

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jalcom

Highly stable honeycomb structured 2D/2D vanadium aluminum carbide MAX coupled $g-C_3N_4$ composite for stimulating photocatalytic CO_2 reduction to CO and CH_4 in a monolith photoreactor

Beenish Tahir^{b,c}, Muhammad Tahir^{a,*}, Mohd Ghazali Mohd Nawawi^c

^a Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates

^b Civil and Environmental Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates

^c School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia

ARTICLE INFO

Article history: Received 26 April 2022 Received in revised form 20 August 2022 Accepted 23 August 2022 Available online 27 August 2022

Keywords: Photocatalytic CO₂ reduction Vanadium aluminum carbide (V₂AlC) G-C₃N₄ Monolith photoreactor 2D/2D Nanocomposite

ABSTRACT

Developing efficient materials for photocatalytic conversion of CO₂ to value added chemicals and fuels has gained significant attractions in the recent years. However, this is still a difficult task. In this work, a welldesigned vanadium aluminum carbide (V₂AlC) MAX coupled with porous graphitic carbon nitride (g-CN) to construct a nanocomposite for photocatalytic CO₂ reduction has been investigated. 2D/2D V₂AlC/g-CN performance was conducted in a fixed-bed and monolith photoreactor under UV and visible light. The V₂AlC/g-CN exhibited photoactivity of 1747 and 67 μ mol g⁻¹ h⁻¹ for CO and CH₄ evolution, which were 4.13 and 1.94 folds more than their production compared to using pristine g-CN, respectively. More importantly, among the sacrificial reagents such as H₂O, CH₃OH, and H₂, the highest productivity was obtained using CO₂-CH₃OH due to more attachment of methanol over g-C₃N₄ with more proton generation. Similarly, performance of V_2AlC/g -CN under UV-light was promising due to the ability of long pathways to penetrate light inside the fixed bed reactor. In addition to photocatalysts, the performance comparison of reactors confirms that the monolith photoreactor has higher productivity for CO₂ reduction to CO and CH₄. This was evidently due to the large illuminated active surface area, and more light utilization, and proficient mass transfer inside the monolithic microchannels. The stability examination further confirms the unceasing evolution of CO and CH₄ in the consecutive four cycles. Thus, V₂AIC MAX is a promising layered material and can be coupled with semiconductors as a support or cocatalyst to achieve both photoactivity and stability for continuous fuel production.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The release of carbon dioxide (CO_2) greenhouse gas due to the burning of naturally reserved fuels has caused two major concerns: global warming and the depleting of natural reservoirs [1]. The demand for cleaner fuels with the utilization of atmospheric CO_2 has generated a strong desire for artificial photocatalysis [2]. For this purpose, different photocatalysts including TiO₂, Cu₂O, CdS, ZnO and WO₃ were explored to get various photochemically generated compounds such as CO, CH₄, CH₃OH and HCOOH during the CO₂ photoreduction process [3–7]. All these materials have limitations in terms of lower efficiency or functionality under UV-light irradiation. Thus, the advancement of efficient, stable, and selective materials for CO₂ reduction is highly demanding but has remained a great challenge [8].

Two-dimensional (2D) noble metal free materials such as graphitic carbon nitrides (g-C₃N₄) due to several advantages, such as ease of preparation, active under UV/visible light irradiation, higher reduction potential, and less hazard to the environment, have been investigated by many researchers [9,10]. Among the g-C₃N₄ benefits, it has lower efficiency due to charge recombination in the layered structure, less specific surface area, and poor conductivity [11,12]. To promote photocatalytic activity, several strategies have been investigated over the years including metal loading (Ag, Au, Ni, Cu and Co) [13–15], non-metal loading (S, O, P and B) and constructing heterojunction with other semiconductors [16,17]. For example, C and Ag were loaded with g-C₃N₄ and reported increasing trends in CO₂ photoreduction due to higher light absorption, providing more

Abbreviations: Carbon Dioxide, CO₂; Vanadium Aluminium Carbide, V₂AlC; Titanium Dioxide, TiO₂; Graphitic Carbon Nitride, g-C₃N₄; Powder X-ra y diffraction, XRD; Vanadium Carbide, V₂C

Corresponding author.

E-mail addresses: muhammad.tahir@uaeu.ac.ae, bttahir@yahoo.com (M. Tahir).

active sites and good charge separation [18]. Similarly, Ni-Ag loaded $g-C_3N_4$ was explored with an obvious increment in H_2 yield due to faster photogenerated charge separation [19]. In another work, B, O, B and P non-metals were loaded with $g-C_3N_4$ and reported obvious increment in CH₄ evolution during CO₂ reduction [20]. Similarly, BiOIO₃/g-C₃N₄ heterojunction was tested for solar light activated CO₂ conversion with CO and CH₄ as the potential products [21]. In the present advancement, biochar [22] and MAX materials are under examination to replace expensive metals and semiconductors by providing another alternative solution in nanomaterials [23].

The MAX is made up of three elements: M (early transition metals), A (group III or IV A element), and X (either C or N). Thus, MAX belongs to the carbide or nitrides family and has general formula $M_{n+1}AX_n$, where n can be either 1, 2 or 3 [24]. MAX and MXenes are different from other materials because they are thermal and mechanical stability and have good electrical and thermal conductivity. They are widely used in many different ways such as energy storages, batteries, electrical conductors, and as cocatalysts [25]. Different types of 2D MAX materials such as Ti₃AlC₂, Ti₂AlC, V₂AlC, and Nb₂AlC have been tested for different applications [26]. Recently, we tested 2D Ti₃AlC₂ supported g-C₃N₄ heterojunction and observed an enhanced CO₂ methanation process due to preventing chargs recombination [27]. Similarly, Ti₃AlC₂/TiO₂ was explored for photocatalytic bi-reforming of methane with synthesis gas production [28]. However, there is another important MAX V_2AC with good conductivity, higher visible light absorption but there is no significant development for employing in photocatalytic applications [29]. For example, recently, V_2C MXene as a support was tested for oxygen reduction and observed to have significantly enhanced performance in a fuel cell [30]. Thus, constructing V₂AlC and g-C₃N₄ 2D/ 2D heterojunction would be promising to promote light-absorption with higher separation of charges to maximize CO₂ reduction efficiency.

In addition to efficient photocatalysts, photocatalytic CO₂ reduction efficiency and selectivity can be significantly altered by using an appropriate design of photoreactor [2]. Among the different designs, monolith photoreactor is highly recommended due to its several benefits. The distinguished features of monolithic-based supports are larger exposed surface area, higher surface to volume ratio, efficient light penetration, lower mass transfer limitations, and faster reaction kinetics [31]. Recently, we investigated the monolith photoreactor for photocatalytic dry reforming of methane over a montmorillonite loaded TiO₂ photocatalyst and found promising photoactivity and product selectivity for CO and H₂ production [32]. In another development, MAX/TiO₂ photocatalysts were tested for converting CO₂ to CO/CH₄ while employing fixed-bed and monolith photoreactors. Similarly, in other developments, the monolith photoreactor was explored with the use of Fe-MMT/TiO₂ [31] and Ni-MMT/TiO₂ [32] nanocomposites with promising results during different CO₂ reduction processes.

Herein, a well-designed vanadium aluminum carbide supported graphitic carbon nitride (V₂AlC/g-CN) nanocomposite was examined for photo-induced CO₂ reduction under UV and visible light irradiations. The composite performance was tested through various parameters such as the effect of light sources, type of sacrificial reagents, and reaction time. It is perceived that hole scavenger has an important effect on encouraging composite photocatalyst photoactivity for selective CO₂ reduction. Similarly, the light source has a significant effect on the photocatalyst performance due to different penetration depth and absorption ability. The composite photocatalyst performance was further explored with fixed-bed and monolith reactors, and their performance was systematically investigated. The stability test in multiple cycles was conducted, which further confirmed higher photoactivity and stability for consecutive four cycles. This work would be fruitful for further investigation in the production of cleaner fuels through the CO₂ reduction process.

2. Experimental

2.1. Materials

The materials and chemicals used in this study are melamine (Merck, 99.99%), methanol (Merck, 99.99%) and vanadium aluminum carbide (V_2AIC , > 98%, 200 mesh, Famouschem China). Similarly, monolith dimensions are 20 mm in diameter and 60 mm in length. The cordierite structure monoliths were purchased from Pingxiang Meitao Company, China.

2.2. Synthesis of mesoporous $g-C_3N_4$

The bulk graphitic carbon nitride $(g-C_3N_4)$ was synthesized using the thermal decomposition of melamine under air an atmosphere. Specifically, 5 g of melamine placed in a ceramic crucible was covered with a lid and heated at 550 °C for 120 min. The yellow cake obtained was further grinded to fine a powder and stored in an air tight bottle.

2.3. Synthesis of $V_2AlC/g-C_3N_4$

The vanadium aluminium carbide dispersed graphitic carbon nitride (V₂AlC/g-CN) nanocomposite was synthesized using an ultrasonic assisted physical mixing method. To create a 2D layered structure, 50 mg g-C₃N₄ was displaced into a 20 mL methanol and stirred for 6 h. In parallel, specific amount of V₂AlC exfoliated with 20 mL methanol was transferred to the above suspension under stirring. After stirring for another 6 h, the slurry was oven dried at 100 °C and was given the name V₂AlC dispersed g-CN. The V₂AlC/g-CN samples with different V₂AlC loading amounts, such as 5, 10, and 15 wt%, were prepared using a similar procedure and were named as 5 V₂AlC/g-CN, 10 V₂AlC/g-CN, and 15 V₂AlC/g-CN, respectively. The schematic synthesis illustration for the V₂AlC/g-CN nanocomposite has been shown in Fig. 1.

2.4. Synthesis of monolithic V₂AlC/g-C₃N₄

The monolithic $V_2AlC/g-C_3N_4$ samples were prepared using the dip-coating method as discussed previously [28]. Initially, monoliths of specific sizes were washed with acetone and methanol to eradicate any impurities. Afterwards, the V₂AlC/g-C₃N₄ suspension was prepared by adding suitable amounts of g-C₃N₄ and V₂AlC as discussed previously. The initial weight of the monolith after drying at 100 °C and cooling to room temperature was measured before starting the coating process. For loading catalysts over the monolith surface and inside the microchannels, the monolith was dipped into the suspension for a few seconds and was gently removed and dried using compressed air. This synthesis procedure was repeated to get a uniform coating of catalyst over the entire surface of monolithic support. After drying at 100 °C, the final weight of the coated monolith was measured and was given the name monolithic V₂AlC/ g-CN nanocomposite. The schematic synthesis representation for the monolithic V₂AlC dispersed g-CN composite has been discussed in Fig. 1.

2.5. Characterization

Powder X-ray diffraction (XRD) patterns were recorded with a Rigaku Smart Lab machine, operated at 30 kV, 40 mA, with Cu K α radiation (λ = 0.154 nm). The morphology and structure of the materials were observed using FESEM with a Hitachi SU8020 instrument. The EDX mapping analysis was conducted to confirm the uniform distribution of elements in the composite. The materials interface interaction was further investigated using high a resolution transmission electron microscope (HRTEM, HITACHI HT7700). The

Fig. 1. Schematic synthesis illustration for the V_2AIC loaded $g-C_3N_4$ and coated over the monolithic support.

elemental composition was measured using X-ray Photoelectron Spectroscopy (XPS) using Axis Ultra DLD Shimadzu electron spectrometer. The RAMAN and PL analyses were conducted using a HORIBA spectrometer with a laser wavelength of 532 and 325 nm, respectively. The UV-visible diffuse reflectance (UV-Vis DR) absorption spectra were obtained using an Agilent Carry 100 spectrophotometer.

2.6. Photocatalytic Activity

The V₂AlC-loaded g-CN nanocomposite performance for photocatalytic CO₂ reduction was conducted in a fixed bed and monolith photoreactor under UV and visible light irradiation [28]. The detailed description of both types of photoreactors is demonstrated in our previous work [32]. The reactor consists of a stainless chamber integrated with mass flow controllers (MFC) and cooling fans to remove lamp heat. A UV-light source was a 200 W Hg lamp having an intensity 100 mW cm⁻² and wavelength of 254 nm. However, for the visible light source, a 300 W Xenon reflector lamp with intensity 100 mW cm⁻² and wavelength of 420 nm was employed. Both the lamps were used without employing UV and visible light cut filters. The monoliths used have a size of 2 cm in length and 6 cm in width and channels per square inch (CPSI) of 200. For both the fixed bed and monolith photoreactors, a similar reactor chamber was employed for the best performance companion.

The specific powder photocatalyst amount (0.15 g) was loaded inside the photoreactor system and was cleaned with a constantly flowing helium gas for 30 min. The compressed CO₂ was allowed to flow through the water saturator to carry moisture before entering the reactor. The catalyst bed was saturated with CO₂ and water by continuously flowing the feed mixture for 30 min. For investigating the effect of hole scavenger, 5% methanol and pure hydrogen were employed. Whereas, the methanol solution was replaced with water in a water saturator to investigate the effect of alcohol. Similarly, a CO₂ and H₂ feed mixture was introduced to the reactor chamber with a CO₂/H₂ ratio of 1.0 to investigate the effect of hydrogen. For investigating the CO₂ photoreduction in a monolith reactor, a similar procedure was adopted. However, monolithic supports coated with the catalysts were inserted inside the reactor chamber. The gaseous products were analyzed using gas chromatography (GC), equipped with TCD and FID detectors. The Carboxen-1010 PLOT capillary column was connected to both the detectors for the identification of CO, CH_4 , H_2 and CO_2 products.

3. Results and discussion

3.1. Materials Characterization

The XRD analysis was conducted to the confirm phase structure and crystallinity of the pure and the composite samples as presented in Fig. 2(a). The differential peaks for V₂AlC were identified at 20 of 13.41°, 27.07°, 35.46°, 41.11°, 55.41°, and 63.81°, matching typical (002), (004), (100), (103), (106), and (110) crystal planes of V₂AlC MAX and similar observations were obtained previously [33]. This confirms the high purity of V₂AlC MAX phase with a crystalline structure. The two diffraction peaks at 20 of 12.91° and 27.41° were identified, fitting to typical crystal planes (100) and (002) of g-C₃N₄. There have been reports of similar results before [34]. When the V₂AlC was coupled with g-CN, all the original peaks were observed, which confirms the effective fabrication of the V₂AlC/g-CN nanocomposite. More importantly, no shifts in peaks were observed in the composite samples, which further confirms original reflections of the phase structure.

The Raman characterization was further performed to confirm the successful fabrication of the V₂AlC dispersed g-CN nanocomposite as presented in Fig. 2(b-c). The V₂AlC reflects obvious peaks at 254 and 352 cm⁻¹, which are the characteristics of pure V₂AlC. Using g-C₃N₄ samples, significant Raman signals were not observed, whereas several characteristic peaks at 475, 703, and 1234 cm⁻¹ were detected. Two peaks located at 475 cm⁻¹ and 1234 cm⁻¹ reflect the vibration modes of CN heterocycles in g-C₃N₄ [35]. Furthermore, the intense peak at 703 cm⁻¹ was attributed to the tri-s-triazine ring. Raman spectrum of g-C₃N₄ confirms high purity material with specific graphitic carbon nitride characteristics. There have been similar observations before [36]. When V₂AlC was coupled with g-CN, all the g-CN original peaks exited, but V₂AlC peaks were demised due to lower intensity. More importantly, the one important peak of V₂AlC at 354 cm⁻¹, which confirms the existence of this material in

Fig. 2. (a) XRD analysis of pure and V_2AlC loaded g-C_3N_4 samples; (b-c) Raman spectra of V_2AlC, g-C_3N_4 and V_2AlC loaded g-C_3N_4 samples.

the composite. All of these findings support successful fabrication of the V_2AlC dispersed g-CN nanocomposite.

The structure and morphology of g-CN, V2AlC, and V2AlC dispersed g-CN were investigated using a Field Emission Scanning Electron Microscope (FESEM) and the images are presented in Fig. 3. Fig. 3(a) shows the layered structure of $g-C_3N_4$ in which all the sheets have an exfoliated structure. Fig. 3(b) presents a SEM image of V₂AlC, in which compact 2D layers are obvious. However, the exfoliated 2D layered structure of V₂AlC was obtained after exfoliation, as evidenced in Fig. 3(c). When $g-C_3N_4$ and V_2AlC were coupled together, a good interface interaction was achieved, as demonstrated in Fig. 3(d-e). It is obvious that g-CN sheets are entirely dispersed over the V₂AlC surface, thus, providing good interface interaction. The distribution of elements was further confirmed through EDX mapping, and the results are discussed in Fig. 3(f-j). Fig. 3(f) shows the mapping analysis of V₂AlC/g-CN, in which the distribution of all the materials could be observed. More importantly, the distribution of elements in Fig. 3(g-j) further confirms the uniform distribution of V, Al, C, and N in the V₂AlC/g-CN composite.

The morphology of V₂AlC-loaded g-C₃N₄ was further investigated using TEM and the results are presented in Fig. 4. Pure V₂AlC shows bulk sheets with a 2D structure as shown in Fig. 4(a). The interaction between the V₂AlC and g-CN was further examined and the results are presented in Fig. 4(b-c). It was observed that g-C₃N₄ is successfully dispersed with V₂AlC sheets, giving good interface interaction. The existence of V₂AlC was further confirmed by high resolution TEM analysis and the results are presented in Fig. 4(d). The D-spacing of 0.25 nm was observed by V₂AlC, whereas, D-spacing of g-C₃N₄ was not identified due to its amorphous structure [37]. In general, the V₂AlC/g-CN were coupled together with good interface interaction that would be beneficial to transport charge carriers.

XPS analysis was conducted in order to investigate the elemental composition of the V₂AlC/g-C₃N₄ composite and the results are presented in Fig. 5. Fig. 5(a) shows C1s spectra with four characteristic peaks positioned at 283.2 eV, 284.8 eV, 286.8 eV, and 288.6 eV, ascribed to C-V, C-C, C-O and N-C=N, respectively [38]. The XPS spectrum of Al 2p in Fig. 5(b) shows one broad peak with a binding energy of 74.6 eV, which confirms the presence of Al associated with the MAX phase structure of V₂AlC. Fig. 5(c) shows the V 2p spectrum having a binding energy of 516.9 eV, confirming the existence of V as V⁴⁺ [37]. The XPS spectrum of N1s in Fig. 5(d) shows three peaks with binding energies of 397.6 eV, 399.1 eV, and 400.1 eV, respectively, ascribed to Sp²-hybridized nitrogen, N-C₃ and amino functional group (C-NH₂), respectively. All these results confirm the successful fabrication of the V₂AlC/g-C₃N₄ composite without any change in structure or oxidation of the materials.

The color images of the synthesized photocatalysts are depicted in Fig. 6(a-c). The pure V_2AIC reflects a blackish color, $g-C_3N_4$ has a yellowish color, and V₂AlC loaded g-C₃N₄ shows greyish color due to the presence of V₂AlC. The production and separation of the charges were further investigated using photoluminescence (PL) analysis, and the results are presented in Fig. 6(a). Using pure g-CN, the highest PL peak intensity was observed, which reflects, more charge carrier recombination within the g-C₃N₄ layered structure. More importantly, the PL intensity of pure V₂AlC approaches to straight line due to its conductive characteristics. When V₂AlC was coupled with g-CN, an obvious decline in PL intensity could be observed due to less charge carrier recombination and similarly reported in previous works [39]. For example, the PL intensity of $g-C_3N_4$ was weekend when coupled with Ti₃C₂ MXene due to preventing charge recombination [40]. This proves that V_2 AlC is a good mediator to trap electrons, so the V₂AlC/g-CN composite has less recombination.

The UV-vis diffuse reflectance absorbance spectra of the materials were further conducted to understand light absorption characteristics as presented in Fig. 6(b-c). Using pure V₂AlC, no specific absorption spectrum was obtained, probably due to its conducting characteristics. For the case of g-CN, an apparent absorption spectrum within the UV-visible domain was obtained. However, high peak intensity was noticed in the UV-region, which reflects higher UV-light absorption. Additionally, when V₂AlC was coupled to layered g-CN nanosheets, the light absorption intensity in both the UV and visible regions was increased. This was probably due to the high light absorption characteristics of V₂AlC due to its dark color [41]. Previously, higher visible light absorption of Ti_3C_2 has been reported. When Ti₃C₂ was coupled with g-C₃N₄, light absorption capacity was further increased [10]. All these findings confirm that V₂AlC is favorable to improving g-C₃N₄ light absorption characteristics. The band gap energy of g-C₃N₄ and V₂AlC/g-C₃N₄ was estimated to be 2.85 eV and 2.81 eV, respectively. The VB of g-C₃N₄ was estimated in our previous work using XPS wide spectra and the value found was +1.52 eV. Using $E_{\rm bg}$ and VB from the XPS wide spectrum, the conduction band (CB) position of g-C₃N₄ was calculated to be - 1.33 eV and similar observations have been reported for the VB and CB positions of g-C₃N₄ [42].

3.2. Photocatalytic CO₂ reduction

Initially, blank photocatalytic runs were performed to confirm the quality and reliability of the products with different types of photocatalytic systems. For this purpose, four sets of experiments were conducted, including (1) a photocatalyst with light source under inert gas without feed mixture; (2) a photocatalyst with feed mixture but without light source; (3) a photocatalyst with light source without feed mixture in a monolith reactor; and (4) a photocatalyst with feed mixture but without light source in a monolith

Fig. 3. FESEM analysis for; (a) $g-C_3N_4$, (b-c) V_2AIC , (d-e) V_2AIC loaded $g-C_3N_4$ samples, (f) EDX analysis for the composite $V_2AIC/g-C_3N_4$, (g-j) identification of V, AI, C and N elements.

photoreactor. In all these experiments, no carbon products were observed either in the absence of a light source or a feed mixture. This confirms that both the photocatalyst and photoreactor were clean and CO and CH_4 originated only during the CO_2 reduction process under light irradiation.

3.2.1. Effect of V₂AlC loading

The performance of V_2AIC MAX loaded g-CN was tested for photocatalytic CO₂ reduction with H_2O in a fixed bed photoreactor under UV-light irradiation. The effect of V_2AIC loading into g-CN was tested by varying different amounts of MAX, and the results for CO and CH₄ production are shown in Fig. 7. Fig. 7(a) displays CO₂ conversion to CO over several V₂AlC-loaded g-CN photocatalysts. Using pristine g-C₃N₄, CO production of 423 μ mol g⁻¹h⁻¹ was gained. When 5% V₂AlC was dispersed with g-C₃N₄, the CO yield increased to 1073 μ mol g⁻¹h⁻¹, the highest amount of 1747 μ mol g⁻¹h⁻¹ was attained with optimized 10% V₂AlC loading. This augmented CO production during CO₂ reduction was evidently due to proficient separation of charges with a higher sorption process using layered MAX phase [39]. Previously, MAX/g-C₃N₄ was tested for photocatalytic dry reforming of methane and reported significantly enhanced photoactivity due to hindered charge carrier recombination

Fig. 4. TEM analysis of (a) V₂AlC, (b-c) TEM images V₂AlC loaded g-C₃N₄, (d) D-spacing analysis of V₂AlC/g-C₃N₄.

[33]. However, a decline in CO production with excessive MAX loading was undoubtedly due to generating charge recombination centers. Perhaps, it could also be due to reducing the amount of g- C_3N_4 surface available as a photocatalyst.

Fig. 7(b) shows photocatalytic CH₄ evolution during CO₂ photoreduction with H₂O over various V₂AlC-loaded g-CN samples. Using pure g-CN, a small amount of CH₄ (69 µmol g⁻¹) was attained but increased to 101 and 134 µmol g⁻¹ with 5% and 10% V₂AlC-loading was employed. This obvious improved performance of the composite photocatalysts for CH₄ formation was clearly due to separation of photo-induced charge carriers in the presence of MAX as a cocatalyst. However, the decline in CH₄ production at higher MAX loading was probably because of g-CN surface coverage with MAX, thus, providing less surface area for the photocatalysis process. More importantly, CO selectivity (Fig. 7b) was improved after V₂AlC loading to g-CN. All these discoveries confirm that the 10 V₂AlC/g-CN composite is helpful for selective and dynamic CO₂ photoreduction to CO in the presence of water as the reducing agent under UV light.

The performance of V₂AlC/g-CN composite was further associated with the previously published literature. When it was tested for photocatalytic CO₂ reduction [18], the biomass derived carbon loaded g-C₃N₄ that was doped with Ag showed a CO yield rate of 33.3 μ mol g⁻¹h⁻¹. Over 2D porous g-C₃N₄ coupled 3D TiO₂ micro flowers, enhanced CO₂ to CO/CH₄ was observed [43]. The boosted photogenerated electron-hole separation and large surface were responsible for this enhancement in photoactivity. In another work, 2D Ti₃C₂ supported BiOIO₃/g-C₃N₄ was tested for CO₂ photoreduction under visible light and CO and CH₄ yield rates of 5.88 and 1.55 μ mol g⁻¹h⁻¹, respectively, were achieved. The modified Ti₃C₂ was principally responsible for boosting CO₂ photoreduction efficiency [21]. Comparatively, in the current study, the significant enhanced CO and CH₄ yield rates were obviously attributable to superior V₂AlC characteristics for charge carrier separation with high light absorption.

3.2.2. Effect of light source

The light source has a significant effect on photocatalyst performance and also on the products' selectivity [44,45]. Thus, optimized 10 V₂AlC/g-CN nanocomposite effectiveness was further explored for photocatalytic CO₂ reduction with H₂O in a fixed bed reactor under UV and visible light irradiation. The UV-light source used was a 200 W Hg lamp with a light intensity of 100 mW cm⁻² and a wavelength of 254 nm. Similarly, for the visible light source, a 300 W Xenon lamp with the same intensity of 100 mW cm⁻² and a wavelength of \sim 420 nm was employed. In both the light sources, CO and CH₄ were the potential products' but with different yield rates, as shown in Fig. 8(a). Using a UV-light source, a CO yield of $3495 \,\mu\text{mol g}^{-1}$ was produced, and this is 7.5-fold higher than its production under visible light (469 μ mol g⁻¹). Similarly, the yield of CH₄ evolution under UV-light was 134 μ mol g⁻¹ ~ 2.5-fold extra than employing visible light irradiation. This reveals that the light source has a significant impact on the yield rate under the identical operating conditions.

Although g-C₃N₄ is functional under UV–visible light irradiation and coupling V₂AlC with g-CN, visible light absorption was increased. However, experimental results contradict this hypothesis of higher light absorption with photocatalytic performance. The effect of UV/visible light on reducing CO2 using a fixed-bed can be explained based on different possible reasons. The first hypothesis is that UV light has more penetration depth compared to visible light irradiation. In this study, UV-light of wavelength 254 nm and visible light of 420 nm were employed and lamps were fixed at the top surface of the fixed bed reactor. Due to using a 10 mm thick glass window and a fixed bed reactor of a total length of 8 cm, there was long travelling distance for the light to travel before the photoactivation process as shown in Fig. 8(b). Thus, UV-light effectively reached to the photocatalyst surface with its more penetration depth inside the bed as well, resulting in more production of photoinduced charge carriers. On the other hand, the second possible reason can be explained of more production of charges at lower light wavelengths. As $g-C_3N_4$ is photoactive under both light irradiations, however,

Fig. 5. XPS analysis of $V_2AlC/g-C_3N_4$ composite: (a) C 1 s, (b) Al 2p, (c) V 2p, and (d) N 1 s.

more charges would be produced using a shorter wavelength, resulting in enhanced photocatalytic efficiency. However, further investigations are recommended to scientifically justify such types of observations and experimental results. Earlier, the performance of $ZnV_2O_6/g-C_3N_4/RGO$ nanocomposite was explored for the production of CO/CH₄ during CO₂ reduction under UV/visible light irradiation [46]. The higher number of products was obtained under UVlight irradiation because of abundant electron creation in relation of higher light penetration depth.

3.2.3. Effect of sacrificial reagent

The performance of the V₂AlC/g-C₃N₄ composite photocatalyst was further conducted using different sacrificial sources, namely methanol and hydrogen, with fixed-bed photoreactor under UV-light. To investigate the effect of methanol, initially, a 5 vol% methanol solution with water was prepared for saturating CO₂ gas with methanol-water vapors. Similarly, hydrogen sources were used to carry the reaction with CO₂, regulated by MFC with a CO₂/H₂ feed ratio of 1.0. The CO yield during CO₂ photoreduction with different sacrificing reagents is shown in Fig. 9(a). Obviously, different amounts of CO were obtained with water, methanol and hydrogen sacrificial reagents. Using CO₂-H₂O, initially, higher amount of CO was obtained. However, its production was lower than CO₂-CH₃OH with time on irradiation until it reached 60 min. This reveals, that methanol is a promising sacrificial reagent to promote CO₂ reduction to CO over the V₂AlC/g-C₃N₄ composite. Unexpectedly, the lowest CO

production was obtained with hydrogen introduced. The performance of the V₂AlC/g-C₃N₄ composite for CH₄ evolution during CO₂ photoreduction with H₂O, methanol, and hydrogen is demonstrated in Fig. 9(b). The results for CH₄ production were entirely different than for CO production with water and methanol as the sacrificial reagents. Using CO₂-water, highest CH₄ was formed. In the case of the CO₂-CH₃OH feed mixture, the production of CH₄ was much closer to the amount of CH₄ produced, while using water as the sacrificial reagent. In general, in all these systems, the production of methane was not significant.

It is evident from the above discussion that the CO was the major CO2 reduction product over the V2AlC/g-C3N4 composite photocatalyst with a smaller amount of CH₄ formation. Using CH₃OH and H₂ as the sacrificial reagent, the selectivity of CO was not much altered, whereas its yield was somewhat varied with the sacrificial reagent. All these findings can be explained based on the different possibilities. The adsorption of water and methanol over the V₂AlC/ g-C₃N₄ composite would be more proficient compared to hydrogen due to specific surface functional group of g-C₃N₄. This enables more attachment of H₂O and CH₃OH over the g-C₃N₄ surface, enabling effectual CO₂ photoreduction. In addition, higher CO production with CO₂-CH₃OH was due to increasing number of protons (H⁺) with alcohol in the feed mixture. Previously, we investigated photocatalytic water splitting with methanol as the sacrificial reagent and noticed a significant amount of H₂ and CH₄ production under UV light irradiation [47]. In another development, we observed higher

Fig. 6. (a) Image of V₂AlC, (b) image of $g-C_3N_4$, (c) image of V₂AlC/ $g-C_3N_4$, (d) PL spectra of $g-C_3N_4$ and V₂AlC loaded $g-C_3N_4$ samples, (e-f) UV-visible diffuse reflectance spectra of $g-C_3N_4$, V₂AlC and V₂AlC/ $g-C_3N_4$ composite samples.

production of H₂ over Ti₃C₂/g-C₃N₄ composite using methanol as the sacrificial reagent compared to glycerol. Comparatively, in another work, we observed higher hydrogen production over TiO₂ using glycerol as the sacrificial reagent compared to methanol [48]. This reveals that methanol has more attachment with g-C₃N₄, using monolithic support, there was an efficient reforming reaction, enabling more availability of protons for the reduction of CO₂ under UV-light irradiation.

Formerly, we examined the performance of Ti_3C_2/g - C_3N_4 with insitu grown TiO_2 for CO_2 reduction with the involvement of CH_3OH , water, and H_2 . It was noticed that CO_2 - H_2O was favorable for CO production, whereas, a higher amount of CH_4 was obtained in the presence of methanol [42]. This contradiction in results was possibly

Fig. 7. Effect of V₂AlC MAX loading on the performance of g-CN for photocatalytic CO_2 reduction with H₂O in a fixed bed photoreactor under UV-light irradiation; (a) CO production, (b) CH₄ production and CO selectivity.

due to the presence of TiO_2 NPs and because of Ti_3C_2 MXene instead of V_2AlC MAX.

3.2.4. Performance evaluation of fixed-bed and monolith photoreactor

The photocatalysis process is also purposely dependent on the types and operations of photocatalytic reactor systems [44]. Therefore, in this study, a fixed bed and a monolith photoreactors operated in a batch mode was selected to further investigate the $V_2AlC/g-C_3N_4$ composite photocatalyst performance. The photocatalytic reduction of CO₂ to CO with CH₃OH as the sacrificial reagent while using fixed bed and monolith photoreactors is discussed in Fig. 10(a). Comparatively, more CO was produced with a monolith reactor compared with the fixed-bed while keeping all the parameters identical. Similarly, a higher CH₄ was produced using a monolith reactor during CO₂ reduction with a methanol-water mixture. This was evidently due to higher distribution of light over the monolithic surface with more mass transfer and reaction kinetics with monolith microchannels. Earlier, we looked at the performance of a fixed-bed and monolith photoreactors. We found that that CO and CH₄ production was much higher in a monolith photoreactor because there was minimum mass transfer limitation and more illuminated active surface area available for the reaction [49].

Furthermore, the performance of the monolith photoreactor was conducted using water and methanol as the sacrificial reagents, as demonstrated in Fig. 10(b). Using CO_2 -methanol, the most CH_4 was produced at the start of the reaction; however, it gradually reached a steady state with time on stream. However, unceasing CO evolution was observed using both reducing agents. During CO_2 reduction by H_2O , CO was produced in a significant amount; however, CO_2 -

Fig. 8. (a) Performance analysis of 10 V₂AlC/g-CN composite for CO₂ photoreduction by H₂O under UV/visible light for the production of CO and CH₄ in a fixed bed photoreactor; (b) Schematic illustration of light penetration depth and surface reactions.

methanol was favorable for more methane formation. Comparatively, CO consumed 2 electrons compared to 8 electrons for CH₄ formation. Furthermore, in a monolith photoreactor, reversed water gas shift reaction is favorable. Thus, initially, more CO would be produced due to more production of protons, and some of the CO would be converted back to CO₂, resulting in lower CO formation. These observations can be explained based on the different hypotheses and light penetration depth as discussed in Fig. 9(c). Using a CO₂-water system, a lower amount of H⁺ was produced, which was effectively consumed for CO production. On the other hand, using methanol, there is more possible generation of electrons and protons (H⁺) that are required for CH₄ formation.

Previously, CO₂ photoreduction with H₂O was examined in a cylindrical fixed-bed and monolith photoreactor and observed more CH₄ evolution with the fixed-bed than with the monolith photoreactor, which is helpful for CO formation [49]. Similarly, substantial CH₄ evolution over Ti₃AlC₂/TiO₂ composite photocatalyst was observed due to promising charge carrier separation [27]. On the other hand, a monolith photoreactor system with Ni-MMT loaded TiO₂ was helpful for selective CO production during reduction of CO₂ under UV-light [32]. This reveals promising performance of a monolithic system for selective CO formation. However, fixed bed photoreactor selectivity is greatly depends on the photocatalyst under observation.

Fig. 9. Effect of methanol and hydrogen sacrificial reagent on the performance of $V_2AIC/g-C_3N_4$ for photocatalytic CO₂ reduction under UV-light in a fixed bed photoreactor; (a) CO production; (b) CH₄ production.

The performance of the current work was further compared with the previous research, and the results are summarized in Table 1. Clearly, there is an increase in research on photocatalytic CO₂ reduction; however, in majority of works, CO has been reported as the main product. For example, the NiAl-LDH/g-C₃N₄/GA composite was tested for photocatalytic CO₂ reduction and CO as the main product with yield rate of 28.83 μ mol⁻¹ h⁻¹ was reported [50]. Similarly, in another development, a Ti₃C₂/BiOlO₃/g-C₃N₄ composite was tested under visible light irradiation and a CO yield rate of 5.88 μ mol⁻¹ h⁻¹ was achieved during the CO₂ reduction process. All these findings confirm the higher yield rate of CO and CH₄ over the V₂AlC/g-C₃N₄ composite due to the efficient design of the photoreactor and the proficient separation of charge carriers due to the presence of V₂AlC MAX.

3.3. Stability analysis

The stability and recyclability tests are imperative to estimate the photocatalyst's appropriateness for commercial acceptance. For this drive, the assessment of the V₂AlC/g-C₃N₄ composite was conducted in multiple cycles for photocatalytic reduction of CO₂ with a methanol-water mixture in a fixed bed system. After every completed cycle, the lamp was turned off and products from the reactor were cleaned with feed gases before starting the next cycle. Fig. 11(a) shows the performance of the composite photocatalyst for the production of CO and CH₄ in consecutive four cycles. Evidently,

Fig. 10. (a) Performance comparison between fixed-bed and monolith photoreactors for photocatalytic reduction of CO₂ by H₂O under UV-light; (b) Results of sacrificial reagent for photocatalytic reduction of CO₂ using monolith photoreactor; (c) Schematic illustration of single channel monolith for light and mass transfer process.

Table 1

Performance comparison of V₂AlC/g-C₃N₄ with previous various literature for photocatalytic CO₂ reduction over various photocatalysts.

Photocatalyst	Parameters/Reactor	Light source	Yield rate (μ mol g ⁻¹ h ⁻¹)	Ref.
V ₂ AlC/g-C ₃ N ₄	Fixed bed, CO ₂ -H ₂ O	200 W Hg lamp	CO= 1747	Current work
			CH ₄ = 67	
V ₂ AlC/g-C ₃ N ₄	Monolith reactor, CO ₂ -H ₂ O	200 W Hg lamp	CO=2765	Current work
			CH ₄ = 871.5	
NiAl-LDH/g-C ₃ N ₄ /GA	CO ₂ -water vapour	300 W Xe lamp	CO=28.83	[50]
GQDs/Bi ₂ WO ₆	200 mL Lab solar Reactor, 90 mL of DI water and 10 mL TEA,	300 W Xe lamp	CO= 43.9	[51]
NH2-UiO-66/SiC	200 mL quartz reactor	300 W Xe lamp	CO= 7.3	[52]
			CH ₄ = 0.26	
Ag-Cu ₂ O/TiO ₂	CO ₂ -water vapour, surface coated catalyst	300 Xenon lamp, AM 1.5 G filter,	CO= 13.19	[2]
			CH ₄ = 1.74	
Ti ₃ AlC ₂ /g-C ₃ N ₄ /TiO ₂	Fixed bed, CO ₂ -H ₂ O	35 W HID lamp	CH ₄ = 2103.5	[49]
			CO=297.26	
Ti ₃ AlC ₂ /g-C ₃ N ₄ /TiO ₂	Monolith reactor, CO_2 -H ₂ O	300 W Xenon lamp	CO= 1510.44	[49]
			CH ₄ = 139.77	
LaCoO ₃ /g-C ₃ N ₄	Fixed bed, CO ₂ -H ₂ O	35 W HID lamp	CO= 33.85	[53]
			CH ₄ = 12.13	
CoAlLa-LDH/g-C ₃ N ₄	Fixed bed, CO ₂ -H ₂ O	35 W HID lamp	CO= 17.85	[54]
			$CH_4 = 14.66$	
Ti ₃ C ₂ /BiOIO ₃ /g-C ₃ N ₄	CO ₂ -H ₂ O	Simulated sunlight	CO= 5.88	[21]
			CH ₄ = 1.55	

continuous CO and CH₄ evolution rates were observed over the entire irradiation using V₂AlC/g-C₃N₄ composite. The trends for CO and CH₄ production were consistent for four cycles. This reveals the higher stability of g-C₃N₄ with V₂AlC MAX for continuous CO and CH_4 generation during CO_2 photoreduction. More importantly, the somewhat increased CO production was observed after every cycle. This could probably due to intermediate carbon materials being reacted with oxygen and converted to CO during photocatalysis

Fig. 11. (a) Stability plots for CO and CH₄ evolution using V₂AlC/g-C₃N₄ for photocatalytic conversion of CO₂ with fixed-bed photoreactor; (b) Raman spectra of fresh and spent V₂AlC/g-C₃N₄ composite photocatalyst; (c) XRD analysis of fresh and spent V₂AlC/g-C₃N₄; (d) FTIR analysis of fresh and spent V₂AlC/g-C₃N₄ composite samples.

process. Previously, $2D/2D Ti_3C_2$ supported g-C₃N₄ has been tested for photocatalytic CO and CH₄ production during the CO₂ reduction and reported increased and decreased stability during multiple cycles of testing [40].

To further confirm the stability of the V₂AlC/g-C₃N₄ composite photocatalyst, Raman plots of both the fresh and spent samples are presented in Fig. 11(b). Apparently, identical Raman peaks were observed. This reveals that the composite photocatalyst was very stable and there was no alternation in peak position even after four cycles. Furthermore, spent V₂AlC/g-C₃N₄ was further characterized using XRD and the results are shown in Fig. 11(c). Both fresh and spent catalysts have identical peaks and any additional peaks were not identified, which confirms that the spent catalyst is pure and the composite was not oxidized or its structure was not changed. Fig. 11(d) shows FTIR analysis of g-C₃N₄, V₂AlC/g-C₃N₄ and spent $V_2AlC/g\mbox{-}C_3N_4$ samples. For the pristine $g\mbox{-}C_3N_4$ sample, the broad peaks in the range of 3000–3500 cm⁻¹ are attributed to N-H stretching vibration of amino groups and the O-H vibration due to adsorbed over the surface. The obvious peak at 1636 cm⁻¹ corresponds to stretching vibration of C-N, whereas four peaks between 1500 and 1400 cm⁻¹ belong to aromatic CN stretching vibration. Finally, the peak at 808 cm⁻¹ is attributed to breathing mode of triazine units [35,36]. All the characteristic peaks of $g-C_3N_4$ can be obviously found in the V₂AlC loaded g-C₃N₄ composite, confirming the intact structure of g-C₃N₄ in the composite and findings are in good agreement with Raman and XRD results. More importantly, fresh and spent V₂AlC/g-C₃N₄ composite samples have similar peak positions, confirming no change in peak position. Besides, additional peaks were not identified in the spent composite sample, which

further confirmed the high stability of the sample without any change in structure.

Obviously, all the characterizations, including Raman, XRD, and FTIR, analysis confirm that samples have identical band positions and additional peaks were not identified, which confirms that the spent catalyst composition is not changed. However, an increase in CO production during multiple cyclic runs would be due to more interaction between the elements and because of some organic residues, which are responsible for more CO production. Previously, we investigated WO₃/g-C₃N₄ for photocatalytic CO₂ reduction to CO and CH₄ and observed an increase in CO production in multiple cycles due to partial oxidation of the composite or because of adsorbed intermediate species converted to CO during multiple cycles [55]. Using a monolith photoreactor loaded with the Ni-MMT/TiO₂, obvious increment in H₂ evolution was detected during CO₂ reduction to CO and CH₄ under UV-light irradiation [32]. In another development, increased in CO production was observed in multiple cycles using a monolith photoreactor dispersed with Fe-clay/TiO₂ catalyst under UV-light irradiation [31]. In several other works, an increase in CO production in multiple cycles in the presence of monolith photoreactor has been reported [56]. All these findings support the present results; however, further investigations are required to understand the mechanics of such an increment in productivity in multiple cycles.

Previously, in various papers, photostability in cyclic runs for photocatalytic reduction of CO_2 has been investigated. For example, 2D Ti₃C₂ was anchored over g-C₃N₄ as a cocatalyst and observed to somewhat decline in photoactivity for CH₄ production in multiple cycles. The physicochemical properties of the spent composite were

Fig. 12. Schematic illustration for photocatalytic CO₂ reduction with H₂O over V₂AlC/g-C₃N₄ for the production of CO and CH₄.

analyzed using XRD, FTIR, and SEM, and no changes in morphology and structure were discovered [10]. Similarly, a declined in photoactivity in multiple cycles was observed when NiO/g-C₃N₄ was tested for photocatalytic CO₂ reduction to CO/CH₄ [9]. In general, a highly stable and effective V₂AlC/gC₃N₄ composite was found, which was beneficial for continuous CO and CH₄ production under all types of operating conditions.

3.4. Proposed reaction mechanism for CO₂ reduction

In photocatalysis, understanding reaction pathways is essential for promoting photocatalytic activity. As discussed, earlier, during CO_2 reduction with water and other sacrificial reagents, CO was observed as a potential product with considerable CH_4 production. The mechanism for CO_2 photoreduction with $V_2AlC/g-C_3N_4$ for the production of CO and CH_4 with fixed-bed and monolith photoreactor has been discussed in Fig. 12. When a catalyst is immobilized as thin film over the monolith surface, it provides a more illuminated active surface, allowing for more production of photoinduced charge carriers, as depicted in Fig. 12(a). The photogenerated charges over the g-C₃N₄ surface under light irradiation has potential to recombine due to their short lifetime. However, due to 2D/2D heterojunction construction between g-C₃N₄ and V₂AlC, there is a good interfacial coupling for separating photoinduced charges with their minimum recombination as portrayed in Fig. 12(b).

Using V₂AlC as the cocatalyst, higher separation of charges with their minimum recombination over the g-C₃N₄ surface was achieved due to higher electrical conductivity of MAX-based materials [57,58]. In a recent development, it has been reported that a suitable fermi level of V₂C with TiO₂, enabling proficient electron transfer within the interface [59]. Similarly, V₂AlC would also be promising to trap and transport electrons from g-C₃N₄ due to good interface interaction. The photogenerated holes would be used to oxidize water (Eq. 1), whereas, electrons accumulated over MAX surface would be consumed by CO₂ to produce CO and CH₄ as illustrated in Eqs. (2–4) [2,60].

$$H_2O + 2h^+ \rightarrow \frac{1}{2}O_2 + 2H^+$$
 (1.23 eV vs NHE) (1)

 $CO_2 + e^- \to \cdot CO_2^- \tag{2}$

 $CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$ (-0.48*eVvsNHE*) (3)

 $CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$ (-0.24*eVvsNHE*) (4)

Due to good interface interaction and the higher reduction potential of $g-C_3N_4$, production of CO was increased in significant amount compared to CH₄. This is obvious because CO requires two electrons compared with 8 electrons for CH₄ evolution. In addition, the conduction band of g-C₃N₄ (-1.33 eV) is more negative than the CO₂/CO reduction potential (-0.50 eV). Thus, the production of CO is a favorable process over the composite photocatalyst. In addition, the higher amount of CO evolution over V₂AlC/gC₃N₄ was due to additional generating and separating charge carriers under UV-light [61]. When monolith photoreactor was used, performance of V₂AlC/g-C₃N₄ was further increased due to the more light irradiation available for the production of electrons and because of more illuminated active surface of the monolithic surface.

4. Conclusions

The well-designed V₂AlC/g-C₃N₄ was effectively synthesized and its photoactivity was tested for CO₂ photoreduction under UV and visible light in a stainless steel fixed-bed and a monolith reactor. Using V₂AlC coupled g-CN nanotexture, CO and CH₄ as the main products were obtained under both types of lights sources and photoreactors. Under UV-light irradiation, the efficiency of V₂AlC/g-C₃N₄ composite was 4.13 folds higher than usingg-C₃N₄, which was clearly because of efficient separation of charges by V₂AlC MAX as the electron mediator. Furthermore, comparing light sources, higher CO and CH₄ amounts were obtained using UV-light irradiation due to more light penetration depth with more electron generation. Similarly, among the sacrificial reagents such as H₂O, CH₃OH, and H₂, highest CO yield was obtained with methanol as the sacrificial reagent due to additional charge generation. More interestingly, the monolith photoreactor was found promising to stimulate CO yield due to its more illuminated active surface compared to the fixed-bed photoreactor. On the other hand, CO₂-water was more favorable for CO evolution, whereas CO₂-methanol was more beneficial for CH₄ evolution in a monolith photoreactor. All these findings confirm the higher performance and stability of the V₂AlC/g-CN composite and would also be valuable for other photocatalytic energy and environmental applications.

CRediT authorship contribution statement

Beenish Tahir: Methodology, Writing – original draft, Reactions performance and material characterizations. **Muhammad Tahir:** Conceptualization, Data curation, Formal analysis, Funding acquisition, Writing – review & editing. **Mohd Ghazali Mohd Nawawai:** Supervision, Research management.

Data Availability

No data was used for the research described in the article.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to extend their appreciation to United Arab Emirates University (UAEU), United Arab Emirates (UAE) for the financial support of this research under Startup Research Grant (vote no.12N097).

References

- [1] L. Zhang, F. Wang, J. Zhu, B. Han, W. Fan, L. Zhao, W. Cai, Z. Li, L. Xu, H. Yu, W. Shi, CO₂ reforming with methane reaction over Ni@SiO₂ catalysts coupled by size effect and metal-support interaction, Fuel 256 (2019) 115954.
- [2] X. Wang, Z. Jiang, H. Chen, K. Wang, X. Wang, Photocatalytic CO₂ reduction with water vapor to CO and CH₄ in a recirculation reactor by Ag-Cu₂O/TiO₂ Z-scheme heterostructures, J. Alloy. Compd. 896 (2022) 163030.
- [3] H. Wang, S. Cheng, X. Cai, L. Cheng, R. Zhou, T. Hou, Y. Li, Photocatalytic CO₂ reduction to HCOOH over core-shell Cu@Cu₂O catalysts, Catal. Commun. 162 (2022) 106372.
- [4] W. Ma, M. Xie, S. Xie, L. Wei, Y. Cai, Q. Zhang, Y. Wang, Nickel and indium coreshell co-catalysts loaded silicon nanowire arrays for efficient photoelectrocatalytic reduction of CO₂ to formate, J. Energy Chem. 54 (2021) 422–428.
- [5] Q. Wang, L. Xiao, X. Liu, X. Sun, J. Wang, H. Du, Special Z-scheme Cu₃P/TiO₂ hetero-junction for efficient photocatalytic hydrogen evolution from water, J. Alloy. Compd. 894 (2022) 162331.
- [6] L. Wang, G. Huang, L. Zhang, R. Lian, J. Huang, H. She, C. Liu, Q. Wang, Construction of TiO₂-covalent organic framework Z-Scheme hybrid through coordination bond for photocatalytic CO₂ conversion, J. Energy Chem. 64 (2022) 85–92.
- [7] M.A. Ávila-López, E. Luévano-Hipólito, L.M. Torres-Martínez, Optimizing the CO₂ reduction to produce CH₃OH using flexible NiMoO₄ coatings as a photocatalyst, J. Alloy. Compd. 918 (2022) 165549.
- [8] M. Molina-Muriel, Y. Peng, H. García, A. Ribera, Increased photocatalytic activity and selectivity towards methane of trimetallic NiTiAl-LDH, J. Alloy. Compd. 897 (2022) 163124.
- [9] L. Wang, Y. Dong, J. Zhang, F. Tao, J. Xu, Construction of NiO/g-C₃N₄ p-n heterojunctions for enhanced photocatalytic CO₂ reduction, J. Solid State Chem. 308 (2022) 122878.
- [10] J. Hu, J. Ding, Q. Zhong, Ultrathin 2D Ti₃C₂ MXene Co-catalyst anchored on porous g-C₃N₄ for enhanced photocatalytic CO₂ reduction under visible-light irradiation, J. Colloid Interface Sci. 582 (Pt B) (2021) 647–657.
- [11] R.R. Ikreedeegh, M. Tahir, Facile fabrication of well-designed 2D/2D porous g-C₃N₄-GO nanocomposite for photocatalytic methane reforming (DRM) with CO₂ towards enhanced syngas production under visible light, Fuel 305 (2021) 121558.
- [12] X. Li, J. Xiong, X. Gao, J. Huang, Z. Feng, Z. Chen, Y. Zhu, Recent advances in 3D g-C₃N₄ composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO₂ reduction, J. Alloy. Compd. 802 (2019) 196–209.
- [13] L. Zeng, J.-W. Chen, L. Zhong, W. Zhen, Y.Y. Tay, S. Li, Y.-G. Wang, L. Huang, C. Xue, Synergistic effect of $Ru-N_4$ sites and $Cu-N_3$ sites in carbon nitride for highly selective photocatalytic reduction of CO_2 to methane, Appl. Catal. B 307 (2022) 121154.
- [14] M. Li, Y. Wu, E. Gu, W. Song, D. Zeng, Anchoring CuO nanospindles on g-C₃N₄ nanosheets for photocatalytic pollutant degradation and CO₂ reduction, J. Alloy. Compd. 914 (2022) 165339.
- [15] Q. Heng, B. Wang, X. Fan, W. Chen, X. Li, L. Mao, W. Shangguan, Enhanced photoreduction activity of CO₂ to CO over Ag-loaded mesoporous g-C₃N₄ (MCN) by promoting charge separation and CO₂ adsorption, J. Alloy. Compd. 920 (2022) 165945.
- [16] P. Wang, M. Yang, S. Tang, Y. Li, X. Lin, H. Zhang, Z. Zhu, F. Chen, Z-scheme heterojunctions composed of 3D graphene aerogel/g-C₃N₄ nanosheets/porous ZnO nanospheres for the efficient photocatalytic reduction of CO₂ with H₂O under visible light irradiation, J. Alloy. Compd. 918 (2022) 165607.
- [17] C. Sun, Y. Liu, Z. Wang, P. Wang, Z. Zheng, H. Cheng, X. Qin, X. Zhang, Y. Dai, B. Huang, Self-assembled g-C₃N₄ nanotubes/graphdiyne composite with enhanced photocatalytic CO₂ reduction, J. Alloy. Compd. 868 (2021) 159045.
- [18] Y. Li, Z. Liu, Z. Li, Q. Wang, Renewable biomass-derived carbon-supported g-C₃N₄ doped with Ag for enhanced photocatalytic reduction of CO₂, J. Colloid Interface Sci. 606 (2) (2022) 1311–1321.

- [19] F. Sarwar, M. Tahir, H. Alias, Synergistic effect of photo-reduced Ni–Ag loaded g-C₃N₄ nanosheets for efficient visible Light-Driven photocatalytic hydrogen evolution, Mater. Sci. Semicond. Process. 137 (2022) 106187.
- [20] M. Arumugam, M. Tahir, P. Praserthdam, Effect of nonmetals (B, O, P, and S) doped with porous g-C₃N₄ for improved electron transfer towards photocatalytic CO₂ reduction with water into CH₄, Chemosphere 286 (Pt 2) (2021) 131765.
- [21] L.-f Hong, R.-t Guo, Y. Yuan, X.-y Ji, Z.-d Lin, X.-f Yin, W.-g Pan, 2D Ti₃C₂ decorated Z-scheme BiOIO₃/g-C₃N₄ heterojunction for the enhanced photocatalytic CO₂ reduction activity under visible light, Colloids Surf. A 639 (2022) 128358.
- [22] P. Bhavani, M. Hussain, Y.-K. Park, Recent advancements on the sustainable biochar based semiconducting materials for photocatalytic applications: a state of the art review, J. Clean. Prod. 330 (2022) 129899.
- [23] Z. Wu, C. Li, Z. Li, K. Feng, M. Cai, D. Zhang, S. Wang, M. Chu, C. Zhang, J. Shen, Z. Huang, Y. Xiao, G.A. Ozin, X. Zhang, L. He, Niobium and titanium carbides (MXenes) as superior photothermal supports for CO₂ photocatalysis, ACS Nano 15 (3) (2021) 5696–5705.
- [24] W. Yang, G. Ma, Y. Fu, K. Peng, H. Yang, X. Zhan, W. Yang, L. Wang, H. Hou, Rationally designed Ti₃C₂ MXene@TiO₂/CulnS₂ Schottky/S-scheme integrated heterojunction for enhanced photocatalytic hydrogen evolution, Chem. Eng. J. 429 (2022) 132381.
- [25] S. Venkateshalu, A.N. Grace, MXenes—A new class of 2D layered materials: synthesis, properties, applications as supercapacitor electrode and beyond, Appl. Mater. Today 18 (2020) 100509.
- [26] S. Zada, H. Lu, F. Yang, Y. Zhang, Y. Cheng, S. Tang, W. Wei, Y. Qiao, P. Fu, H. Dong, X. Zhang, V₂C nanosheets as dual-functional antibacterial agents, ACS Appl. Bio Mater. 4 (5) (2021) 4215–4223.
- [27] M. Tahir, B. Tahir, Constructing a stable 2D/2D heterojunction of oxygen-clustermodified Ti₃AlC₂ MAX cocatalyst with proton-rich C₃N₄ for highly efficient photocatalytic CO₂ methanation, Ind. Eng. Chem. Res. 59 (21) (2020) 9841–9857.
- [28] M. Tahir, Enhanced photocatalytic CO₂ reduction to fuels through bireforming of methane over structured 3D MAX Ti₃AlC₂/TiO₂ heterojunction in a monolith photoreactor, J. CO₂ Util. 38 (2020) 99–112.
- [29] V. Presser, M. Naguib, L. Chaput, A. Togo, G. Hug, M.W. Barsoum, First-order Raman scattering of the MAX phases: Ti₂AlN, Ti₂AlC_{0.5}N_{0.5}, Ti₂AlC, (Ti_{0.5}V_{0.5})₂AlC, V₂AlC, Ti₃AlC₂, and Ti₃GeC₂, J. Raman Spectrosc. 43 (1) (2012) 168–172.
 [30] X. Yang, Y. Zhang, Z. Fu, Z. Lu, X. Zhang, Y. Wang, Z. Yang, R. Wu, Tailoring the
- [30] X. Yang, Y. Zhang, Z. Fu, Z. Lu, X. Zhang, Y. Wang, Z. Yang, R. Wu, Tailoring the electronic structure of transition metals by the V₂C MXene support: excellent oxygen reduction performance triggered by metal-support interactions, ACS Appl. Mater. Interfaces 12 (25) (2020) 28206–28216.
- [31] M. Tahir, Photocatalytic carbon dioxide reduction to fuels in continuous flow monolith photoreactor using montmorillonite dispersed Fe/TiO₂ nanocatalyst, J. Clean. Prod. 170 (2018) 242–250.
- [32] M. Tahir, B. Tahir, Z.Y. Zakaria, A. Muhammad, Enhanced photocatalytic carbon dioxide reforming of methane to fuels over nickel and montmorillonite supported TiO₂ nanocomposite under UV-light using monolith photoreactor, J. Clean. Prod. 213 (2019) 451–461.
- [33] M. Madi, M. Tahir, Fabricating V₂AlC/g-C₃N₄ nanocomposite with MAX as electron moderator for promoting photocatalytic CO₂-CH₄ reforming to CO/H₂, Int. J. Energy Res. (2022) 1–20.
- [34] S. Yin, L. Sun, Y. Zhou, X. Li, J. Li, X. Song, P. Huo, H. Wang, Y. Yan, Enhanced electron-hole separation in SnS₂/Au/g-C₃N₄ embedded structure for efficient CO₂ photoreduction, Chem. Eng. J. 406 (2021) 126776.
- [35] H. Li, Y. Jing, X. Ma, T. Liu, L. Yang, B. Liu, S. Yin, Y. Wei, Y. Wang, Construction of a well-dispersed Ag/graphene-like g-C₃N₄ photocatalyst and enhanced visible light photocatalytic activity, RSC Adv. 7 (14) (2017) 8688–8693.
- [36] I. Papailias, T. Giannakopoulou, N. Todorova, D. Demotikali, T. Vaimakis, C. Trapalis, Effect of processing temperature on structure and photocatalytic properties of g-C₃N₄, Appl. Surf. Sci. 358 (2015) 278–286.
- [37] X. Wang, D. Zhang, H. Zhang, L. Gong, Y. Yang, W. Zhao, S. Yu, Y. Yin, D. Sun, In situ polymerized polyaniline/MXene (V₂C) as building blocks of supercapacitor and ammonia sensor self-powered by electromagnetic-triboelectric hybrid generator, Nano Energy 88 (2021) 106242.
- [38] E. Ghasali, Y. Orooji, A. Azarniya, M. Alizadeh, M. Kazem-zad, Touradj Ebadzadeh, Production of V₂C MXene using a repetitive pattern of V₂AlC MAX phase through microwave heating of Al-V₂O₅-C system, Appl. Surf. Sci. 542 (2021) 148538.
- [39] Q. Tang, Z. Sun, S. Deng, H. Wang, Z. Wu, Decorating g-C₃N₄ with alkalinized Ti₃C₂ MXene for promoted photocatalytic CO₂ reduction performance, J. Colloid Interface Sci. 564 (2020) 406–417.
- [40] C. Yang, Q. Tan, Q. Li, J. Zhou, J. Fan, B. Li, J. Sun, K. Lv, 2D/2D Ti₃C₂ MXene/g-C₃N₄ nanosheets heterojunction for high efficient CO₂ reduction photocatalyst: dual effects of urea, Appl. Catal. B 268 (2020) 118738.
- [41] M. Tahir, B. Tahir, 2D/2D/2D O-C₃N₄/Bt/Ti₃C₂Tx heterojunction with novel MXene/clay multi-electron mediator for stimulating photo-induced CO₂ reforming to CO and CH₄, Chem. Eng. J. 400 (2020) 125868.
- [42] M. Tahir, B. Tahir, In-situ growth of TiO₂ imbedded Ti₃C₂T_A nanosheets to construct PCN/Ti₃C₂T_A MXenes 2D/3D heterojunction for efficient solar driven photocatalytic CO₂ reduction towards CO and CH₄ production, J. Colloid Interface Sci. 591 (2021) 20–37.
- [43] Q. Wang, L. Zhang, Y. Guo, M. Shen, M. Wang, B. Li, J. Shi, Multifunctional 2D porous g-C₃N₄ nanosheets hybridized with 3D hierarchical TiO₂ microflowers for selective dye adsorption, antibiotic degradation and CO₂ reduction, Chem. Eng. J. 396 (2020) 125347.
- [44] W.K. Fan, M. Tahir, Recent developments in photothermal reactors with understanding on the role of light/heat for CO₂ hydrogenation to fuels: a review, Chem. Eng. J. 427 (2022) 131617.

- [45] X. Wang, Z. Wang, Y. Bai, L. Tan, Y. Xu, X. Hao, J. Wang, A.H. Mahadi, Y. Zhao, L. Zheng, Y.-F. Song, Tuning the selectivity of photoreduction of CO₂ to syngas over Pd/layered double hydroxide nanosheets under visible light up to 600 nm, J. Energy Chem. 46 (2020) 1–7.
- **[46]** A. Bafaqeer, M. Tahir, N.A.S. Amin, A.R. Mohamed, M.A.C. Yunus, Fabricating 2D/ 2D/2D heterojunction of graphene oxide mediated $g-C_3N_4$ and ZnV_2O_6 composite with kinetic modelling for photocatalytic CO_2 reduction to fuels under UV and visible light, J. Mater. Sci. 56 (16) (2021) 9985–10007.
- [47] S. Tasleem, M. Tahir, Investigating the performance of liquid and gas phase photoreactors for dynamic H₂ production over bimetallic TiO₂ and Ni₂P dispersed MAX Ti₃AlC₂ monolithic nanocomposite under UV and visible light, J. Environ. Chem. Eng. 9 (4) (2021) 105351.
- [48] S. Tasleem, M. Tahir, Z.Y. Zakaria, Fabricating structured 2D Ti₃AlC₂ MAX dispersed TiO₂ heterostructure with Ni₂P as a cocatalyst for efficient photocatalytic H₂ production, J. Alloy. Compd. 842 (2020) 155752.
- [49] M. Tahir, B. Tahir, Constructing S-scheme 2D/0D g-C₃N₄/TiO₂ NPs/MPs heterojunction with 2D-Ti₃AlC₂ MAX cocatalyst for photocatalytic CO₂ reduction to CO/ CH₄ in fixed-bed and monolith photoreactors, J. Mater. Sci. Technol. 106 (2022) 195–210.
- [50] M. Yang, P. Wang, Y. Li, S. Tang, X. Lin, H. Zhang, Z. Zhu, F. Chen, Graphene aerogel-based NiAl-LDH/g-C₃N₄ with ultratight sheet-sheet heterojunction for excellent visible-light photocatalytic activity of CO₂ reduction, Appl. Catal., B 306 (2022) 121065.
- [51] S. Xiong, S. Bao, W. Wang, J. Hao, Y. Mao, P. Liu, Y. Huang, Z. Duan, Y. Lv, D. Ouyang, Surface oxygen vacancy and graphene quantum dots co-modified Bi₂WO₆ toward highly efficient photocatalytic reduction of CO₂, Appl. Catal. B 305 (2022) 121026.
- [52] S. Xiao, Y. Guan, H. Shang, H. Li, Z. Tian, S. Liu, W. Chen, J. Yang, An S-scheme NH₂-UiO-66/SiC photocatalyst via microwave synthesis with improved CO₂ reduction activity, J. CO₂ Util. 55 (2022) 101806.

- [53] M. Madi, M. Tahir, Highly stable LaCoO₃ perovskite supported g-C₃N₄ nanotextures with proficient charges migration for visible light CO₂ photoreduction to CO and CH₄, Mater. Sci. Semicond. Process. 142 (2022) 106517.
- [54] A.A. Khan, M. Tahir, A.R. Mohamed, Constructing S-scheme heterojunction of carbon nitride nanorods (g-CNR) assisted trimetallic CoAlLa LDH nanosheets with electron and holes moderation for boosting photocatalytic CO₂ reduction under solar energy, Chem. Eng. J. 433 (2022) 133693.
- [55] B. Tahir, M. Tahir, M.G.M. Nawawi, Highly stable 3D/2D WO₃/g-C₃N₄ Z-scheme heterojunction for stimulating photocatalytic CO₂ reduction by H₂O/H₂ to CO and CH₄ under visible light, J. CO₂ Util. 41 (2020) 101270.
- [56] M. Tahir, Synergistic effect in MMT-dispersed Au/TiO₂ monolithic nanocatalyst for plasmon-absorption and metallic interband transitions dynamic CO₂ photoreduction to CO, Appl. Catal. B 219 (2017) 329–343.
- [57] Q. He, H. Hu, Y. Shao, Z. Zhao, Switchable optical nonlinear properties of monolayer V₂CTX MXene, Optik 247 (2021) 167629.
- [58] Y. Liu, Y. Jiang, Z. Hu, J. Peng, W. Lai, D. Wu, S. Zuo, J. Zhang, B. Chen, Z. Dai, Y. Yang, Y. Huang, W. Zhang, W. Zhao, W. Zhang, L. Wang, S. Chou, In-situ electrochemically activated surface vanadium valence in V₂C MXene to achieve high capacity and superior rate performance for Zn-ion batteries, Adv. Funct. Mater. 31 (8) (2020).
- [59] Y. Feng, F. Zhou, M. Bo, Y. Huang, Q. Deng, C. Peng, Enabling high dielectric response in PVDF/V₂C MXene-TiO₂ composites based on nontypical V-F-Ti bonding and fermi-level overlapping mechanisms, J. Phys. Chem. C. 124 (50) (2020) 27780–27789.
- [60] L. Wang, Z. Zhang, Q. Han, Y. Liu, J. Zhong, J. Chen, J. Huang, H. She, Q. Wang, Preparation of CdS-P25/ZIF-67 composite material and its photocatalytic CO₂ reduction performance, Appl. Surf. Sci. 584 (2022) 152645.
- [61] C. Prasad, X. Yang, Q. Liu, H. Tang, A. Rammohan, S. Zulfiqar, G.V. Zyryanov, S. Shah, Recent advances in MXenes supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications, J. Ind. Eng. Chem. 85 (2020) 1–33.