of 

gravitational principal and horizontal stresses at shallow depths are largely controlled 

by the current topography. The addition of the exhumation-induced gravitational 

remnant stresses caused changes in the orientation and magnitude of the principal 

stresses. However, the orientation of the maximum horizontal stress (SH) was less 

affected. The SH was also found to be less perturbed by the tunnel excavation. In the 

subsequent analysis, the models were compressed using horizontal straining from 

different directions to get SH magnitude and orientation similar to the measured SH. 

The results showed that the modelled SH orientation at the different monitoring points 

could be achieved by applying different magnitudes of horizontal straining. These 

results suggested that the 0° Model with east-west directed maximum straining shows 

SH trends consistent with the measured SH trends. The east-west directed far-field 

horizontal stress derived during this study is consistent with the local movement 

direction of the Main Boundary Thrust (MBT) fault in the study area. The study 

revealed that the SH orientation is a better candidate for constraining the far-field 

horizonal stresses. Moreover, the study revealed that the local variation in the strike of 

MBT causes local variations in the orientation of far-field horizontal stresses in the 

HKS.  
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ABSTRAK 

Di dalam lingkaran orogenik, medan tegasan mendatar jauh pada tektonik asal 

sering mengawal rejim tegasan di kawasan berhampiran. Walau bagaimanapun, 

disebabkan penumpuan plat tektonik yang tidak seragam, medan tegasan melintang 

jauh menunjukkan variasi setempat. Lengkung sintaksis dalam lingkaran orogenik 

adalah kawasan di mana orientasi medan tegasan mendatar maksimum jauh 

menunjukkan sisihan yang ketara daripada arah aliran umum pergerakan plat. 

Sintaksis Hazara Kashmir (HKS), yang terletak di Himalaya barat, adalah salah satu 

struktur sedemikian, di mana, sesar skala-kerak utama membuat gelungan. Gelung 

sesar tujah ini menyukarkan untuk mengekang orientasi medan tegasan mendatar jauh 

dalam teras HKS. Terowong utama Projek Tenaga Hidro Neelum Jhelum (NJHP) yang 

merentasi teras HKS mendedahkan maklumat penting mengenai geologi batuan dasar 

dan keadaan tekanan di-situ dalam sintaksis. Maklumat ini tidak pernah digunakan 

sebelum ini untuk mengekang medan tegasan mendatar jauh di kawasan tersebut. 

Tujuan kajian ini adalah untuk mengekang medan tegasan melintang jauh di HKS 

berdasarkan pemerhatian lapangan dan juga data geologi serta geoteknik yang 

dikumpul semasa penggalian terowong headrace. Kajian ini menggunakan pendekatan 

pemodelan unsur terhingga 3D untuk mengkaji interaksi kompleks antara tegasan 

graviti akibat topografi semasa, tegasan sisa akibat penggalian, gangguan akibat 

penggalian dan medan tegasan mendatar jauh. Keputusan simulasi telah dibandingkan 

dengan tegasan di-situ yang diukur untuk pengesahan model. Keputusan simulasi 

menunjukkan bahawa, sebahagian besar topografi adalah mengawal orientasi dan 

magnitud prinsip graviti dan tegasan mendatar pada kedalaman cetek. Penambahan 

tegasan sisa graviti yang disebabkan oleh penggalian menyebabkan perubahan dalam 

orientasi dan seterusnya meningkatkan magnitud tegasan utama. Walau 

bagaimanapun, orientasi tegasan mendatar (SH) kurang terjejas. SH juga didapati 

kurang terganggu disebabkan oleh penggalian terowong. Di dalam analisis seterusnya, 

model telah dimampatkan dengan menggunakan terikan mendatar dari arah yang 

berbeza untuk mendapatkan magnitud dan orientasi SH yang serupa dengan SH yang 

diukur di tapak. Keputusan menunjukkan bahawa, orientasi SH yang dimodelkan pada 

titik pemantauan yang berbeza boleh dicapai dengan menggunakan magnitud 

penegangan mendatar yang berbeza. Keputusan ini mencadangkan bahawa model 

bersudut 0° dengan penegangan maksimum terarah E-W menunjukkan aliran SH 

selaras dengan aliran SH yang diukur. Medan tegasan mendatar jauh terarah kepada E-

W yang diperoleh semasa kajian ini adalah konsisten dengan arah pergerakan tempatan 

sesar Teras Sempadan Utama di kawasan kajian. Kajian itu mendedahkan bahawa 

orientasi SH adalah calon yang lebih baik untuk mengekang tegasan melintang medan 

jauh. Selain itu, kajian itu mendedahkan bahawa variasi tempatan dalam jurus MBT 

menyebabkan variasi tempatan dalam orientasi tegasan melintang medan jauh di HKS. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 The Background of the Study 

According to the plate tectonic theory, the earth’s crust is divided into several 

large rocky slabs called “Plates”, which move relative to each other. The places where 

these plates interact with each other are called plate boundaries. The plate boundaries 

are of three types, convergent, divergent, and transformed boundaries (Moernaut, 

2020). Each of these boundaries initiates different features on the surface of the earth. 

The convergent boundary refers to the collision between plates. The Himalayan 

Mountain Range formed due to the collision between Indian and Eurasian tectonic 

plates during the mid-Eocene epoch. Due to the collision, the upper crust of the Indian 

plate sheard into a series of regional crustal thrust faults, namely, the Main Central 

Thrust (MCT), Main Boundary Thrust (MBT) and Main Frontal Thrust (MFT) (S. M. 

Ali et al., 2021).  

Due to the continuous subduction of the Indian plate beneath the Eurasian 

plate, the regions lying on the Himalayan range are in a state of lateral compression. 

In general, the Indian plate is moving north to northeastward, which results in crustal 

shortening. This shortening accommodates along the crustal-scale faults (MCT, MBT, 

MFT etc.). However, the strike of these faults is irregular, due to which the crustal 

shortening direction in certain localities deviates from the general movement direction 

of the Indian plate. This deviation from the general trend is more pronounced in the 

north-western Himalayas. According to Treloar and Coward (1991), before the 

collision, the northernmost part of the Indian plate was diamond-shaped, with two 

oblique boundaries on its northern margin. The oblique convergence along these plate 

boundaries resulted in the post-collisional counterclockwise rotation of the Indian 

plate.  
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The Hazara Kashmir Syntaxis (HKS), located in the western Himalayas of 

Pakistan, is a structural feature that preserves records of the Indian plate rotation. The 

HKS is formed by a stack of thrust sheets along the major crustal faults namely the 

MCT locally named the Panjal thrust and the MBT, locally named the Murree thrust. 

Due to the tectonic-induced strains, the strata in the core of the HKS are folded (A. Ali 

et al., 2015). The overlapping and the continuous change in the dip direction of major 

thrust faults along the boundary of the HKS suggest complicated strain directions 

within the core of HKS. These strains can induce abnormal stresses, posing difficult 

ground conditions for the design and construction of underground engineering 

projects. 

Higher crustal horizontal stress is a characteristic feature of the orogenic belts. 

However, constraining the magnitude and orientation of the far-field maximum 

horizontal stress (SH, far-field) based on small-scale in-situ stress measurements is not 

straightforward. This is because the in-situ stress at a point below the ground surface 

generates as a result of the combined effect of the weight of overlying material, 

topographic undulations, rock mass strength and stiffness properties, lithology, 

exhumation-induced stresses due to erosion, residual tectonic forces, current tectonic 

forces, glaciation and deglaciation, the curvature of the earth and geological features 

and processes (Amadei & Stephansson, 1997). Therefore, before establishing the 

magnitude and orientation of the far-field horizontal stresses, we need to establish the 

contribution of all the other parameters to the total stress. In such circumstances, using 

a 3D numerical modelling approach can be helpful. 

Several researchers used information from multiple sources in numerical 

models and presented it as a tool for inversion of regional in-situ stress. Ziegler et al. 

(2016) investigated near-surface stress tensors utilising three-dimensional elastic 

numerical models using morphological details, exfoliation fracture axis orientation, 

and limited in-situ stress measurement data from the Grimsel area (Switzerland). 

Figueiredo et al. (2014) characterised the in-situ stress field by integrating the 

measured in-situ stress results into a numerical model that considered the tectonics and 

topography effects. Similarly, C. Zhang, Feng, and Zhou (2012) determined the 

influence of topography on the distribution of in-situ stress within the Jinping II tunnel 
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project site by using a 3D numerical modelling approach. Hence, this type of numerical 

treatment of in-situ stress data and information from other sources has great potential 

to be used in the geologically complex and tectonically active Himalayan range. 

1.2 Problems Statement 

Establishing the trend of the SH, far-field in the core of HKS is a potential problem 

for geoengineers and geoscientists. Numerous researchers studied the formation of 

Hazara Kashmir Syntaxis (P Bossart et al., 1988; Paul Bossart et al., 1990), its geology 

(A. Ali et al., 2015; Calkins et al., 1975; Mughal et al., 2018; Zaheer et al., 2017), 

geological structures (Meigs et al., 1995; Mugnier et al., 1994; Zubair et al., 2022), 

seismicity (Avouac et al., 2006; Hussain & Yeats, 2009; Khalid et al., 2016; Sana & 

Nath, 2016), stress field (Amici et al., 2018; Pecher et al., 2008) and underground 

construction challenges (Naji, Emad, et al., 2019; Rehman et al., 2021; Yang et al., 

2017). The HKS in the western Himalayas is formed by a stack of thrust sheets along 

the major crustal faults, namely the MCT and the MBT. Being surrounded by active 

thrust faults, the HKS is under the direct influence of high horizontal stresses of 

tectonic origin. The present-day crustal stress field is a function of time and space (P. 

Li & Cai, 2022) and evolved due to multistage tectonism, including historic tectonism 

and neotectonics (P. Li & Cai, 2018). In orogenic belts, erosion is considered the 

primary exhumation process (Ring et al., 1999). It is reported that the Himalayan 

foreland preserves records of erosional exhumation (Cerveny et al., 1988; Copeland & 

Harrison, 1990). In the exhuming upper crustal rocks, the regional tectonic straining, 

erosional unloading, and temperature variation tend to generate or relieve the bedrock 

stresses (Leith et al., 2014). Due to these reasons often, abnormal stresses are 

encountered in the orogenic belts. On a global scale, the stress orientation data is being 

compiled in the World Stress Map (WSM) (Heidbach et al., 2018). Based on the WSP 

data, the orientation of the SH, far-field is often linked to the tectonic plate motion 

(Baouche et al., 2020; Coblentz & Richardson, 1995; Reiter, 2021). However, the 

major crustal faults form a loop around the HKS, thereby making it more difficult to 

establish the direction of SH, far-field. 
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Despite all our previous knowledge related to the HKS, the trend of SH, far-field 

is apparently less discussed in the literature. The oblique convergence of the Indian 

plate in the northwestern Himalayas has deformed and thickened the crust (Treloar & 

Coward, 1991). Due to the intense and multistage deformation, the rock in the HKS is 

folded with fold axes oriented in both NW-SE and NE-SW directions (A. Ali et al., 

2015; Zubair et al., 2022), making it more challenging to decide on the direction of 

crustal shortening in the syntaxis. Moreover, the faults in the HKS are active and have 

thrust and strike-slip components that make a complex energy release pattern (Verma 

& Sekhar, 1986). Also, due to the frequent earthquake in this region, the stress regime 

may be undergoing frequent stress changes (Khalid et al., 2016; Sakaguchi & 

Yokoyama, 2017; Wu et al., 2016). Similarly, the in-situ stress measurements and 

rockbursting events reported during the excavation of the Neelum Jhelum Hydropower 

Project (NJHP) headrace tunnel revealed high magnitudes of principal stresses in the 

core of HKS. However, earlier, the in-situ stress measurement data and knowledge of 

the bedrock geology have not been interpreted and correlated with the movement of 

surrounding major crustal faults and exhumation processes.  

The contemporary tectonic stress directions are often very stable and closely 

associated with the movement direction along the geological structures (Heidbach et 

al., 2018). Thus, the in-situ stress measurement results can be used to explore the 

movement direction along the nearby major faults. Many researchers incorporated the 

borehole in-situ stress measurement data of HKS in their studies (P.-X. Li et al., 2019; 

Naji, Emad, et al., 2019; Yang et al., 2017). However, their interpretation was only 

limited to the local stress-induced failures in the NJHP headrace tunnel. The in-situ 

stress in the core of the HKS is the result of the combined effect of regional tectonic 

straining, erosional unloading, and complex bedrock geology. Therefore, the attributes 

of tectonics, exhumation and topographic history will be reflected in the distribution 

and magnitude of the in-situ stresses (Leith et al., 2014). Although the interaction 

between these attributes is complex, however, the effect of each of these can be 

estimated by using numerical techniques.  
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The major crustal scale thrust faults tend to compress the core of HKS from 

different directions. Thus, making a complex orientation of the far-field horizontal 

stresses in the region. In orogenic belts the far-field horizontal stress is a major 

contributor to the in-situ stress field. A review of the relevant literature shows that the 

far-field horizontal stresses in the HKS have gained little attention in the past and is a 

potential research gap. Therefore, this study intends to explore the effect of current 

topography, residual stresses due to erosion of paleo-topography, bedrock lithology, 

excavation-induced disturbances, and tectonic straining on the measured in-situ 

stresses in HKS using 3D finite element modelling. The study will interpret the local 

trends of local maximum horizonal stress (SH) at the in-situ stress measurement 

locations (monitoring points) and correlate it with the movement direction of the 

surrounding thrust faults with a view to establish the direction of SH, far-field in the 

region.  

1.3 Research Aim and Objectives 

This study aims to determine the orientation of the SH, far-field in the core of the 

HKS. To achieve the aim, the following objectives were considered for this study. 

I. To investigate the effect of topographic undulations on the subsurface 

gravitational stresses 

II. To analyse the residual stresses induced by the erosion of paleo-topography 

during the exhumation of the present-day landscape in the HKS. 

III. To examine the vulnerability of the in-situ test locations to excavation-induced 

stress perturbations. 

IV. To establish the orientation of Far-field maximum horizontal stress in the study 

area  
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1.4 Scope of the Study 

This study estimates the orientation of far-field horizontal stresses in the core 

of HKS. For this purpose, the NJHP site was selected as the study area. The already 

available in-situ stress measurement data was collected and reanalysed to get the 

orientation of the principal and horizontal stresses at six different locations in the study 

area. The 3D finite element modelling approach using the RS3 software was selected 

for subsequent analysis. The 30m resolution SRTM (Shuttle Radar Topography 

Mission) data was used to generate the surface topography of the study area. That 

topography was then used to generate the 3D model geometry of the study area. The 

daily excavation reports of the NJHP headrace tunnel showed that the bedrock 

comprises folded layers of siltstone and sandstone. The folded rock layers were 

incorporated into the model based on the location and layer thickness as encountered 

during the excavation of the headrace tunnel. The intact rock material properties 

determined during different laboratory testing campaigns were assigned to the 

different rock layers in the model.  

Two types of model geometries were generated, i.e., one for simulating the 

present-day topography and the other for simulating the exhumation-induced remnant 

stresses due to the erosion of the paleo-topography. To simulate the erosion process, 

the present-day topography was smoothened and raised to the highest elevation in the 

model. The erosion process was then simulated in five stages thereby bringing it back 

to the present-day topography. In the first phase of our modelling, only the gravity 

loading was considered. In the second phase, the models were compressed horizontally 

using displacement boundary conditions to simulate the far-field horizontal stresses. 

The displacement or strain magnitudes were set based on the length or width of the 

models. The stresses were constantly monitored at the six in-situ stress measurement 

locations. The modelled stress tensors were solved to get the magnitude and orientation 

of the principal and horizontal stresses. The vulnerability of the in-situ stresses to 

excavation-induced perturbations was also simulated. The simulated stresses were 

compared with the measured stresses for model validation purposes.  
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According to P Bossart et al. (1988), the HKS formed in three phases. This 

involves rotation of the mass transport direction from southwestward to southeastward. 

Studying the tectonic fabric based on surface exposures showed that the NNE-SSW 

trending folds axes and stretching lineation dominate in the KHS (A. Ali et al., 2015). 

However, the bedrock exposed during the excavation of the NJHP headrace tunnel 

revealed folded rock strata with an NW-SE trending fold axis consistent with the initial 

southwestward mass movement direction. Therefore, based on these observations, we 

consider the NW-SE trending fold axis in the numerical modelling. In the numerical 

analysis, the rock material stiffness properties were assumed as linear isotropic 

whereas the rock mass strength was defined using the Generalized Hoek-Brown failure 

criterion with elastic material type. Only dry conditions were considered in the 

analysis. Moreover, the study area is seismically active and frequent earthquakes may 

change the stress state in the region. This study only relies on the in-situ stress 

measurement data and does not consider the changes in stress state due to the seismic 

activities.  

1.5 Significance of the Study 

This study provides new insight into the complex in-situ stress situation in the 

core of the HKS by highlighting the bedrock geology and linking it to the historical 

changes in the mass transport direction, topography, exhumation, and regional 

horizontal shortening directions. The findings of this study will be helpful to engineers 

and geologists in in-situ stress characterisation and the design of underground 

structures in HKS and syntaxial bends elsewhere in general. 

1.6 Thesis Structure and Organization 

This thesis is divided into six chapters, each describing a particular section of 

this study. Chapter 1 describes the background of conducting this study, the problem 

statement that explains the need for this study, objectives, scope, and significance of 

the research. Chapter 2 reviews the existing literature on a brief history of the 
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Himalayan range, regional geology and tectonics of the northwestern Himalaya, 

exhumation and brief history of landscape changes in the Pleistocene to Holocene 

epoch. This chapter also describes the development of the Hazara Kashmir Syntaxial 

bend during the Miocene age, regional thrust faults, and regional shortening. The 

trends of horizontal tectonic stress in the region inferred from recent and past 

earthquake focal mechanism solutions are also discussed. Tunnelling challenges 

experienced during tunnelling in the Himalayan mountains. The application of 

numerical modelling for stability analysis of tunnels in area having complex geology 

and active tectonic stresses. Likewise, current issues and numerical approaches 

employed for stability analysis of underground structures, their merits and demerits, 

challenges, and suggestions for improving the existing practice were also presented.   

Chapter 3 presents in detail the methodology adopted to carry out this research. 

Chapter 4 describes the details of the data collection and subsequent analysis. Chapter 

5 shows the results obtained from the numerical models and interpretation of the 

results. Finally, Chapter 6 outlines the conclusions derived from this study and 

suggestions for further research. 
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