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A B S T R A C T   

Developing a gravimetric geoid model requires gravity data covering the whole surface of the earth. In practice, 
terrestrial data within a spherical cap is used, causing a truncation error, which may be minimised if the 
terrestrial data is combined with a Global Geopotential Model (GGM). The choice of a GGM that fits the observed 
terrestrial data best, determines the accuracy of a gravimetric geoid solution. In this study, the most recent and 
high-resolution GGMs are selected and compared, both geometrically and spectrally with a view to selecting an 
optimum GGM for future geoid modelling in Kenya. In the first step, thirty-one GGMs are evaluated using 55 
GNSS-levelled points scattered over 4 regions and gravity data distributed over the entire territory of Kenya. In 
the second step, some of the best performing GGMs are further compared using the spectral information con-
tained in their spherical harmonic coefficients. After removal of systematic errors, the EGM2008 model showed 
some advantage over other GGMs with a standard deviation of 40.89 cm. Other high-resolution geoid models 
perform well in terms of recovering geoid heights in Kenya with a standard deviation of <42 cm. In terms of 
residual gravity anomalies, the EIGEN-6C4 model showed the best fit with a standard deviation of 6.892 mGal. In 
the spectral analysis, the XGM2016 provided the best results among the models evaluated. Based on the overall 
performance in all areas of evaluation, the SGG-UGM-1 and SGG-UGM-2 were considered best for geoid 
modelling in Kenya.   

1. Introduction 

To create a gravimetric geoid model, the Stokes integral equations 
are extensively employed to derive geoidal undulations from terrestrial 
gravity measurements at points on or above the earth’s surface. These 
formulae require gravity data covering the whole earth, but, in practice, 
discrete gravity data is available only within a spherical cap. A trunca-
tion error is caused by the lack of gravity data, which can be reduced by 
merging terrestrial data with a global geopotential model (GGM). Ac-
cording to Kearsley and Holloway (1989), a GGM’s capacity to retrieve 
geoid heights varies greatly depending on the points’ position and the 

GGM’s maximum degree nmax. For optimal gravimetric geoid determi-
nation, a GGM that fits the local gravity field in terms of observed 
gravity field functionals (geoid undulations, free air anomalies, etc.) 
must be adopted, since this decreases the impact of the inherent as-
sumptions and approximations in the Stokes formulas. This can be 
accomplished by comparing gravity field functionals derived from 
GGMs with those obtained from GNSS-leveling and terrestrial gravity 
data. 

In Kenya, the task of determining the geopotential model that best 
represents the local gravity field has yet to be resolved. Only one geoid 
model has been determined so far, that is unique to the country. The 
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GEM10B geopotential model was used to create this model, with co-
efficients up to the maximum degree and order 36 (Gachari and Olliver, 
1986). Since then, high-quality GGMs have been produced using mea-
surements or combination of measurements collected from terrestrial 
and advanced satellite missions, with a spatial resolution of 9 km and a 
maximum degree of 2190 (Ince et al., 2019). Such measurements are in 
terms of satellite orbital perturbations computed from GNSS measure-
ments, satellite laser ranging (SLR) observations, range rate measure-
ments between two satellites using microwave and laser, and gravity 
gradients and non-gravitational accelerations measured using 
space-borne sensors (Ince et al., 2019). 

Few studies have been made to assess the suitability of GGMs over 
Kenya. In Odera (2016), the suitability of Earth Gravitational Model 
2008 (EGM2008) was assessed within Nairobi County and its metro-
politan area, using GPS-levelling geoid undulations and free-air gravity 
anomalies. In Odera (2020), an assessment was done of high-resolution 
GGMs (EIGEN-6C4, SGG-UGM-1, EGM 2008, and GECO) using observed 
free-air gravity anomalies distributed all over Kenya and GPS-levelling 
points within Nairobi county. In both previous studies, only 18 
GNSS-levelling points within the Nairobi metropolitan area were used. 

Global geopotential models are available from the International 
Centre for Global Earth Models (ICGEM). ICGEM is a service that pro-
vides scientists with a collection of global gravity field models that are 
either static or temporal. Furthermore, through its website (http: 
//icgem.gfzpotsdam.de/ICGEM/-ICGEM.html), ICGEM has developed 
and operated an interactive calculation and visualization service for 
computing gravity field functionals on user-defined grids or points, 
where about 180 GGMs are available. The website has a summary of the 
datasets used in the computation of the models, where A represents 
altimetry, S is for satellite (e.g., GRACE, GOCE, LAGEOS), G for 

terrestrial, ship-borne and/or airborne measurements, and T for topog-
raphy. Therefore, the precision, as well as the maximum degree of the 
GGMs, vary significantly. With the number of geopotential models 
growing every year, it will be difficult for the user to select the optimum 
model for their regional modelling without testing each model. 

The aim of this study is to evaluate the performance of the most 
recent and high-resolution GGMs available at ICGEM for future geoid 
modelling in Kenya. A rigorous scheme is used by first filtering the 
models using GNSS geoid undulations and observed gravity anomalies, 
then analyzing the spectral information contained in the GGMs to obtain 
the optimum model(s) for future geoid modelling in Kenya. 

2. Data used 

The dataset used in the present study include the most recent and 
highest resolution GGMs, GNSS-levelled points and point free-air gravity 
anomalies. The dataset is described in the following subsections. 

2.1. Global geopotential models 

A total of 31 GGMs, which are either greater than 360 by degree or 
were developed in the last ten years, were selected for the study. The 
GGMs span a wide range of models with various input data combinations 
(e.g., altimetry data, satellite tracking data and, terrestrial gravity data), 
as well as diversity in degree and order. Some bias is also made towards 
models with a proven track record, having been used in other parts of 
the world, especially in the vicinity of the study area. Even though they 
are older than the other GGMs, the EGM96 and EGM2008 models have 
been included in the study, both for historical reasons and for the fact 
that they have never been utilized for gravimetric geoid modelling in 
Kenya. The GEM10B model, having been used in Kenya as previously 
mentioned, was included in the study for obvious reasons. The spherical 
harmonic coefficient files of the GGMs were downloaded from the 
ICGEM website, and their specifications are shown in Table 1. 

2.2. GNSS-levelled points 

The vertical datum in Kenya is realized by a network of spirit- 
levelled points referred to a tide gauge, constructed within the Kilin-
dini old port, at the coastal city of Mombasa in 1931. The mean sea level 
or tidal observations were made for a period of one year, followed by the 
first geodetic levelling exercise, which began in 1949 with the con-
struction of benchmarks (Odera, 2016). The actual precise levelling was 
carried out between 1950 and 1958. The levelling was done along the 
railway line from Mombasa through Nairobi and joined the Uganda 
levelling network at Tororo and Buteba. For more information on the 
Kenyan vertical control network, one may refer to, e.g. Odera (2016). A 
total of 78 GNSS-levelling benchmarks from different parts of Kenya, 
namely, coastal, central and western parts, were used to evaluate the 
GGMs. The Directorate of Surveys of Kenya made GNSS observations 
(comprising of latitude, longitude and ellipsoidal heights) on these 
benchmarks, to enhance the security of tenure along riparian areas 
(personal communication with Director of Surveys). Table 2 shows the 
statistics of the data points. As seen in the table, the orthometric height 
varies from 4m to 2144m, suggesting a vast variance in Kenya’s 
topography. 

Table 1 
Earth Gravity models used.  

S/ 
N 

Model Year Degree Data 

1 SGG-UGM-2 2020 2190 A, EGM 2008, Grace 
(GOCE) 

2 XGM 2019e_2159 2019 2190 A, G, S (GOCO06s), T 
3 XGM 2019e 2019 5540 A, G, S (GOCO06s), T 
4 XGM2019 2019 760 A, G, S (GOCO06s), T 
5 ITSG-Grace2018s 2019 200 S (Grace) 
6 GOCO06s 2019 300 S 
7 GO_CONS_GCF_2_TIM_R6 2019 300 S (Goce) 
8 GO_CONS_GCF_2_DIR_R6 2019 300 S 
9 IGGT_R1C 2018 240 G, S, S (Grace) 
10 Tongji-Grace02k 2018 180 S (Grace) 
11 SGG-UGM-1 2018 2159 EGM 2008, S (Goce) 
12 GOSG01S 2018 220 S (Goce) 
13 IGGT_R1 2017 240 S (Goce) 
14 IfE_GOCE05s 2017 250 S 
15 GO_CONS_GCF 

_2_SPW_R5 
2017 330 S (Goce) 

16 XGM2016 2017 719 A, G, S (GOCO05s) 
17 Tongji-Grace02s 2017 180 S (Grace) 
18 NULP-02s 2017 250 S (Goce) 
19 EIGEN-6C4 2014 2190 A, G, S (Goce, Grace, 

Lageos) 
20 GO_CONS_GCF_2_DIR_R5 2014 300 S (Goce, Grace, Lageos) 
21 GO_CONS_GCF_2_TIM_R4 2013 250 S (Goce) 
22 GO_CONS_GCF_2_TIM_R3 2011 250 S (Goce) 
23 GO_CONS_GCF_2_TIM_R2 2011 250 S (Goce) 
24 GOCO02s 2011 250 S (Goce, Grace) 
25 EGM2008 2008 2190 A, G, S (Grace) 
26 EIGEN-GL04C 2006 360 A, G, S (Grace, Lageos) 
27 eigen-cg03c 2005 360 A, G, S (Champ, Grace) 
28 EIGEN-CHAMP03S 2004 140 S(Champ) 
29 EGM96 1996 360 A, EGM96S, G 
30 EIGEN-2 2003 140 S(Champ) 
31 GEM10b 1978 36 A, GEM10 

Notes: Data: S = Satellite tracking data, G = Gravity data, A = Altimetry data. 
Source: ICGEM page: icgem.gfz-postdam.de/tom_longtime 

Table 2 
Statistics for height and gravity data used (Units in mGal for anomalies and 
metres otherwise).   

Min Max Mean Std Dev. 

Ellipsoidal height (h) − 24.546 − 4.327 − 11.858 6.000 
Orthometric height (H) 4.240 2144.200 1108.005 805.880 
Observed undulations (h-H) − 29.643 − 28.131 − 28.812 0.354 
Observed Free air Anomalies − 126.980 1094.186 76.835 231.168  
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Even though the data has a wide range of the Kenyan topography, it 
may not completely represent the whole country. However, the dataset 
can be used to evaluate and select a suitable GGM for geoid modelling in 
Kenya. GNSS observations on the benchmarks is an ongoing exercise by 
the Department of Surveys in Kenya, and results of such an exercise will 
be used to validate any future geoid models. Fig. 1 shows the positions of 
the gravity and GNSS/levelling points used in the current study. 

2.3. Gravity data 

In Kenya, gravity data comprises of gravity accelerations and Bou-
guer anomaly maps on land and ocean surface. According to Searle 
(1970), gravity observations began around 1899 and continued up to 
1967. In Swain and Khan (1978), a detailed catalogue of terrestrial 
gravity data and resulting Bouguer anomaly maps for republic of Kenya 
is presented. Various companies and organizations/institutions 
collected the data, e.g., Leicester University, Overseas Geological Sur-
veys, Newcastle University, British Petroleum, Burmah Oil Trading, 
United Nations Geothermal Project and Chevron Overseas Petroleum. A 
majority of the Gravity observations were made with a LaCoste & 
Romberg gravimeter and were based on the IGSN71 datum, having been 
referred to the Nairobi pendulum station. An estimated accuracy of 
between ±1 to ±10 gu, which translates to ±0.1 to ±1 mGal was posted 
for the gravity data (Odera, 2016). Unfortunately, gravity data sets 
recorded by petroleum corporations after 1975 are scanty and secluded 
in both distribution and format, besides being not accessible for this 
study. If available, these gravity measurements will increase the preci-
sion of geoid modeling and other geoscience applications in the country. 
This study used gravity acceleration data from the Bureau Gravime-
trique International (BGI). 

3. Method 

A global geopotential model is essentially a collection of dimen-
sionless, fully normalized spherical harmonic coefficients Cnm and Snm 
with their errors δCnm and δSnm that can be used to simulate the earth’s 
gravity field. These coefficients are calculated using satellite data or a 
combination of satellite and terrestrial gravity data (Rapp, 1974). The 
coefficients can be used to calculate geoid undulations, height anoma-
lies, gravity anomalies, gravity disturbances and vertical deflections, as 
well as other gravity field functionals implied by the corresponding 
GGMs. In evaluating the suitability of GGMs for a particular region, such 

functionals are compared with observed quantities. 
The evaluation of the selected GGMs may be carried out either 

internally or externally. The internal evaluation is global in nature, in 
the sense that it compares the spectral information of the GGMs as 
derived from their spherical harmonics, and the results are applicable to 
all parts of the world. This information includes the signal power and the 
formal geoid errors of the GGMs. On the other hand, external validation 
uses statistical analysis of the differences of the various functionals of 
the disturbing potential between those observed and those synthesized 
from the GGM. In this study, only geoid undulations and free air 
anomalies are used because other observed data such as gravity dis-
turbances, vertical deflections and vertical gradients, were not available. 

3.1. Synthesis of gravity field functionals from GGMs 

The disturbing potential, T with respect to a point P in space may be 
given by the expansion (Heiskanen and Moritz, 1967; Torge, 2001; 
Ågren, 2004): 

T(P)=
∑∞

n=2

(
R
rp

)n+1

Tn(P) (1)  

where R denotes the mean Earth radius, rP is the distance of P from the 
origin, and Tn are the surface spherical harmonics of T given by (Heis-
kanen and Moritz, 1967; Torge, 2001; Ågren, 2004): 

Tn =
GM

r
∑n

m=0
[Cnm cos(mλ)+ Snmsin(mλ)]Pnmcos(θ) (2)  

in which GM is the geocentric gravitational constant, a is a scaling 
parameter associated with the GGM, Cnm and Snm are the fully 
normalized spherical harmonic coefficients , Pnm are the fully normal-
ized associated Legendre functions of degree n and order m, (φ, λ) are 
spherical polar coordinates of point P and θ = 90 − φ is the co-latitude of 
the point. The coefficients Cnm (n is even and m= 0) are referred to an 
ellipsoid of a given flattening. 

Geoid undulations may be obtained by combining equation (2) with 
the Brun’s equation to obtain (Heiskanen and Moritz, 1967; Gachari and 
Olliver, 1986; Torge, 2001; Ågren, 2004; Sideris, 2011): 

Nggm =N0 +
GM
γr
∑nmax

n=2

(a
r

)n∑n

m=0
[CnmCos(mλ)+ SnmSin(mλ)]PnmSin(φ) (3)  

where r, λ, φ are the coordinates of the computation point reduced to 
the geoid, nmax is the maximum degree of the geopotential model, and 
other variables are as previously defined. 

Gravity anomalies may also be synthesized from the spherical har-
monic coefficients using (Heiskanen and Moritz, 1967; Gachari and 
Olliver, 1986; Torge, 2001; Ågren, 2004; Sideris, 2011): 

Δgggm =Δg0

+
GM
r2

∑nmax

n=2

(a
r

)n
(n − 1)

∑n

m=0
[CnmCos(mλ)+ SnmSin(mλ)]PnmSin(φ) (4)  

where variables are as previously defined. 

3.2. Zero-degree terms 

In equations (3) and (4), the terms N0 and Δg0 are components of the 
zero-degree terms for geoid undulations and gravity anomalies, with 
respect to the reference normal ellipsoid, respectively. They account for 
the differences in the masses and potential between the geopotential 
model used and the reference ellipsoid and enable the geoid undulation 
and gravity anomalies to be referenced to a specific equipotential sur-
face with W0 and GME values. They may be determined from the 
formulae (Heiskanen and Moritz, 1967; Kirby and Featherstone, 1997): 

Fig. 1. Location of data points; blue dots represent the gravity stations, while 
the red triangles represent the GNSS-Levelled benchmarks. 
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N0 =
GM − GME

Rγ
−

W0 − U0

γ
(5)  

Δg0 =
GME − GM0

R2 −
2(W0 − U0)

R
(6)  

where the parameters GME and U0 correspond to the Somigliana-Pizzeti 
normal gravity field produced by the normal ellipsoid (Moritz, 1992), 
and other parameters are as previously defined. 

3.3. Permanent tide 

Most of the 31 GGMs used in the study are in the tide free system. A 
few, including 8 of the most recent ones, are in the zero-tide system. In 
terms of spherical harmonic coefficients, only the C20 coefficient is 
affected by the permanent tide. To ensure an unbiased evaluation of the 
models, the C20 coefficients of all the GGMs may be transformed into one 
system using the relation (Rapp et al., 1991; Zhang et al., 2020): 

CT − F
20 =CZ− T

20 + 3.1108 × 10− 8 ×
0.3̅̅̅

5
√

where CT− F
20 and CZ− T

20 are the harmonic coefficients under the tide- 
free and zero-tide systems, respectively. 

3.4. Comparison of spectral information of GGMs 

3.4.1. Degree variances and error degree variances 
Using the spherical harmonic coefficients, the signal and error de-

gree variances of the disturbing potential may be computed from (Ustun 
and Abbak, 2010; Tsoulis et al., 2011): 

cn = k2
∑n

m=0

(
Cnm

2
+ Snm

2) (7) 

And the error degree variances by (Ustun and Abbak, 2010; Tsoulis 
et al., 2011): 

δcn = k2
∑n

m=0

(
δCnm

2
+ δSnm

2) (8) 

If the appropriate eigen value, k is inserted in equations (7) and (8) 
all functionals of the gravity field may be computed. The factors of k 
corresponding to the various functionals of the disturbing potential are 
given in Table 3. 

The signal degree variance signifies the amount of signal power 
implied by all the coefficients within a specific degree and is commonly 
referred to as the power spectrum (Ustun and Abbak, 2010; Tsoulis 
et al., 2011). The error degree variance, on the other hand, is an 
expression of how much signal power error of a given anomalous 
quantity exists for all the coefficients of a specific degree. The variation 
of power spectra with the degree may therefore be used to describe the 
rate of decay of the anomalous signal as the degree increases. 

3.4.2. Root mean square error 
The root mean square (RMS) by degree of gravity functionals may be 

obtained by taking the square root of the degree variances (Rapp, 1973; 
Ustun and Abbak, 2010; Tsoulis et al., 2011): 

crms
n = k

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

m=0

(
Cnm

2
+ Snm

2)

n2

√

(9) 

While the overall RMS may be obtained from (Ustun and Abbak, 
2010; Tsoulis et al., 2011): 

σT =

(
∑∞

n=2
crms

n

)1
2

(10) 

In the current study, the root mean squares of geoidal undulations 
and gravity anomalies were estimated by the wavelength of the selected 
geopotential models. Four wavelength types were selected as defined in 
Rapp (1973):  

1. Long wavelengths: gravity field functional information contained 
from degrees n = 2 to n = 10, equivalent to a linear half-wavelength 
of 2000 km and more.  

2. Intermediate wavelength: for the gravity field functional information 
contained in degrees n = 11 to n = 100 equivalent to a linear half- 
wavelength of 200–2000 km.  

3. Short wavelength: gravity field functional information contained in 
degrees n = 101 to n = 1000 equivalent to a linear half-wavelength 
of 20–200 km. 

4. Very short wavelength: gravity field functional information con-
tained in degrees 1001 to ∞ equivalent to a linear half-wavelength 
less than 20 km. 

In total, the RMS of the point geoid gravity functionals may be 
expressed in terms of the wavelength components using (Rapp, 1973): 

σT = σ2,10
2 + σ11,100

2 + σ101,1000
2 + σ>1000

21
2 (11)  

3.4.3. Signal to noise ratio 
The signal-to-noise (SNR) ratio may be computed both cumulatively 

or by degree. The signal by degree may be obtained from (Tziavos et al., 
2015) 

Snr =
cn

δcn
(12)  

3.4.4. Omission and commission errors 
Global geopotential models are subject to two types of data errors; 

the commission errors, which involve the noise in the observations that 
were used to calculate the GGM spherical harmonic coefficients, and the 
omission error, arising due to limitations of the GGMs not to include the 
frequencies beyond the maximum degree (Wang, 2012). Omission errors 
may be estimated from global degree variances using the equation 
(Wang, 2012): 

Table 3 
Signal factors of some gravity functionals (Ustun and Abbak, 2010).  

Gravity functional Symbol Factor, k unit 

signal c 1 unit − less 
Disturbing potential T GM

R 
m2s− 2 

Geoid height N R m 
Gravity anomaly Δg GM

R2 (n − 1)105 mgal 

Gravity disturbance δg GM
R2 (n + 1)105 mgal 

Vertical deflection θ 180×
3600

π 
degree − sec 

Vertical gradient δgr GM
R3 (n + 1)(n + 2)108 Mgal km− 1  

Table 4 
Global degree anomaly variances (Rapp, 1973; Tscherning and Rapp, 1974).  

Model Formulae 

Kaula (1966) 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

n=Nmax+1
σN2

√
=

64
Nmax 

Tscherning and 
Rapp (1974) 

σ2
n>3 =

A(n − 1)
(n − 2)(n + B)

where A = 425, B = 24 

σ2
n==0,1 = 0 

σ2
n==2 = 754 

Rapp (1973) σ2
n>3 =

A(n − 1)
(n − 2)(n + B + C*n2)

where A = 246.5556, B =

12.6755, and C = 0.000657  
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err =
∑∞

n=Nmax+1
cn

2 (13a) 

A certain higher degree, e.g., 10,000 (Tscherning and Rapp,1974), is 
used in practice. The global degree anomaly variances models 
commonly used are shown in Table 4. 

3.5. Comparison with GNSS-levelled heights 

Observed Geoid heights, Ngnss can be calculated from the GNSS- 
measured ellipsoidal heights, h and spirit-levelled orthometric heights, 
H at benchmarks, using the famous equation (Ismail et al., 2018): 

Ngnss = h − H (13)b 

These heights are independent of the gravimetric-determined geoid 
heights and, therefore, ideal for validating geoid models’ precision, 
including GGMs. The model-derived geoid undulations implied by the 
GGMS may be obtained from equation (3). To assess the suitability of the 
different GGMs, the differences or bias for each GGM were calculated for 
statistical analysis using the following equation (Ismail et al., 2018): 

δN =Ngnss − Nggm (14)  

where Nggm is the geoid height obtained from the GGM. 
The basic statistical indicators, such as the minimum, maximum, 

mean and standard deviation, were then obtained. To minimize the ef-
fect of systematic errors and datum inconsistencies (Kotsakis and Side-
ris, 1999; Sjöberg and Bagherbandi, 2017) between the geoid 
undulations obtained from GNSS-levelling and GGMs, various para-
metric models were fitted into the observations using the equation 
(Ismail et al., 2018): 

δN =Ax (15)  

where x is a vector of the unknown parameters, and A is the design 
matrix corresponding to the known coefficients of a pre-selected para-
metric model. In this study, three, four, five and seven parametric 
models were used, respectively as follow (Goyal et al., 2018): 

Three parameters: 

A= [ cosφcosλ cosφsinλ sinφ ] (16) 

Four parameters: 

A= [ 1 cosφcosλ cosφsinλ sinφ ] (17) 

Five parameters: 

A=
[

1 cosφcosλ cosφsinλ sinφ sin2φ
]

(18) 

Seven parameters:  

where f and e are the flattening and first eccentricity, respectively of the 
reference ellipsoid and w is given by. 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − e2sin2φ.

√

The unweighted least-squares adjustment was used since there was 
no information on the accuracy of both the observed and the synthesized 
geoid undulations. The solution to the least-squares adjustment was of 
the form (Setan and Singh, 2001; Ghilani and Wolf, 2006): 

X =
(
AT PA

)− 1( AT PL
)

(20)  

v=AX − L (21)  

σ =

̅̅̅̅̅̅̅̅
vT V

r

√

(22)  

where L = δN is the vector of observations, A is the design matrix, v the 
vector of residuals, σ the standard deviation, r = n − m the degrees of 
freedom, n the number of evaluation points and m the number of un-
known parameters in terms of the parametric model. 

3.6. Comparison with gravity anomalies 

The assessment was carried out by first synthesizing free-air gravity 
anomalies from GGMs and comparing them to observed free-air gravity 
anomalies using equation (4). Without taking into account the atmo-
spheric influence, the observed free-air gravity anomaly, Δgfa at a point 
is given by (McCubbine et al., 2018): 

Δgfa = gobs − δgfa − γell (23)  

where gobs is the observed gravity and δgfa, the free air reduction, is 
computed using the following equation (Marotta and Vidotti, 2017b): 

δgfa =(2γ e)
/

a
(
1+ f +m − 2fsin2φ

)
H −

3γe

a2 H2 (24) 

The normal gravity on the ellipsoid, which is a function of the point’s 
latitude φ, may be obtained from Somigliana’s formula (Moritz, 1992; 
Torge, 2001): 

γell =
aγecos2φ + bγpsin2φ
(
a2cos2φ + b2sin2φ

)1/2 (25)  

where γe and γp are the normal gravity at the equator and the poles, 
respectively, and other parameters are as previously described. 

Residual anomalies, with respect to the GGMs, may be computed 
without terrain effects as follows (Marotta and Vidotti, 2017a): 

Δg=Δgfa − Δgggm 

The residual free air anomalies and geoidal heights are a measure of 
how well that model represents the low-medium spectral information in 
a given area. The smoother these quantities are, the more efficiently the 
harmonic model represents the low degree spectrum locally. 

4. Results and discussion 

All the 31 GGMs are subjected to external validation using GNSS- 
levelled points and observed free-air anomalies. Thereafter, some of 
the best performers are subjected further to internal validation using 
spectral analysis for the purpose of identifying the most optimum 
models for geoid modelling in Kenya. To minimize the effect of gross 
errors as well as systematic errors in the gravity data, the data were 
filtered such that a difference of less than 20 mGal was true between the 
gravity accelerations and the normal gravity computed at the terruloid 

Table 5 
Statistics for geoid undulations and gravity free-air anomalies used at 7456 
points (Units in metres for undulations and mGal for gravity anomalies).   

Min Max Mean Std Dev. 

Observed undulations (h-H) − 29.643 − 12.700 − 20.137 6.231 
Observed Free air Anomalies − 22.344 20.147 − 4.363 11.424  

A=

[

cosφcosλ cosφsinλ sinφ
cosφsinφsinλ

w
cosφsinφcosλ

w
1 − f 2sin2φ

w
sin2φ

w

]

(19)   

C.J. Nyoka et al.                                                                                                                                                                                                                                



Journal of African Earth Sciences 194 (2022) 104612

6

point of each gravity station. The terruloid point of a gravity station is 
the point along the normal plumbline through the station, whose normal 
gravity potential is the same as the true potential of the gravity station. 
The threshold of 20mGal has been used by various researchers (Kia-
mehr, 2004; Sulaiman et al., 2013) and found to be suitable. The sta-
tistics of the final gravity data used are shown in Table 5. 

4.1. External validation using observed data 

Equations (3) and (4) were used to synthesize geoid heights and 
gravity anomalies from the selected GGMs at the GNSS-levelled points 
and the gravity stations, respectively. MATLAB functions, that are part 
of a geoid computation software which is at the developmental stage by 
the authors, were used to carry out the computations. The earth’s 
geocentric gravitational constant (GME) was derived from the GGMs. In 
all GGMs, a value of GME = 3.986004415e14 was used, except for 
GEM10b which had GME = 3.986004461e14. The reference GM0, the 
normal potential, U0, the mean Earth radius R and the mean normal 
gravity γ were obtained from the reference ellipsoid. For the WGS84 
ellipsoid (Kumar, 1993), GME = 3.986004.418e14,U0 =

62636851.7146,R = 6371008.771 , and γ = 9.797643222  m  s− 2. 
The gravity potential of the geoid was set as W0 = 62636853.4 m2s-2, 
which was adopted as a realization of the potential value for the Inter-
national Height Reference System (IHRS) during the 2015 International 
Union of Geodesy and Geophysics (IUGG) General Assembly (Sánchez 
and Sideris, 2017). 

4.1.1. Computation of zero-degree terms 
The zero-degree terms for the geoid undulation and gravity anoma-

lies were computed first for each GGM using equations (5) and (6) and 
the constants described above, and the results were added to the syn-
thesized functionals. For the WGS84 ellipsoid, mean values of 
− 0.1768m and − 0.00074mGal were obtained for the geoid undulation 

and gravity anomalies, respectively, for all the GGMs, except for 
GEM10b. The values for the GEM10b were − 0.1031m and 0.0106mGal, 
respectively for geoid undulation and gravity anomalies. 

4.1.2. Comparison using GNSS-levelled points 
Using the known ellipsoidal and orthometric heights of the GNSS- 

levelled stations, observed geoid heights were computed using equa-
tion (13), the statistics of which are shown in Table 2. Table 6 shows the 
statistics of the results of the synthesized undulations. 

The differences between the observed and the synthesized geoid 
undulations were computed using equation (14), and the statistics of the 
results are given in Table 7. In the table, the GGMs are ranked in 
ascending order of the standard deviations obtained. 

From the values given in Table 7, there is evidence of some bias 
between the geopotential of the zero-height surface of the Kenya vertical 
datum and the conventional value Wo = 62636856.00 m2/s2, which is 
the equipotential surface specified by the International Earth Rotation 
Service (IERS) and was used in the development of the various GGMs 
over the Kenyan region. These discrepancies are likely due to long/ 
medium-wavelength errors in the spherical harmonic coefficients (Kot-
sakis and Katsambalos, 2010). 

In order to model the systematic errors, least-squares parametric 
fitting was carried out using the models discussed in section 3.5. The 
obtained residuals were added to the observations (h − H) and the results 
compared with the GNSS-level undulations. This improved the standard 
deviations as shown in Table 8. 

Among the selected GGMs, the GO_CONS_GCF_2_DIR_R5 produced 
the lowest standard deviation of 0.815m of the difference between GNSS 
based and geopotential-based undulations. After removing the system-
atic errors, the standard deviation improved in all models, with the 
higher resolution GGMs performing better than lower resolution GGMs. 
Comparing the parametric models used, the seven-parametric model 

Table 6 
Statistics of synthesized undulations from selected GGMs computed to their 
maximum degree (units are in metres).  

Model Max 
Degree 

Min Max Mean Std 
Dev. 

SGG-UGM-2 2190 − 29.304 − 13.156 − 19.702 6.529 
XGM 2019e_2159 2190 − 29.272 − 13.165 − 19.697 6.540 
XGM 2019e 5540 − 29.274 − 13.164 − 19.695 6.544 
XGM2019 760 − 29.271 − 13.064 − 19.680 6.563 
ITSG-Grace2018s 200 − 29.504 − 12.769 − 19.561 6.780 
GOCO06s. 300 − 29.424 − 13.050 − 19.574 6.643 
GO_CONS_GCF_2_TIM_R6 300 − 29.418 − 13.051 − 19.568 6.645 
GO_CONS_GCF_2_DIR_R6 300 − 29.484 − 13.063 − 19.593 6.675 
IGGT_R1C 240 − 29.563 − 13.035 − 19.580 6.854 
Tongji-Grace02k 180 − 29.133 − 12.866 − 19.137 6.632 
SGG-UGM-1 2159 − 29.287 − 13.161 − 19.724 6.541 
GOSG01S 220 − 29.871 − 12.963 − 19.590 6.831 
IGGT_R1 240 − 29.572 − 13.224 − 19.622 6.765 
IfE_GOCE05s 250 − 29.462 − 13.105 − 19.560 6.664 
GO_CONS_GCF_2_SPW_R5 330 − 29.437 − 13.032 − 19.648 6.662 
XGM2016 719 − 29.245 − 13.070 − 19.675 6.565 
Tongji-Grace02s 180 − 29.189 − 12.723 − 19.140 6.693 
NULP-02s 250 − 29.455 − 12.926 − 19.516 6.710 
EIGEN-6C4 2190 − 29.406 − 13.142 − 19.722 6.566 
GO_CONS_GCF_2_DIR_R5 300 − 29.508 − 13.037 − 19.630 6.672 
GO_CONS_GCF_2_TIM_R4 250 − 29.513 − 13.045 − 19.576 6.731 
GO_CONS_GCF_2_TIM_R3 250 − 29.435 − 12.902 − 19.499 6.710 
GO_CONS_GCF_2_TIM_R2 250 − 29.532 − 12.959 − 19.544 6.775 
GOCO02s 250 − 29.501 − 12.978 − 19.535 6.755 
EGM2008 2190 − 29.257 − 13.131 − 19.717 6.541 
EIGEN-GL04C 360 − 29.297 − 12.924 − 19.502 6.616 
eigen-cg03c 360 − 29.165 − 12.775 − 19.401 6.599 
EIGEN-CHAMP03S 140 − 28.346 − 13.808 − 18.780 6.391 
EGM96 360 − 29.327 − 12.716 − 19.589 6.609 
EIGEN-2 140 − 28.302 − 14.504 − 19.155 6.273 
GEM10b 36 − 26.938 − 12.966 − 19.545 5.126  

Table 7 
Statistical results of the differences Ngnss − Nggm between the observed and syn-
thesized geoid undulations at 55 GNSS/levelling benchmarks (units are in 
metres).  

Model Max 
Degree 

Min Max Mean Std 
Dev. 

GO_CONS_GCF_2_DIR_R5 300 − 1.654 0.746 − 0.507 0.815 
GO_CONS_GCF_2_SPW_R5 330 − 1.677 0.775 − 0.489 0.820 
GOCO06s 300 − 1.762 0.644 − 0.562 0.830 
XGM2016 719 − 1.816 0.648 − 0.461 0.831 
XGM2019 760 − 1.809 0.638 − 0.456 0.831 
GO_CONS_GCF_2_TIM_R6 300 − 1.772 0.642 − 0.569 0.832 
ITSG-Grace2018s 200 − 1.782 0.862 − 0.575 0.835 
EGM96 360 − 1.819 0.568 − 0.547 0.837 
XGM 2019e 5540 − 1.799 0.623 − 0.441 0.838 
SGG-UGM-2 2190 − 1.790 0.640 − 0.435 0.839 
SGG-UGM-1 2159 − 1.776 0.649 − 0.413 0.839 
XGM 2019e_2159 2190 − 1.801 0.625 − 0.440 0.840 
GO_CONS_GCF_2_DIR_R6 300 − 1.744 0.716 − 0.544 0.842 
IfE_GOCE05s 250 − 1.772 0.662 − 0.576 0.843 
EIGEN-6C4 2190 − 1.799 0.643 − 0.414 0.851 
EGM2008 2190 − 1.817 0.719 − 0.419 0.855 
Tongji-Grace02k 180 − 2.250 0.282 − 1.000 0.858 
NULP-02s 250 − 1.930 0.684 − 0.621 0.858 
GO_CONS_GCF_2_TIM_R3 250 − 1.960 0.666 − 0.637 0.864 
Tongji-Grace02s 180 − 2.294 0.330 − 0.997 0.873 
GO_CONS_GCF_2_TIM_R4 250 − 1.858 0.794 − 0.560 0.887 
GOCO02s 250 − 1.927 0.792 − 0.601 0.896 
GO_CONS_GCF_2_TIM_R2 250 − 1.939 0.829 − 0.592 0.909 
EIGEN-GL04C 360 − 2.101 0.493 − 0.634 0.915 
eigen-cg03c 360 − 2.161 0.443 − 0.736 0.921 
IGGT_R1 240 − 1.786 0.922 − 0.514 0.933 
GOSG01S 220 − 1.920 1.007 − 0.547 0.946 
IGGT_R1C 240 − 1.828 1.038 − 0.557 0.956 
EIGEN-CHAMP03S 140 − 2.512 1.127 − 1.356 1.090 
EIGEN-2 140 − 2.258 1.819 − 0.981 1.144 
GEM10b 36 − 4.034 3.479 − 0.592 2.246  
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produced smaller standard deviations for all GGMs, and therefore was 
used to rank the performance of the GGMs in terms of geoid heights. 
Overall, EGM2008 showed some slight advantage with a standard de-
viation of 40.888 cm, but SGG-UGM-1, SGG-UGM-2, EIGEN-6C4, XGM 
2019e, XGM 2019e_2159, XGM2019 and XGM2016 performed well with 
a standard deviation of <42 cm. It is worth noting that EGM96 per-
formed the best when the four-parametric model was used. 

4.1.3. Comparison with free air anomalies 
The free-air gravity anomalies have been synthesized from the geo-

potential models and compared with the observed free-air gravity 

Table 8 
Standard deviations of the differences Ngnss − Nggm for geoid undulations at the 
55 GNSS/levelling benchmarks, after the least-squares fitting using various 
parametric models (units are in metres).  

Model Nmax Parametric Model (No. of parameters) 

3 4 5 7 

EGM2008 2190 0.78939 0.49801 0.41284 0.40888 
SGG-UGM-1 2159 0.78005 0.50062 0.41458 0.40909 
SGG-UGM-2 2190 0.78578 0.49613 0.41573 0.40975 
EIGEN-6C4 2190 0.79153 0.49220 0.41566 0.41003 
XGM 2019e 5540 0.77896 0.50382 0.42001 0.41310 
XGM 2019e_2159 2190 0.78141 0.50590 0.42112 0.41419 
XGM2019 760 0.76299 0.49841 0.42283 0.41638 
XGM2016 719 0.76154 0.50391 0.42404 0.41768 
EGM96 360 0.74404 0.47490 0.44532 0.42252 
GO_CONS_GCF_2_DIR_R5 300 0.70443 0.52502 0.46225 0.44011 
EIGEN-GL04C 360 0.83762 0.53720 0.48084 0.44050 
eigen-cg03c 360 0.84196 0.52060 0.47010 0.44174 
GO_CONS_GCF_2_SPW_R5 330 0.71583 0.53552 0.47031 0.44420 
GOCO06s 300 0.74187 0.54477 0.48032 0.45134 
GO_CONS_GCF_2_DIR_R6 300 0.73535 0.55033 0.48316 0.45256 
GO_CONS_GCF_2_TIM_R6 300 0.74269 0.54815 0.48308 0.45363 
ITSG-Grace2018s 200 0.61658 0.51737 0.46849 0.45973 
IGGT_R1.gfc 240 0.77649 0.61486 0.51604 0.47027 
IfE_GOCE05s 250 0.73879 0.56861 0.50201 0.47158 
GO_CONS_GCF_2_TIM_R4 250 0.75377 0.56924 0.50071 0.47956 
GO_CONS_GCF_2_TIM_R2 250 0.75212 0.56495 0.50030 0.48364 
GOCO02s 250 0.74744 0.56750 0.50177 0.48444 
IGGT_R1C 240 0.70714 0.60019 0.51266 0.48593 
GO_CONS_GCF_2_TIM_R3 250 0.74159 0.55498 0.50348 0.48650 
NULP-02s 250 0.73371 0.55453 0.50182 0.48662 
GOSG01S.gfc 220 0.75788 0.55957 0.52236 0.49239 
Tongji-Grace02s 180 0.74613 0.58095 0.52301 0.51199 
Tongji-Grace02k 180 0.75815 0.60214 0.53927 0.51872 
GEM10b 36 1.25034 0.98475 0.62548 0.56046 
EIGEN-CHAMP03S 140 0.99405 0.89258 0.63623 0.57833 
EIGEN-2 140 1.05484 1.00063 0.67912 0.58948  

Table 9 
Statistics of synthesized free-air anomalies for the selected GGMs computed to 
their maximum degree at 7456 stations (Units are in mGal).  

Model Max 
Degree 

Min Max Mean Std 
Dev. 

SGG-UGM-2 2190 − 57.963 70.577 − 2.239 12.983 
XGM 2019e_2159 2190 − 56.149 76.934 − 3.592 13.507 
XGM 2019e 5540 − 57.177 38.833 − 4.196 12.730 
XGM2019 760 − 55.528 69.417 − 1.894 16.533 
ITSG-Grace2018s 200 − 45.049 66.239 2.505 23.030 
GOCO06s 300 − 52.541 73.476 − 0.186 21.015 
GO_CONS_GCF_2_TIM_R6 300 − 52.033 72.984 − 0.113 20.943 
GO_CONS_GCF_2_DIR_R6 300 − 48.268 69.833 0.256 20.952 
IGGT_R1C 240 − 49.814 58.942 1.601 22.145 
Tongji-Grace02k 180 − 36.830 53.326 2.822 23.109 
SGG-UGM-1 2159 − 61.943 70.513 − 2.187 12.946 
GOSG01S 220 − 50.480 58.145 1.714 21.961 
IGGT_R1 240 − 46.437 73.404 0.532 20.804 
IfE_GOCE05s 250 − 46.698 66.407 0.863 21.588 
GO_CONS_GCF_2_SPW_R5 330 − 54.138 72.022 0.159 20.926 
XGM2016 719 − 56.037 73.825 − 1.817 16.673 
Tongji-Grace02s 180 − 33.072 57.145 3.587 23.512 
NULP-02s 250 − 48.103 61.647 1.687 21.843 
EIGEN-6C4 2190 − 62.450 70.952 − 2.222 12.992 
GO_CONS_GCF_2_DIR_R5 300 − 47.071 70.837 0.345 21.738 
GO_CONS_GCF_2_TIM_R4 250 − 49.536 65.467 0.807 20.952 
GO_CONS_GCF_2_TIM_R3 250 − 50.202 63.297 1.520 21.686 
GO_CONS_GCF_2_TIM_R2 250 − 47.035 57.619 1.885 21.828 
GOCO02s 250 − 46.712 57.222 1.887 21.832 
EGM2008 2190 − 61.365 72.835 − 2.049 13.134 
EIGEN-GL04C 360 − 52.004 81.709 1.767 21.656 
eigen-cg03c 360 − 52.187 78.400 2.127 21.691 
EIGEN-CHAMP03S 140 − 24.597 37.892 2.420 18.330 
EGM96.gfc 360 − 54.914 83.811 2.031 21.910 
EIGEN-2 140 − 25.242 35.534 2.257 14.842 
GEM10b 36 − 17.152 7.848 − 0.154 6.281  

Table 10 
Statistics of residual free air anomalies over Kenya referred to the selected GGMs 
at 7456 points (Units are in mGal).  

Model Max 
Degree 

Min Max Mean Std 
Dev. 

EIGEN-6C4 2190 − 67.316 60.071 − 2.141 6.892 
SGG-UGM-1 2159 − 66.877 59.563 − 2.176 6.896 
SGG-UGM-2 2190 − 66.942 55.583 − 2.124 6.954 
EGM2008 2190 − 69.200 58.986 − 2.315 7.061 
XGM 2019e 5540 − 37.294 54.797 − 0.167 7.174 
XGM 2019e_2159 2190 − 73.299 53.769 − 0.771 8.683 
GEM10b 36 − 27.951 36.710 − 4.209 10.636 
XGM2019 760 − 81.657 53.149 − 2.469 12.075 
XGM2016 719 − 77.128 53.658 − 2.546 12.289 
EIGEN-2 140 − 51.538 44.092 − 6.621 14.080 
EIGEN-CHAMP03S 140 − 57.664 44.412 − 6.783 16.204 
GO_CONS_GCF_2_SPW_R5 330 − 62.087 51.286 − 4.522 16.902 
GO_CONS_GCF_2_TIM_R6 300 − 67.799 48.952 − 4.250 17.055 
GO_CONS_GCF_2_DIR_R6 300 − 66.578 47.386 − 4.620 17.067 
GOCO06s 300 − 67.596 49.559 − 4.178 17.108 
EIGEN-GL04C 360 − 78.888 50.328 − 6.130 17.241 
GO_CONS_GCF_2_TIM_R4 250 − 69.717 55.543 − 5.171 17.308 
eigen-cg03c 360 − 77.940 48.726 − 6.490 17.309 
EGM96 360 − 82.952 47.321 − 6.394 17.321 
IGGT_R1 240 − 69.790 53.266 − 4.895 17.394 
GO_CONS_GCF_2_DIR_R5 300 − 65.004 47.305 − 4.708 17.713 
IfE_GOCE05s 250 − 70.414 52.207 − 5.226 18.009 
GO_CONS_GCF_2_TIM_R3 250 − 67.151 53.702 − 5.883 18.224 
NULP-02s 250 − 65.924 54.544 − 6.050 18.307 
GOCO02s 250 − 68.900 52.950 − 6.251 18.566 
IGGT_R1C 240 − 62.912 51.049 − 5.964 18.577 
GO_CONS_GCF_2_TIM_R2 250 − 69.948 52.731 − 6.248 18.591 
GOSG01S 220 − 70.511 53.336 − 6.077 18.747 
ITSG-Grace2018s 200 − 67.519 56.674 − 6.868 19.595 
Tongji-Grace02k 180 − 68.000 53.376 − 7.186 19.607 
Tongji-Grace02s 180 − 66.744 49.454 − 7.950 19.963  

Fig. 2. Geoid undulation signal amplitudes.  
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anomalies calculated at the gravity stations. Table 9 shows the statistics 
of the synthesized gravity anomalies. Residual anomalies were obtained 
after subtracting the synthesized anomalies from the observed anoma-
lies. Table 10 shows the statistical results of the residual anomalies. 

As can be observed from Table 10, the higher resolution GGMs 
outperformed the lower ones. EIGEN-6C4, SGG-UGM-1 and SGG-UGM-2 
produced the best fit in terms of gravity anomalies in Kenya because of 
their low standard deviation of <7 mGal. The ranking of the perfor-
mance of the GGMs is shown in the table. In the following section, the 
ten best performers in terms of both geoid undulations and gravity 
anomalies were chosen for spectral analysis. 

4.2. Internal validation using spectral information 

The spectral information for the best performing GGMs was 
compared using the procedures of section 3.4, up to a maximum degree 
of 500 for signal spectra and maximum degree for error spectra. The 
spectra of the signal, as well as the cumulative error for the selected 
models are depicted in Figs. 2 and 3, respectively, by degree in terms of 
geoid undulation. The global degree variance models of Kaula rule of 
thumb (Kaula, 1966), Tscherning and Rapp (1974), and Rapp (1973) for 
the decay of the fully normalized potential coefficients (see Table 4) are 
also shown. 

From Fig. 2, it is shown that the geopotential models are generally 
close to one another and obey the global degree variance models of 

Fig. 3. Geoid undulation cumulative error amplitudes.  

Table 11 
RMSE of Geoid undulation signal amplitudes by wavelength (Units are in metres).  

Model Max Degree Long 3 < N < 10 Intermediate 10 < N < 100 Short 100 < N < 1000 Very Short N > 1000 Total 

EIGEN-6C4 2190 15.061 3.976 0.779 0.022 15.596 
SGG-UGM-1 2159 15.060 3.976 0.777 0.022 15.596 
SGG-UGM-2 2190 15.060 3.976 0.779 0.023 15.596 
EGM2008 2190 15.061 3.976 0.777 0.022 15.596 
XGM 2019e 2190 15.061 3.976 0.779 0.023 15.596 
XGM 2019e_2159 2190 15.061 3.976 0.779 0.023 15.596 
XGM2019 760 15.061 3.976 0.779 – 15.596 
XGM2016 719 15.061 3.976 0.778 – 15.596 
GEM10b 36 15.052 3.603 – – 15.477 
EIGEN-2 140 15.061 3.858 0.399 – 15.552 
GOCO06S 300 15.061 3.976 0.750 – 15.595 
EGM96 360 15.062 3.969 0.747 – 15.594  

Table 12 
RMSE of Geoid undulation error amplitudes by wavelength (Units are in metres).  

Model Max Degree Long 3 < N < 10 Intermediate 10 < N < 100 Short 100 < N < 1000 Very Short N > 1000 Total 

EIGEN-6C4 2190 0.000 0.001 0.034 0.002 0.034 
SGG-UGM-1 2159 0.000 0.001 0.022 0.015 0.027 
SGG-UGM-2 2190 0.000 0.000 0.017 0.009 0.019 
EGM2008 2190 0.000 0.037 0.072 0.014 0.082 
XGM 2019e 2190 0.000 0.000 0.030 0.009 0.031 
XGM 2019e_2159 2190 0.000 0.000 0.030 0.009 0.031 
XGM2019 760 0.000 0.000 0.025 – 0.025 
XGM2016 719 0.000 0.000 0.011 – 0.011 
GEM10b 36 NaN NaN – – NaN 
EIGEN-2 140 0.002 0.841 0.343 – 0.908 
GOCO06S 300 0.000 0.000 0.144 – 0.144 
EGM96 360 0.018 0.241 0.266 – 0.359  

Fig. 4. Gravity anomaly signal amplitudes.  
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Tscherning and Rapp (1974) and Rapp (1973) at the lower frequencies 
of less than 200◦, which is equivalent to a linear half–wavelength of 100 
km resolution or more. At higher degrees, the global degree variance 
models have more signal power than the actual gravity field. Further, it 
is shown that GOCO06S and EGM96 models lose power at about 230◦

and 240◦, respectively. In Table 11, the RMSE of the geoid undulation 
signal is shown in terms of wavelength. Generally, all the higher reso-
lution models (N > 700) have similar power, while the GEM10b model 
has the least power among the GGMs selected. 

In Fig. 3, the cumulative errors in terms of the geoid undulation 
signal are plotted. Among the selected models, EIGEN-2 and EGM96 
models have the highest cumulative error, while the XGM2016 model 
showed the lowest, which is also demonstrated in the last column of 

Table 12. Amongst the high-resolution models, EIGEN-6C4 showed the 
lowest geoid error. There was no error coefficient information in the 
GEM10b file. 

In Figs. 4 and 5, the gravity anomaly signal and cumulative error 
amplitudes of the selected models are plotted. The RMSE of the signal 
and error spectra values by wavelength are tabulated in Table 13 and 
Table 14. 

From Fig. 4 and Table 13, one can see that the high-resolution 
models have similar performance trends. Like in the geoid undulation 
signal, the GEM10 model has the lowest power, even at the lower fre-
quencies, while the SGG-UGM-2 model has the highest. The GOCO06S 
and EGM96 models lose power at 230◦ and 240◦. Among the global 
degree variance models, the T/Rapp74 and Rapp (1973) models seem to 

Fig. 5. Gravity anomaly cumulative error amplitudes of selected models.  

Table 13 
RMSE of Gravity anomaly signal amplitudes by wavelength (Units are in mGal).  

Model Max Degree Long 3 < N < 10 Intermediate 10 < N < 100 Short 100 < N < 1000 Very Short N > 1000 Total 

EIGEN-6C4 2190 10.618 17.152 21.133 4.521 29.563 
SGG-UGM-1 2159 10.618 17.153 21.091 4.490 29.529 
SGG-UGM-2 2190 10.618 17.152 21.244 4.615 29.657 
EGM2008 2190 10.618 17.145 21.093 4.492 29.527 
XGM 2019e 2190 10.618 17.152 21.110 4.621 29.562 
XGM 2019e_2159 2190 10.618 17.152 21.110 4.600 29.559 
XGM2019 760 10.618 17.152 20.669 – 28.882 
XGM2016 719 10.618 17.152 20.658 – 28.874 
GEM10b 36 10.603 9.160 – – 14.011 
EIGEN-2 140 10.618 13.789 7.063 – 18.782 
GOCO06S 300 10.618 17.152 17.001 – 26.381 
EGM96 360 10.619 17.086 17.743 – 26.824  

Table 14 
RMSE of Gravity anomaly error amplitudes by wavelength (Units are in mGal).  

Model Max Degree Long 3 < N < 10 Intermediate 10 < N < 100 Short 100 < N < 1000 Very Short N > 1000 Total 

EIGEN-6C4 2190 0.000 0.008 1.584 0.353 1.623 
SGG-UGM-1 2159 0.000 0.016 1.797 3.485 3.922 
SGG-UGM-2 2190 0.000 0.003 1.277 2.019 2.389 
EGM2008 2190 0.000 0.492 2.680 3.233 4.229 
XGM 2019e 2190 0.000 0.003 2.489 1.852 3.102 
XGM 2019e_2159 2190 0.000 0.003 2.489 1.840 3.095 
XGM2019 760 0.000 0.004 1.676 – 1.676 
XGM2016 719 0.000 0.004 0.762 – 0.762 
GEM10b 36 NaN NaN – – NaN 
EIGEN-2 140 0.002 9.050 5.888 – 10.797 
GOCO06S 300 0.000 0.004 5.965 – 5.965 
EGM96 360 0.020 2.452 8.110 – 8.472  

Fig. 6. Geoid undulation SNR of selected models.  
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overestimate the power of the gravity anomaly signal more than the 
Kaula model. 

From Fig. 5, it can be seen that the XGM2016 shows the lowest 
gravity anomaly cumulative error, followed by EIGEN-6C4, while XGM 
2019, with the other high-resolution GGMs coming very close to one 
another. This is confirmed in Table 14, where the cumulative errors by 
wavelength are shown. EIGEN-2 and EGM96 models have the highest 
cumulative error. 

In Fig. 6, the geoid signal power at different wavelengths is expressed 
in terms of SNR with the selected models. It can be seen that EIGEN-6C4 
has the highest signal to noise ratio from about 360◦ upwards, followed 
by XMG_2019e_2159 and SGG-UGM-2. EIGEN-2 and EGM96 models 
have the lowest signal to noise ratios within the low wavelength spectra. 

5. Conclusion 

This study analyzed 31 global geopotential models that comprise the 
most recent and highest resolution available at the ICGEM. The analysis 
was done both spectrally and geometrically using local geodetic data 
spanning four regions of Kenya. The results reveal that all the high- 
resolution models selected in the study are capable of recovering 
geoid undulations to a reasonable accuracy. However, after removing 
gross and systematic errors, the EGM2008 showed some slight advan-
tage with a standard deviation of 40.89 cm, followed by SGG-UGM-1, 
SGG-UGM-2, XGM 2019e, EIGEN-6C4, XGM 2019e, XGM 2019e_2159, 
XGM2019 and XGM 2016, with standard deviations of <42 cm. In terms 
of gravity anomalies, still the higher resolution GGMs performed better 
than low-resolution ones. EIGEN-6C4 performed best with a standard 
deviation of 6.892 mGal followed by SGG-UGM-1 and SGG-UGM-2 with 
standard deviations of <7 mGal. Spectral analysis was also performed on 
the ten ranking GGMs from the external evaluation process. EIGEN-2 
and EGM96 models have the lowest signal power in terms of both 
geoid undulation and gravity anomalies, even within their spectral 
bands. The XGM2016 model produced the best error spectrum with the 
smallest cumulative geoid and gravity anomaly errors, followed by the 
SGG-UGM-2 model. In terms of signal to noise ratio, the EIGEN-2 and 
EGM96 models produced the lowest signal to noise ratios within the low 
wavelength spectra. XGM2016 produced the overall highest SNR, with 
the EIGEN-6C4 model producing the highest S/N ratio from degrees 
360◦ upwards, followed by XMG_2019e_2159 and SGG-UGM-2. On the 
balance of performance in all the three areas of evaluation, the SGG- 
UGM-1 and SGG-UGM-2 models may jointly be ranked as the best for 
geoid modelling in Kenya. 
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