
AN IMPROVED BICLUSTERING ALGORITHM WITH OVERLAPPING 

CONTROL FOR IDENTIFICATION OF INFORMATIVE GENES AND 

PATHWAYS 

ROHANI MOHAMMAD KUSAIRI 

UNIVERSITI TEKNOLOGI MALAYSIA



AN IMPROVED BICLUSTERING ALGORITHM WITH OVERLAPPING 

CONTROL FOR IDENTIFICATION OF INFORMATIVE GENES AND 

PATHWAYS 

ROHANI MOHAMMAD KUSAIRI 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Master of Philosophy 

School of Computing 

Faculty of Engineering 

Universiti Teknologi Malaysia 

SEPTEMBER 2021 



v 

ACKNOWLEDGEMENT 

In preparing this thesis, I was in contact with many people, researchers, 

academicians, and practitioners. They have contributed towards my understanding and 

thoughts. In particular, I wish to express my sincere appreciation to my main thesis 

supervisor, TS. Dr Chan Weng Howe, for encouragement, guidance, critics and 

friendship. I am also very thankful to my co-supervisor TS. Dr Rohayanti Hassan for 

their guidance, advices and motivation. Without their continued support and interest, 

this thesis would not have been the same as presented here. 

I also would like to express my thanks to my family for their endless care and 

support that have given me strength in completing this research. Besides, I am grateful 

to have friends that have been a great assist and always share their knowledge, 

experiences and suggestions to me. My special thanks to everyone in AIBIG for their 

helpful comments and suggestion during the weekly seminar. 



vi 

ABSTRACT 

Due to the rise of microarray technology, many tools and methods have been 

developed to analyse the huge number of gene expression data such as clustering 

analysis. This clustering analysis is being used for different purposes such as 

functional annotation, tissue classification and motif identification. Moreover, the 

clustering methods have made an achievement in the analysis of genetic data by 

clustering those genes with similar expression patterns into one cluster. Therefore, the 

genes with similar patterns are obtained and those genes are further analysed to extract 

the potential biological information. Traditional clustering methods are used to group 

genes that behave similarly under all conditions but are unable to perform two- 

dimensional grouping simultaneously. As a result, clusters obtained either contain all 

rows of data matrix or all columns of data matrix and thus ignoring the local co-

expression effects which are present in only a subset of all biological samples. Other 

than that, clustering methods are unable to assign genes to multiple clusters as they do 

not correspond to the gene natural behaviour which has more than one function and 

can participate in multiple pathways. Due to limitations of traditional clustering 

analysis, a biclustering algorithm as a new method was introduced to identify local 

patterns in the data by clustering the gene dimension and condition dimension 

simultaneously. This local correlation information between the subset of genes and 

conditions is then used to improve the accuracy of clustering results. However, 

overlapping is another issue in biclustering. As some of the genes may belong to 

multiple functional categories, overlapping may be considered as one of the bicluster’s 

behaviours but the overlapping among the bicluster need to be controlled to prevent 

the redundancy of the biclusters formed. This research proposed an improved 

overlapping control in biclustering algorithms for identification of informative genes 

from the gene expression data. The overlapping control is crucial in biclusters to hinder 

the redundancy of the biclusters produced and indirectly the number of the biclusters 

obtained can be reduced. Experiments were conducted on two microarray data sets 

(ovarian cancer dataset and glioblastoma cancer dataset). The results obtained were 

evaluated using 10-fold cross validation and compared with the Qualitative 

Biclustering Algorithm (Qubic). In addition, the results were further analysed in terms 

of accuracy, standard deviation, variance and t-test and the proposed method indicated 

a higher accuracy for Ovarian dataset (96.54%) and glioblastoma dataset (75.68%). 

This method showed consistent improvement in terms of accuracy of the biclusters 

when tested using SVM classifier over the Qualitative Biclustering Algorithm (Qubic) 

method. Biological context verification was then conducted to elucidate the relation of 

the selected genes such as ERBB2, VCAM1, CD3D and pathways (Endocytosis 

pathway, Bladder Cancer pathway and Pancreatic Cancer pathway) with the phenotype 

under study. 
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ABSTRAK 

Berikutan peningkatan teknologi mikrotatasusunan, pelbagai alat dan kaedah 

telah dibagunkan untuk menganalisis sejumlah besar data ekspresi gen seperti analisis 

pengelompokan. Analisis ini digunakan untuk pelbagai tujuan berbeza seperti anotasi 

fungsian, pengklasifikasi tisu dan pengenalan motif. Selain itu, kaedah 

pengelompokan telah berjaya menganalisis data genetik dengan mengelompokkan gen 

tersebut dengan corak ekspresi gen yang serupa menjadi satu kelompok. Oleh itu, gen 

dengan corak yang sama diperoleh dan akan dianalisis  dengan lebih lanjut untuk 

mengekstrak maklumat keupayaan biologi. Kaedah pengelompokan traditional  

digunakan untuk mengelompokkan kumpulan gen yang mempunyai kondisi yang 

sama dalam semua keadaan tetapi tidak berupaya untuk melaksanakan pengelompokan 

dua dimensi secara serentak. Hasil pengelompokan yang diperoleh mempunyai semua 

baris matriks data atau semua lajur matriks data sehingga mengabaikan korelasi 

tempatan yang hanya terdapat dalam subset semua sampel biologi. Selain itu, kaedah 

pengelompokan tidak berupaya untuk mengelaskan gen yang sama kepada beberapa 

kelompok kerana gen tersebut tidak sepadan dengan tingkah laku semula jadi yang 

mempunyai lebih dari satu fungsi dan dapat mengambil bahagian dalam beberapa 

laluan. Disebabkan limitasi kaedah pengelompokan traditional, algorithma bi-kluster 

diperkenalkan sebagai kaedah baru untuk mengenal pasti corak tempatan dalam data 

dengan mengelompokkan dimensi gen dan kondisi dimensi secara serentak. Maklumat 

korelasi tempatan ini antara subset gen dan kondisi kemudian digunakan untuk 

meningkatkan ketepatan keputusan pengelompokan. Namun, masalah dalam bi-kluster 

adalah pertindihan. Oleh kerana sesetengah gen mungkin tergolong dalam beberapa 

kategori fungsian, pertindihan boleh dianggap sebagai salah satu tingkah laku bi-

kluster tetapi pertindihan di antara bi-kluster perlu dikawal bagi mengelakkan 

pertindihan bi-kluster yang terbentuk. Penyelidikan ini mencadangkan peningkatan 

kawalan pertindihan dalam algoritma  bi-kluster  untuk mengenal pasti gen yang 

bermaklumat daripada data ekspresi gen. Kawalan pertindihan sangat penting dalam 

bi-kluster untuk menghalang pertindihan bi-kluster  yang diperoleh dan secara tidak 

langsung jumlah bi-kluster  yang diperoleh dapat dikurangkan. Kajian telah dijalankan 

ke atas dua data mikrotatasusunan (data set kanser ovari dan data set kanser 

glioblastoma). Hasil yang diperoleh dinilai menggunakan pengesahan silang 10 kali 

ganda dan dibandingkan dengan Algoritma Kualitatif Bi-kluster (Qubic). Di samping 

itu, hasilnya dianalisis lebih lanjut dari segi ketepatan, sisihan piawai, varians dan 

ujian-t dan kaedah yang dicadangkan menunjukkan ketepatan yang lebih tinggi untuk 

set data ovari (96.54%) dan set data glioblastoma (75.68%). Kaedah ini menunjukkan 

peningkatan yang konsisten dari segi ketepatan bi-kluster  ketika diuji menggunakan 

pengkelasan SVM berbanding kaedah Algoritma Kualitatif Bi-kluster (Qubic). 

Pengesahan konteks biologi telah dilakukan untuk menjelaskan hubungan gen terpilih 

seperti ERBB2, VCAM1, CD3D dan laluan (laluan  Endositosis, laluan Kanser Pundi 

kencing dan laluan Kanser Pankreas) dengan fenotip yang sedang dikaji.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

In advancement of microarray technology, the bioinformatics field has grown 

rapidly with the introduction of a series of high-throughput detection techniques such 

as microarray experiments that can produce a huge number of valuable gene 

expression data (Jia et al., 2017). Gene expression data comprises the information 

about the gene activity, as well as the current state of the cell's activity, whether the 

cell is normal or cancerous. These data are generally present in the matrix form which 

consists of rows that represent genes while each column corresponds to sample or 

experimental conditions and each cell strand of the matrix shows the gene expression 

level of the genes corresponding to the experimental condition (Li et al., 2017). The 

gene expression matrix form is important for the extraction of the potential biological 

information that can be further analysed by biologists. This also aids in the 

understanding of the mechanism of the gene expression, multiple functions of the 

genes, and the interaction between genes that could provide the insights and 

information regarding the disease under study.  

The gene expression data can be analysed based on two techniques which are 

supervised and unsupervised learning. For supervised learning, the documentations or 

notation of genes or sample is needed to find patterns for the clusters created while 

unsupervised learning, the gene expression data is analysed to find patterns that can 

group the genes or samples into clusters without using any type of notations (Mishra 

and Vipsita 2017). This research focuses on analysing the gene expression data using 

a clustering analysis method. In the clustering analysis method, the genes are grouped 

into separate clusters where each cluster consists of genes that show similar expression 

patterns. These clustering methods analyse the gene expression data matrix in one 

dimension, the resulting clusters either consist of all rows of data matrix, or all columns 
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of data matrix (Li et al., 2017). Nonetheless, the relevant genes obtained are not 

necessarily related to each condition in the column of data matrix as the gene is usually 

highly expressed only in a subset of conditions and the existence of any local 

association between genes and conditions in the gene expression data must be taken 

into account. Due to the drawbacks of traditional clustering methods, the biclustering 

algorithm is introduced to cluster the genes simultaneously from the gene dimension 

and condition dimension (Li et al., 2017). As a result, the cluster identifies a subset of 

genes and conditions and helps to improve the accuracy of the clustering results. The 

Illustration of clustering and biclustering as shown in Figure 1.1. 

 

Figure 1.1 Illustration of the difference between clustering and biclustering 

 

1.2 Problem Background 

 The microarray experiment has generated a massive volume of biological 

information in the form of gene expression data and this has driven the active 

developments of various data mining techniques to analyse these data, one of the 

common analyses is clustering (Nepomuceno et al., 2009). It is crucial to identify 

groups of genes with similar expression patterns under certain conditions when 

analyzing large-scale gene expression data (Bhattacharya and cui, 2017). This further 

drove the active research in using clustering methods for analysis of gene expression 

data. Genes with identical expression patterns are grouped together into one category 

using the clustering methods. The clustering is based on the principle to search for the 

genes with similar patterns, analyse gene function, and investigate gene transcriptional 

regulation (Li et al., 2017). However, genes are not necessarily related to every 

condition. The clustering methods can only cluster the genes in one dimension, either 
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the clustering results contain all rows of data matrix, or all columns of data matrix, but 

there is usually some local correlation between genes and conditions in gene 

expression data.  The clustering methods group the genes based on similarities over all 

samples in the dataset to form clusters and this grouping strategy is ineffective at 

detecting condition-dependent co-expression patterns of the genes (Bhattacharya and 

cui, 2017). Clustering methods may not be the best suited for some analyses of 

microarray data for the following two reasons; firstly, there are many genes that encode 

proteins involved in several functional activities at a time, but the clustering methods 

cannot identify these genes, because it only allows a gene to belong to one cluster at a 

time, instead of multiple clusters. Secondly, it is difficult to find the genes that are co-

expressed under a few specific conditions but are differently expressed under other 

conditions because the similarity of the genes in conventional clustering is determined 

by the entire expression data. Due to the drawbacks in clustering methods, this 

motivated the development of biclustering algorithms to address this problem. 

The biclustering algorithm is widely employed in high-dimensional, large and 

complex data, especially the gene expression data that has been introduced by Cheng 

and Church (Zhu et al., 2017). The concept of biclustering algorithm is implemented 

in analyzing the gene expression data matrix by grouping the genes and condition 

simultaneously to form a bicluster which overcomes the drawbacks of conventional 

clustering algorithms. In addition, the correlation between the genes and condition are 

used repeatedly in biclustering algorithms in order to enhance the accuracy of 

clustering results (Jia et al., 2017). However, identifying biclusters is difficult due to 

the fact that the number of possible biclusters is proportional to the number of genes 

and samples. Besides that, the biclustering algorithm is required to search the sets of 

biclusters for functional analysis of gene expression dataset. However, extracting 

complete sets of biclusters from a whole microarray data matrix is a Nondeterministic 

Polynomial time (NP-hard) problem that requires massive computation. Therefore, in 

order to avoid computational issues in biclustering, most existing biclustering 

algorithms use a greedy iterative heuristic approach that locally improves an 

appropriate searching process which starts from initial seed biclusters. Thus, the 

greedy heuristic approach of the Qualitative Biclustering Algorithm (Qubic) is the 

main algorithm used throughout this research. This algorithm is able to identify 

statistically significant biclusters that include various gene expression data patterns as 
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well as finding both positively and negatively correlated expression patterns (Ayadi et 

al., 2012). In addition, the Qubic algorithm is able to identify all the embedded 

biclusters from large data sets quickly with modest computational setups. The Qubic 

algorithm shows good performance in analyzing gene expression data by discovering 

complex relationships among genes and conditions that are difficult to be detected by 

existing biclustering methods. However, the Qubic algorithm allows overlapping of 

the biclusters without explicit control of the overlapping. Overlapping control is 

important where too much overlapping could produce highly similar biclusters which 

could limit the identification of informative genes (Li et al., 2009). 

1.3 Problem Statement 

The main purpose of the biclustering algorithm is to group the genes according 

to similar expression patterns under a subset of experimental conditions. Despite the 

good performance of the Qubic algorithm in identifying significant biclusters, there 

are some limitations during the search process where the algorithm does not check on 

duplicate biclusters and there is no overlapping control mechanism implemented to 

determine or limit the amount of overlapped elements between biclusters. This could 

further lead to the redundancy of the biclusters obtained. The overlapping among the 

biclusters is crucial to measure the ability of an algorithm in ensuring the genes that 

are not necessarily involved in multiple biological processes are not included in 

biclusters. The significance of the biclusters can be determined in terms of its 

overlapping percentage with the previous ones by monitoring the degree of 

overlapping among biclusters (Pontes et al, 2008). 

In general, the overlapping is formed when two biclusters share the same gene 

(or a group of genes) under the same experimental conditions. Therefore, searching 

for non-redundant overlapping biclusters is a significant problem in biclustering due 

to the fact that certain genes belong to different functional groups. So, the biclusters 

generated from a gene expression matrix can have overlapping within a predetermined 

threshold or else, the biclusters are considered as redundant (Truong et al., 2013). 

Thus, the hypothesis for this research is, “Highly overlapping genes among the 
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biclusters lead to duplicity of the biclusters obtained which restricts in identification 

of informative genes that provide more meaningful data of the genes expression 

patterns in the study of cancer disease”. 

Basically, this research intended to address aforementioned problems based on 

following research question: 

1. How to efficiently extract informative genes from the biclusters that are related 

to target phenotype of study? 

2. How to effectively control the overlap among the identified biclusters to 

prevent the redundancy of the biclusters produced? 

3. How to effectively validate the identified informative biclusters and genes? 

  



 

6 

1.4 Research Objectives 

The goal of this research is to improve the biclustering algorithm by controlling 

the overlap among biclusters in Qualitative Biclustering Algorithm (Qubic) to 

efficiently identify the informative genes and pathways. The specific objectives of this 

research stated in the following points: 

(a) To develop a subroutine using Qualitative Biclustering Algorithm (Qubic) for 

identification of informative genes and pathways. 

(b) To improve the Qualitative Biclustering Algorithm (Qubic) by introducing the 

overlapping control mechanism among the biclusters for more efficient 

identification of informative genes and pathways. 

(c) To verify and validate the results and performance of Qualitative Biclustering 

Algorithm (Qubic-i) with the previous researchers and biological database. 
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1.5 Scope of Study 

(a) The programming language involved in this research is R in the Windows 

operating system. 

(b) The datasets that will be used are cancer related datasets which are ovarian 

cancer datasets and glioblastoma (GBM) datasets from The Cancer Genome 

Atlas (TCGA) project (Jin and Lee, 2014). 

(c) There are 168 pathways data from the KEGG database that will be used in this   

research. 

(d) The datasets obtained will be in text file format. 

(e) Pre-processing of raw datasets will be done separately. 

(f) Genecards (www.genecards.com) is used for biological validation of the 

selected genes in pathways. 

(g) Performance measurement based on classification using support vector 

machine, p-value of biclusters, overlap ratio of biclusters and gene enrichment 

percentage.  
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1.6 Significance of the Study 

As mentioned in previous section, the clustering methods has two drawbacks 

as highlighted in this research which are the clustering methods only can cluster in one 

dimension only, clustering results either contain all rows of data matrix, or all columns 

of data matrix (Li et al., 2017) and most clustering methods incapable of assigning 

genes to multiple clusters (Saelens et al., 2018). This has impacted the results of the 

genes produced in the cluster that might potentially miss local co-expression effects 

which are present in only a subset of all biological samples. Due to the drawbacks in 

clustering methods, this motivated the development of biclustering algorithms for 

solving this problem. The biclustering algorithm clusters gene expression data from 

the rows (genes) and column (conditions) of data matrix simultaneously, overcoming 

the drawbacks of conventional clustering approaches (Jia et al., 2017). The aim of this 

biclustering algorithm is grouping genes presenting similar trends under a subset of 

experimental conditions. The main significance of this research is to improve the 

biclustering algorithm by controlling the overlapping among the biclusters to prevent 

the redundancy of the biclusters produced. Other than that, the investigation has 

performed for searching the potential improvement of biclustering algorithms with 

overlapping control mechanisms for identification of informative genes and pathways. 

Indirectly, this research has given clear insight regarding the identification of 

informative genes and pathways by using computational approach methods and 

analysis which provide better understanding of the genes with the targeted phenotype 

and discover relevant genes that contribute to the development of cancer.  Apart from 

that, the benefits of biclustering over clustering methods in the field of discovery of 

local expression patterns have been widely studied and documented till now. The 

finding of this research can potentially be used to aid and support discovery of 

pertinent biological processes involved in various regulatory mechanisms and provide 

meaningful data which helps in discovery of many useful drugs or even in treatment 

design for complex diseases. 
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1.7 Thesis Outline 

This thesis is composed of five chapters. The general description of each 

chapter is presented as follows: 

1. Chapter 1: This chapter presents the introduction of this research including 

background of the problem, problem statement, goal, objectives, scope and 

significance of the study. 

2. Chapter 2: This chapter presents the concept and recent trends applied by 

previous researchers related to the research topic. Review the trend of related 

works regarding the algorithm used in this research. 

3. Chapter 3: This chapter presents the research methodology including the 

research framework adopted in this study, datasets used, proposed algorithms, 

performance measurements and software requirements to achieve the goal and 

objectives.  

4. Chapter 4: This chapter is composed of the result analysis and the discussion 

of this research. 

5. Chapter 5: This chapter concludes the research study. The contribution, 

limitations, and future work suggestions for this research are also presented.  
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